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Chapitre (AN) 1 Fonctions

1 Généralités . . . . . . . . . . . . . . . . . . . . .

2 Calculs de limites & Conti-
nuité . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Calculs de dérivées . . . . . . . . . . . . .

4 Plan d’étude d’une fonction . . . .

5 Fonctions usuelles . . . . . . . . . . . . . .

6 Exercices . . . . . . . . . . . . . . . . . . . . . . .
Le terme de fonction a été
introduit par le
mathématicien allemand
GottfriedWilhelm LEIBNIZ en
1673 dans un manuscrit
inédit « La Méthode inverse
des tangentes ou à propos des
fonctions ».

—Le saviez-vous?

Résumé & Plan
L’objectif de ce chapitre est la
présentation de généralités sur
les fonctions, déjà évoquées dans
les classes de lycée (définition,
monotonie, parité, etc.). Nous
développerons la notion de limite
de manière plus rigoureuse dans
un futur chapitre. Ensuite, nous
nous intéresserons aux principales
fonctions usuelles à connaître. Des
compléments sur la continuité et
la dérivabilité seront faits dans le
Chapitre (AN) 6 : l’objectif de ce
chapitre est pour le moment de
savoir faire des études de fonctions
de manière efficace, donc un aspect
pratique.

Jeune, en mathématiques, on ne comprend pas les choses,
on s’y habitue.

— J. VON NEUMANN

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en

BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

Remarque 1 Tous les exemples de ce chapitre font appel aux fonctions usuelles
vues au lycée. En cas de besoin, vous pouvez consulter par anticipation la der-
nière section du chapitre : la Section 5.

1 GÉNÉRALITÉS

1.1 Définitions, opérations de base

Définition 1 | Fonction entre deux ensembles
Soient E,F deux ensembles non vides.
• Une fonction de E dans F est un processus qui associe à chaque élément 𝑥 de

E au plus un élément 𝑦 de F (donc soit 0 élément, soit 1 élément). On dit que
E est l’ensemble de départ de 𝑓 et que F est l’ensemble d’arrivée de 𝑓.

• Lorsque E ⊂ ℝ,F ⊂ ℝ, on dit que 𝑓 ∶ E ⟶ F est une fonction numérique. (on
écrira simplement « fonction » dans ce chapitre)

• On appelle ensemble de définition de la fonction 𝑓 ∶ E ⟶ F l’ensemble noté
𝒟𝑓 ⊂ E pour lequel 𝑓 associe une image, c’est-à-dire :

𝒟𝑓 = {𝑥 ∈ E |∃𝑦 ∈ F,𝑦 = 𝑓(𝑥)}.
Lorsque 𝒟𝑓 = E, c’est-à-dire lorsque l’on peut associer à tout élément de E un
élément dans F, alors on dit que 𝑓 est une application.

Remarque 2
• La différence entre les fonctions et les applications est ténue, on ne vous en

voudra pas de confondre les deux.
• Les applications seront plus généralement étudiées dans le Chapitre (ALG) 6.
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6 • Pour définir une fonction, on écrira : « Soit 𝑓 ∶ E ⟶ F la fonction définie

par 𝑓(𝑥) = … ». C’est seulement ensuite que l’exercice vous demandera de
déterminer 𝒟𝑓, c’est-à-dire l’ensemble des 𝑥 ∈ E pour lesquels 𝑓(𝑥) existe.

• Pour les fonctions clairement numériques, on écrit parfois même de façon
encore plus abusive : « soit la fonction 𝑓 ∶ 𝑥 ⟼ ... ». C’est le cas du prochain
exemple.

• Si 𝑓 ∶ E ⟶ F, alors 𝑓 est aussi une fonction de 𝒟𝑓 dans F (dans ce cas, elle
associe un élément à tous ceux de l’ensemble de départ).

Exemple 1 Déterminer le domaine de définition des fonctions suivantes.
• 𝑓 ∶ 𝑥 ⟼ 𝑥+ ln(e𝑥 −1)

PEN-FANCY

• 𝑔 ∶ 𝑥 ⟼ 1
√𝑥2−2

PEN-FANCY

• ℎ ∶ 𝑥 ⟼ ln ( e
𝑥−1
𝑥 )

PEN-FANCY

Définition 2 | Égalité de fonctions
Soient 𝑓,𝑔 deux fonctions. Alors 𝑓,𝑔 sont dites égales si :

⎧
⎨
⎩

(i) 𝒟𝑓 = 𝒟𝑔

(ii) ∀𝑥 ∈ 𝒟𝑓(= 𝒟𝑔), 𝑓(𝑥) = 𝑔(𝑥).

Exemple 2
• Les fonctions 𝑓 ∶ 𝑥 ⟼ |𝑥| et 𝑔 ∶ 𝑥 ⟼ √𝑥2 sont égales. En effet, elles sont

bien définies sur 𝒟𝑓 = 𝒟𝑔 = ℝ, et pour tout 𝑥 ∈ ℝ, √𝑥2 = |𝑥|.
• Les fonctions 𝑓 ∶ 𝑥 ⟼ 𝑥 et 𝑔 ∶ 𝑥 ⟼ eln𝑥 ne sont pas égales. En effet, 𝒟𝑓 = ℝ

alors que 𝒟𝑔 = ℝ+⋆. En revanche, puisque : ∀𝑥 ∈ ℝ+⋆, 𝑓(𝑥) = 𝑔(𝑥), nous
dirons dans le Chapitre (ALG) 6 que la « restriction de 𝑓 à ℝ+⋆ » est égale à 𝑔.

Cadre
Ô

Dans toute la suite, nous ne considèrerons que des fonctions numériques,
même lorsque cela n’est pas précisé.

Définition 3 | Image d’un élément, Image d’une fonction
Soit 𝑓 ∶ 𝒟𝑓 ⟶ ℝ une fonction.
• Soit 𝑥 ∈ 𝒟𝑓 et 𝑦 ∈ ℝ tel que 𝑦 = 𝑓(𝑥). On dit que 𝑦 est l’image de 𝑥 par 𝑓 et que

𝑥 est un antécédent de 𝑦 par 𝑓.
• On appelle image de 𝑓 l’ensemble 𝑓(𝒟𝑓) défini par :

𝑓(𝒟𝑓) = {𝑓(𝑥) |𝑥 ∈ 𝒟𝑓}.
C’est donc l’ensemble de toutes les images de 𝒟𝑓.

• Si A ⊂ 𝒟𝑓, on appelle image de A par 𝑓 l’ensemble 𝑓(A) défini par :
𝑓(A) = {𝑓(𝑥) |𝑥 ∈ A}.

C’est donc l’ensemble des images des éléments de A.
• Soit B ⊂ ℝ. On dit que 𝑓 est à valeurs dans B si 𝑓(𝒟𝑓) ⊂ B, c’est-à-dire :

∀𝑥 ∈ 𝒟𝑓, 𝑓(𝑥) ∈ B.

Attention
,

• Être « à valeurs dans B » ne signifie par « prendre toutes les valeurs de B ». Par
exemple, la fonction 𝑓 ∶ 𝑥 ⟼ 𝑥2+1 est à valeurs dans ℝ mais n’atteint pas les
éléments de [0,1[ car 𝑥2 +1 ⩾ 1 pour tout 𝑥 ∈ ℝ.

• Onprendre garde à ne pas confondre 𝑓 et 𝑓(𝑥), qui sont des objets de natures
très différentes.
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Définition 4 | Graphe
Soit𝑓une fonction. , on appelle graphe de𝑓ou courbe représentative de𝑓 le sous-
ensemble noté 𝒞𝑓 de ℝ2 défini par :

𝒞𝑓 = {(𝑥,𝑓(𝑥)) |𝑥 ∈ 𝒟𝑓}.

De manière équivalente, on a pour (𝑥,𝑦) ∈ ℝ2,
(𝑥,𝑦) ∈ 𝒞𝑓 ⟺ 𝑦 = 𝑓(𝑥).

𝑥

𝑦

𝑓(𝑥)

𝑥

𝒞𝑓

A

𝑓(
A)

A

COURBE REPRÉSENTATIVE ET IMAGE

♥ Remarque 3 Un réel 𝑥 ∈ 𝒟𝑓 possède une unique image par 𝑓 (qui s’appelle
𝑓(𝑥)). En revanche, un réel 𝑦 peut :
• avoir un unique antécédent par 𝑓,

exemple : 0 a pour unique antécédent 0 par la fonction carré
• avoir plusieurs antécédents par 𝑓,

exemple : 4 a deux antécédents, -2 et 2 , par la fonction carré
• ne pas avoir d’antécédent par 𝑓.

exemple : -1 n’a pas d’antécédent par la fonction carré

Concrètement, pour calculer des images d’intervalles, nous utiliserons le théorème
de la bijection, que nous verrons plus tard dans l’année. Dans l’exemple qui suit,
nous nous contentons d’une conjecture sur 𝑓(𝒟𝑓) à l’aide d’un graphique.

Exemple 3
1. Soit 𝑓 ∶ 𝑥 ∈ ℝ ⟼ 𝑥2. Préciser son ensemble de définition 𝒟𝑓, 𝑓(𝒟𝑓) sans jus-

tifier, et le(s) antécédent(s) de 2 par 𝑓.

PEN-FANCY

2. Soit 𝑓 ∶ 𝑥 ∈ ℝ ⟼ 1
𝑥 . Préciser son ensemble de définition 𝒟𝑓, 𝑓(𝒟𝑓) sans justi-

fier, et le(s) antécédent(s) de 2 par 𝑓.
PEN-FANCY

Maintenant que l’on connaît « l’objet fonction », on peut essayer de réaliser des opé-
rations sur elles, on en définit alors plusieurs autres.

Définition 5 | Opérations
Soient 𝑓,𝑔 deux fonctions, et λ ∈ ℝ. On définit les fonctions λ𝑓, 𝑓+𝑔, 𝑓×𝑔 et 1

𝑓
par :

• [Multiplication scalaire] λ𝑓 | 𝒟𝑓 ⟶ ℝ
𝑥 ⟼ λ×𝑓(𝑥)

• [Somme] 𝑓+𝑔 | 𝒟𝑓 ∩𝒟𝑔 ⟶ ℝ
𝑥 ⟼ 𝑓(𝑥)+𝑔(𝑥)

• [Produit] 𝑓×𝑔 | 𝒟𝑓 ∩𝒟𝑔 ⟶ ℝ
𝑥 ⟼ 𝑓(𝑥)×𝑔(𝑥)

• [Inverse] 1
𝑓

|

|

{𝑥 ∈ 𝒟𝑓 | 𝑓(𝑥) ≠ 0} ⟶ ℝ
𝑥 ⟼ 1

𝑓(𝑥)
si {𝑥 ∈ 𝒟𝑓 | 𝑓(𝑥) ≠ 0} ≠ ∅.

Pour chacune des fonctions précédentes, on réalise l’opération « image par image »,
puisque « 𝑥 par 𝑥 » nous savons multiplier, additionner ... des nombres réels. Nous
allons voir maintenant une opération un peu plus singulière. Par exemple, considé-
rons la fonction ℎ ∶ 𝑥 ∈ ℝ ⟼ 𝑥4. On peut la voir comme

• le produit de 𝑓 ∶ 𝑥 ∈ ℝ ⟼ 𝑥2 avec elle-même, i.e. ℎ = 𝑓×𝑓, puisque 𝑥4 = 𝑥2 ×𝑥2

pour tout 𝑥 ∈ ℝ,

3
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6 • mais aussi comme l’élévation au carré deux fois de suite, i.e. :

ℎ ∶ 𝑥 ∈ ℝ ⟼ 𝑓(𝑓(𝑥)) = 𝑓(𝑥2) = (𝑥2)2.
On note ℎ = 𝑓 ∘𝑓 et on parle de « composée de 𝑓 par 𝑓 ».

Plus généralement, nous avons la définition suivante.

Définition 6 | Composition
Soient 𝑓 et 𝑔 deux fonctions.
• Alors on définit la composée de 𝑓 par 𝑔 notée 𝑔 ∘𝑓 par :

(𝑔 ∘𝑓)(𝑥) = 𝑔(𝑓(𝑥)).
On dira que 𝑔 est la fonction extérieure de la composée 𝑔 ∘𝑓, 𝑓 est la fonction
intérieure de la composée 𝑔 ∘𝑓.

• Le domaine de définition de 𝑔 ∘𝑓 est alors :
𝒟𝑔∘𝑓 = {𝑥 ∈ 𝒟𝑓 | 𝑓(𝑥) ∈ 𝒟𝑔}.

• Lorsque 𝑓(𝒟𝑓) ⊂ 𝒟𝑔 (c’est-à-dire 𝑓(𝑥) ∈ 𝒟𝑔 pour tout 𝑥 ∈𝒟𝑓) , alors : 𝒟𝑔∘𝑓 = 𝒟𝑓.

Exemple 4 Déterminer l’ensemble de définition des fonctions suivantes, et les
écrire comme une composée.
• ℎ1 ∶ 𝑥 ⟼ ln(𝑥+3).

PEN-FANCY

• ℎ2 ∶ 𝑥 ⟼ √𝑥− 1
𝑥 ,

PEN-FANCY

• ℎ3 ∶ 𝑥 ⟼ 1+e√𝑥

𝑥√𝑥
.Pour la composée, l’une des deux fonctions sera la fonction

racine carrée.
PEN-FANCY

Exemple 5 On considère les deux fonctions 𝑓 ∶ 𝑥 ⟼ √𝑥−1 et 𝑔 ∶ 𝑥 ⟼ sin(𝑥).
• Quels sont leurs ensembles de définition?

PEN-FANCY

• Calculer, en précisant le domaine de définition, les composées 𝑓 ∘𝑔 et 𝑔 ∘𝑓.
PEN-FANCY

Les propriétés algébriques de la composition (associativité par exemple) seront étu-
diées dans le Chapitre (ALG) 6 sur les applications. En revanche, on peut déjà préci-
ser un point de vigilance, mentionné dans l’exemple qui suit.

Exemple 6 On note 𝑓 ∶ 𝑥 ⟼ 𝑥2 et 𝑔 ∶ 𝑥 ⟼ 𝑥2 +1. Calculer 𝑓 ∘𝑔 et 𝑔 ∘𝑓. Qu’en
déduire?

4
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PEN-FANCY

On a donc en règle générale : 𝑓 ∘𝑔 ≠ 𝑔 ∘𝑓 .

1.2 Propriétés sur les fonctions

La plupart des fonctions usuelles apparaissant dans les prochains exemples sont
connues depuis le lycée, mais elles seront revues en fin de chapitre.

Définition 7 | Périodicité
Soit 𝑓 une fonction. .
• Soit T> 0 . La fonction 𝑓 est dite périodique de période T ou T-périodique si :

⎧
⎨
⎩

(i) ∀𝑥 ∈ 𝒟𝑓, 𝑥+T ∈ 𝒟𝑓

(ii) ∀𝑥 ∈ 𝒟𝑓, 𝑓(𝑥+T) = 𝑓(𝑥).
• La fonction 𝑓 est dite périodique s’il existe T > 0 tel que 𝑓 soit T-périodique.

Remarque 4 (Non-unicité)
• Par récurrence évidente, on montre qu’alors :

∀𝑥 ∈ ℝ, ∀𝑛 ∈ ℕ, 𝑓(𝑥+𝑛T) = 𝑓(𝑥).
Si 𝑓 est T-périodique, elle est donc également 2T-périodique, 3T-périodique,
etc. Plus précisément, pour tout 𝑛 ∈ ℕ∗, 𝑓 est 𝑛T-périodique.

• Ainsi, onnedit pas « la» périodemaisunepériode. Eneffet, siT convient dans
la définition précédente, c’est le cas aussi de 2T,3T etc.. Certaines fonctions
possèdent une « plus petite période », mais pas toutes. Par exemple, pour les
fonctions constantes tous les réels strictement positifs sont des périodes, et
ℝ+⋆ ne possède pas de minimum.

• Cela dit, on vous demandera le plus souvent de montrer que des fonctions
(possédant une plus petite période) sont périodiques, et de donner la plus
petite.

Remarque 5 (Interprétation géométrique) Géométriquement, cela signifie
que dans le plan muni d’un repère (O, ⃗𝑖, ⃗𝑗), son graphe est invariant par la trans-
lation de vecteur T ⃗𝑖.

𝑥

𝑦

T

𝒞𝑓

GRAPHE D’UNE FONCTION PÉRIODIQUE

Exemple 7 La fonction 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ cos(3𝑥) est périodique de période 2π

3 .

• [Intuition] la fonction 𝑓 avance sur le graphe du cosmais 3 fois plus vite !
Elle risque donc d’avoir une période 3-fois plus petite que celle du cosinus....

• [Justification] En effet, si 𝑥 ∈ ℝ on a bien 𝑥+ 2π
3 ∈ ℝ et

𝑓(𝑥+
2π
3

) = cos(3(𝑥+
2π
3

)) = cos(3𝑥+2π) = cos(3𝑥) = 𝑓(𝑥).

En effet, si 𝑥 ∈ ℝ on a bien 𝑥+ 2π
3 ∈ ℝ et

𝑓(𝑥+
2π
3

) = cos(3(𝑥+
2π
3

)) = cos(3𝑥+2π) = cos(3𝑥) = 𝑓(𝑥).

Remarque 6 (Généralisation) Soit 𝑓 une fonction T > 0-périodique, ainsi que
(ω,φ) ∈ ℝ+⋆ ×ℝ. De façon générale,

𝑔 ∶ 𝑥 ⟼ 𝑓(ω𝑥+φ) est
T
ω

-périodique.

PEN-FANCY

5



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Définition 8 | Parité & Imparité
Soit 𝑓 une fonction. .

La fonction 𝑓 est dite paire si :
⎧
⎨
⎩

(i) ∀𝑥 ∈ 𝒟𝑓, −𝑥 ∈ 𝒟𝑓

(ii) ∀𝑥 ∈ 𝒟𝑓, 𝑓(−𝑥) = 𝑓(𝑥).

• La fonction 𝑓 est dite impaire si :
⎧
⎨
⎩

(i) ∀𝑥 ∈ 𝒟𝑓, −𝑥 ∈ 𝒟𝑓

(ii) ∀𝑥 ∈ 𝒟𝑓, 𝑓(−𝑥) = −𝑓(𝑥).

•

Attention
,

Cela ne signifie pas du tout que 𝑓 prend des valeurs paires ou impaires.

Remarque 7 (Interprétation géométrique) Géométriquement, la parité et
l’imparité s’interprètent ainsi.
• Si 𝑓 est paire alors, dans le plan muni d’un repère (O, ⃗𝑖, ⃗𝑗), son graphe est in-

variant par la symétrie d’axe (O, ⃗𝑗).
• Si 𝑓 est impaire alors, dans le plan muni d’un repère (O, ⃗𝑖, ⃗𝑗), son graphe est

invariant par la symétrie centrale par rapport au point O.

FONCTION IMPAIRE

𝑥

𝑦

−𝑥

• −𝑓(𝑥)

𝑥

•𝑓(𝑥)

𝒞𝑓

FONCTION PAIRE

𝑥

𝑦

−𝑥

•
𝑓(𝑥)

•

𝑥

𝒞𝑓

Exemple 8 Soit 𝑓 ∶ 𝑥 ⟼ ln ( 1−𝑥1+𝑥 ). Déterminer l’ensemble de définition de 𝑓 puis
montrer que 𝑓 est impaire.
PEN-FANCY

Exemple 9

1. La fonction 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ 5𝑥 est impaire.

2. La fonction 𝑔 | ℝ∗ ⟶ ℝ
𝑥 ⟼ 1

𝑥
est impaire.

3. La fonction ℎ | ℝ ⟶ ℝ
𝑥 ⟼ cos(𝑥) est paire.

Conséquence très importante de ces propriétés : on peut réduire le domaine
d’étude!

♥ Remarque 8 (Parité/Périodicité et réduction du domaine d’étude) Soit
𝑓 une fonction. Alors les différentes interprétations géométriques permettent
de se contenter d’étudier une fonction sur un domaine plus petit que 𝒟𝑓 : après
cette étude « réduite », des transformations géométriques simples permettront
de récupérer le reste du graphe!
• [Périodique] Si 𝑓 est T-périodique, on peut réduire l’étude à 𝒟𝑓 ∩[0,T] ,

l’intervalle [0,T] pouvant être remplacé par n’importe quel autre intervalle
de longueur T (par exemple, [−T

2 ,
T
2 ] souvent utile ...).

• [Paire/Impaire] Si 𝑓 est paire ou impaire, on peut réduire le domaine
d’étude à 𝒟𝑓 ∩ℝ+.

• [Périodique et Paire/Impaire] Si 𝑓 est T-périodique et possède en plus
une parité, on peut réduire à : 𝒟𝑓 ∩[0, T2 ].
En effet, dans le détail, la périodicité permet de réduire à 𝒟𝑓∩[−T

2 ,
T
2 ], puis la parité à

𝒟𝑓 ∩[0, T2 ].

6
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Exemple 10 Réduire le domaine d’étude de 𝑓 ∶ 𝑥 ⟼ cos (𝑥2 ) − cos(𝑥). Préci-
ser ensuite les transformations géométriques nécessaires afin d’obtenir tout le
graphe.
• [Parité]

PEN-FANCY

• [Période]
PEN-FANCY

1.3 Sens de variation

Définition 9 | Monotonie
Soit 𝑓 une fonction.
• On dit que 𝑓 est constante sur 𝒟𝑓 si

∀(𝑥,𝑦) ∈ 𝒟2
𝑓 , 𝑓(𝑥) = 𝑓(𝑦).

• On dit que 𝑓 est croissante (resp. strictement ) sur 𝒟𝑓 si
∀(𝑥,𝑦) ∈ 𝒟2

𝑓 , 𝑥 ⩽ 𝑦 ⟹ 𝑓(𝑥) ⩽ 𝑓(𝑦)

(resp. ∀(𝑥,𝑦) ∈ 𝒟2
𝑓 , 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦)) .

• On dit que 𝑓 est décroissante (resp. strictement ) sur 𝒟𝑓 si
∀(𝑥,𝑦) ∈ 𝒟2

𝑓 , 𝑥 ⩽ 𝑦 ⟹ 𝑓(𝑥) ⩾ 𝑓(𝑦)

(resp. ∀(𝑥,𝑦) ∈ 𝒟2
𝑓 , 𝑥 < 𝑦 ⟹ 𝑓(𝑥) > 𝑓(𝑦)) .

• On dit que 𝑓 est monotone (resp. strictement) sur 𝒟𝑓 si 𝑓 est croissante ou
décroissante (resp. strictement) sur 𝒟𝑓.

Remarque 9
• On notera qu’une fonction strictement croissante (resp. strictement décrois-

sante) est croissante (resp. décroissante).
• Une fonction croissante préserve les inégalités. Une fonction décroissante

renverse les inégalités.
• Pour les fonctions strictement monotones, on peut remplacer le symbole

« ⟹ » par « ⟺ » dans la définition, comme nous l’avons vu dans le Cha-
pitre (ALG) 2.

FONCTION STRICTEMENT MONOTONE

𝑥

𝑦

𝑓(𝑥) •

𝑥

𝑓(𝑦) •

𝑦

𝒞𝑓

FONCTION NON STRICTEMENT MONOTONE

𝑥

𝑦

𝑥

•
𝑓(𝑥) ≮ 𝑓(𝑦)

𝑦

•
𝒞𝑓

Attention
,

Il faut bien connaître la définition de fonctionmonotone, en plus de savoir l’éta-
blir éventuellement en dérivant (un des objectifs de la suite du chapitre).

Proposition 1 | Opérations sur les fonctionsmonotones
Soient 𝑓,𝑔 deux fonctions. Alors :
• [Addition] si 𝑓,𝑔 ont même monotonie, 𝑓+𝑔 aussi.
• [Produit par un scalaire] Si 𝑓 est monotone, alors pour tout λ ∈ ℝ, λ𝑓 est :

⋄ monotone de même monotonie que 𝑓 si λ > 0,
⋄ et de monotonie inversée à 𝑓 si λ < 0.

• [Produit]
⋄ si 𝑓,𝑔 sont croissantes positives, alors 𝑓𝑔 est croissante,
⋄ si 𝑓,𝑔 sont décroissantes positives, alors 𝑓𝑔 est décroissante.

• [Composition]

7
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⋄ si 𝑓,𝑔 sont monotones de même monotonie, alors 𝑔 ∘𝑓 est croissante,
⋄ si 𝑓,𝑔 sont monotones de monotonies opposées, alors 𝑔 ∘ 𝑓 est décrois-

sante.

Attention
,

La fonction « identité » 𝑥 ⟼ 𝑥 est croissante sur ℝ, mais quand on la multi-
plie par elle-même, le résultat 𝑥 ⟼ 𝑥2 n’est pas une fonction croissante sur ℝ.
Comme quoi la positivité compte!

Preuve Démontrons par exemple que 𝑔 ∘𝑓 est décroissante, lorsque 𝑔 est décroissante et
𝑓 est croissante.
PEN-FANCY

Exemple 11 En utilisant la définition, établir les monotonies ci-après.

1. La fonction 𝑓 |
ℝ+ ⟶ ℝ
𝑥 ⟼ 2−√𝑥 est strictement décroissante.

PEN-FANCY

2. La fonction 𝑔 | ℝ ⟶ ℝ
𝑥 ⟼ ⌊𝑥⌋ est croissante mais n’est pas strictement crois-

sante. (l’étude complète de la partie entière sera faite dans la Section 5)

PEN-FANCY

Nous reverrons plus tard dans le chapitre unmoyen plus efficace de prouver que des
fonctions sont monotones, autre que la définition.

1.4 Extrema

8
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Définition 10 | Majoration,minoration, borne, sup, inf
Soit 𝑓 une fonction.
• Ondit que 𝑓 estmajorée sur𝒟𝑓 si l’ensemble {𝑓(𝑥) |𝑥 ∈ 𝒟𝑓} estmajoré, c’est-

à-dire si :
∃M ∈ ℝ, ∀𝑥 ∈ 𝒟𝑓, 𝑓(𝑥) ⩽ M.

Dans ce cas, la borne supérieure de 𝑓, notée sup𝑓, est définie par :
sup𝑓 = sup{𝑓(𝑥) |𝑥 ∈ 𝒟𝑓}.

• Ondit que 𝑓 estminorée sur𝒟𝑓 si l’ensemble {𝑓(𝑥) |𝑥 ∈ 𝒟𝑓} estminoré, c’est-
à-dire si :

∃𝑚 ∈ ℝ, ∀𝑥 ∈ 𝒟𝑓, 𝑓(𝑥) ⩾ 𝑚.
Dans ce cas, la borne inférieure de 𝑓, notée inf𝑓, est définie par :

inf𝑓 = inf{𝑓(𝑥) |𝑥 ∈ 𝒟𝑓}.

• On dit que 𝑓 est bornée sur 𝒟𝑓 si l’ensemble {𝑓(𝑥) |𝑥 ∈ 𝒟𝑓} est borné ou en-
core que 𝑓 est majorée et minorée, c’est-à-dire si :

∃(𝑚,M) ∈ ℝ2, ∀𝑥 ∈ 𝒟𝑓, 𝑚 ⩽ 𝑓(𝑥) ⩽ M.

La notion d’ensemble borné peut se réecrire à l’aide de la valeur absolue, c’est donc
aussi le cas des fonctions bornées.

Proposition 2 | Fonction bornée et valeur absolue
Soit 𝑓 une fonction. . Alors

𝑓 est bornée sur 𝒟𝑓 ⟺ |𝑓| est majorée sur 𝒟𝑓

⟺ ∃ℳ ⩾ 0, ∀𝑥 ∈ 𝒟𝑓, |𝑓(𝑥)| ⩽ ℳ.

Dans la pratique, on utilise plutôt cette proposition pour montrer qu’une fonction
est bornée. La rédaction est souvent plus simple en exploitant les propriétés de la
valeur absolue.

Preuve Utiliser le résultat déjà vu sur les ensembles bornés, appliqué àA= {𝑓(𝑥) |𝑥 ∈𝒟𝑓}.

Définition 11 | Extrema global / local
Soit 𝒟𝑓 un intervalle non-vide de ℝ, 𝑓 une fonction de 𝒟𝑓 dans ℝ et 𝑥0 ∈ ℝ.
• [Global]

⋄ On dit que 𝑓 admet un maximum global en 𝑥0 si 𝑥0 ∈ 𝒟𝑓, et :
∀𝑥 ∈ 𝒟𝑓, 𝑓(𝑥) ⩽ 𝑓(𝑥0).

On dit alors que 𝑓(𝑥0) est le maximum de 𝑓 sur 𝒟𝑓.
⋄ On dit que 𝑓 admet un minimum global en 𝑥0 si 𝑥0 ∈ 𝒟𝑓, et :

∀𝑥 ∈ 𝒟𝑓, 𝑓(𝑥) ⩾ 𝑓(𝑥0)

On dit alors que 𝑓(𝑥0) est le minimum de 𝑓 sur 𝒟𝑓.
• [Local] On dit que 𝑓 admet en 𝑥0 ∈ 𝒟𝑓 un minimum local (resp. maximum

local) si l’une des égalités précédentes a lieu uniquement sur un voisinage de
𝑥0, c’est-à-dire un intervalle de la forme ]𝑥0 −ε,𝑥0 +ε[, ε > 0.

• On dit que 𝑓 admet en 𝑥0 un extremum (resp. extremum local) si 𝑓 admet en
𝑥0 un minimum ou un maximum (resp. un minimum local ou un maximum
local).

Exemple 12

𝑥

𝑦

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

𝒞𝑓

Ici, la fonction 𝑓 est définie sur A = [1;9[.
• 𝑓 est bornée sur A car : ∀𝑥 ∈ A, 0 ⩽ 𝑓(𝑥) ⩽ 4.
• 0 est un minorant de 𝑓 sur A, c’est même le minimum global atteint en 3 et sa

borne inférieure.
• En revanche 4 est un majorant non atteint de 𝑓 sur A.
• Il n’y a pas de maximum global.
• Enfin, 1 est un minimum local atteint en 7 et 3 un maximum local atteint en

5.

2 CALCULS DE LIMITES & CONTINUITÉ

Pré-requis

• La notion de limite sera définie proprement dans un prochaine chapitre (Cha-
pitre (AN) 6). On supposera donc connue (voir vos cours de lycée) la notion de limite
en un point fini ou infini pour une fonction, et leur version à droite ou à gauche.

• On revoie en revanche les règles d’opérations classiques afin de pouvoir effectuer des

9
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calculs. La définition de la continuité est rappelée, mais les propriétés complémen-
taires plus générales (convergence monotone, théorème des valeurs intermédiaires
et de la bijection etc.) seront vues plus tard dans l’année.

2.1 Voisinage

Définition 12 | Voisinage
• On appelle voisinage de +∞ tout intervalle de la forme ]𝑎,+∞[ où 𝑎 ∈ ℝ.
• On appelle voisinage de −∞ tout intervalle de la forme ]−∞,𝑎[ où 𝑎 ∈ ℝ.
• Soit 𝑥0 ∈ ℝ.

⋄ On appelle voisinage de 𝑥0 tout intervalle de la forme ]𝑥0 −η,𝑥0 +η[ où η >
0.

⋄ On appelle voisinage de 𝑥−
0 tout intervalle de la forme ]𝑥0 −η,𝑥0[ où η > 0.

⋄ On appelle voisinage de 𝑥+
0 tout intervalle de la forme ]𝑥0,𝑥0 +η[ où η > 0.

Définition 13 | Propriété vraie sur un voisinage
Soit𝑥0 ∈ ℝ∪{±∞}. Ondit qu’unepropriété, dépendant d’une variable𝑥, est vraie
au voisinage de 𝑥0 (resp. 𝑥+

0 ,𝑥−
0 ) si elle est vraie pour tout 𝑥 ∈ V𝑥0 où V𝑥0 est un

voisinage de 𝑥0 (resp. 𝑥+
0 ,𝑥−

0 ).

Exemple 13
1. Soit 𝑓 ∶ 𝑥 ⟼ 2𝑥. Alors 𝑓 est positive au voisinage de 0+, négative au voisinage

de 0− ; mais son signe n’est pas déterminé au voisinage de 0 (c’est-à-dire sur
un intervalle de la forme ]−η,η[ avec η > 0).

2. Soit𝑓 ∶ 𝑥 ⟼ |𝑥|. Alors𝑓 est positive au voisinage de 0, strictement positive au
voisinage de 0+ et de 0− ; mais elle n’est pas strictement positive au voisinage
de 0.

3. Soit 𝑓 ∶ 𝑥 ⟼ 𝑥2 +𝑥cos(𝑥), alors 𝑓 est strictement positive au voisinage de
+∞ et au voisinage de −∞.
PEN-FANCY

4. Soit 𝑓 ∶ 𝑥 ⟼ ln(𝑥). Alors 𝑓 est définie au voisinage de 𝑥0 pour tout 𝑥0 ∈ ℝ∗
+,

définie au voisinage de 0+ ; mais 𝑓 n’est pas définie au voisinage de 0.
5. Soit 𝑓 ∶ 𝑥 ⟼ ln(−𝑥). Alors 𝑓 est définie au voisinage de 𝑥0 pour tout 𝑥0 ∈ ℝ∗

−,
définie au voisinage de 0− ; mais 𝑓 n’est pas définie au voisinage de 0.

6. Soit 𝑓 ∶ 𝑥 ⟼ ln(|𝑥|). Alors 𝑓 est définie au voisinage de 𝑥0 pour tout 𝑥0 ∈ ℝ∗,
définie au voisinage de 0− et de 0+ ; mais 𝑓 n’est pas définie au voisinage de 0.

2.2 Généralités

Notation Limite d’une fonction
Σ

Soient 𝑥0 ∈ ℝ∪ {±∞}, ℓ ∈ ℝ∪ {±∞} tels que 𝑓(𝑥)
𝑥⟶𝑥0−−−−−→ ℓ. On dit que ℓ est la

limite de 𝑓 en 𝑥0, ce que l’on note :
ℓ = lim

𝑥⟶𝑥0
𝑓(𝑥) ou, plus simplement, ℓ = lim

𝑥0
𝑓.

Attention
,

Une fonction peut ne pas avoir de limite, nous verrons des exemples plus tard
dans l’année.

Remarque 10 (Pourquoi la notion de limite?)
LA LIMITE EN 𝑎 EST LA VALEUR EN 𝑎

𝑥

𝑦

𝑎

𝑓(𝑎)

𝒞𝑓

La notion de limite en 𝑎 est peu utile
ici, puisqu’elle est égale à la valeur en 𝑎

de la fonction. Nous verrons même
plus tard dans l’année que c’est le cas
dès que la fonction est définie en 𝑎.

LA VALEUR EN 𝑎 N’EXISTE PAS

𝑥

𝑦

𝑎

𝒞𝑓

La notion de limite est typiquement la
pour mettre des mots sur ce type de

comportement, et l’étudier.

10
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Le théorème suivant sera démontré plus tard dans l’année, comme la plupart des
résultats qui vont suivre.

Théorème 1 | Unicité de la limite
La limite d’une fonction, si elle existe, est unique.

Limite à droite ou à gauche. Une limite peut être caractérisée par une
convergence à droite et à gauche, cela signifie que𝑥 se « rapproche par la droite ou la
gauche » du point 𝑎. Comme annoncé plus haut, on supposera connue cette notion
de limite.

Exemple 14 Dans l’exemple graphique suivant, déterminer : lim
𝑥⟶5−

𝑓(𝑥) et
lim
𝑥⟶5+

𝑓(𝑥).

𝑥

𝑦

5

3 •

2

1

Rappelons le lien avec la limite à droite et à gauche.

Proposition 3 | Lien limite et limite à droite / gauche
Soient 𝑓 ∶ I ⟶ ℝ , 𝑥0 un point à l’intérieur de I (i.e. pas au bord de I).
• Si 𝑓 est définie en 𝑥0, alors :

𝑓 admet une limite en 𝑥0 ⟺

⎧
⎨
⎩

(i) 𝑓 admet une limite finie à droite et à gauche,
(ii) lim

𝑥⟶𝑥−0
𝑓(𝑥) = lim

𝑥⟶𝑥+0
𝑓(𝑥) = 𝑓(𝑥0) .

Dans ce cas : lim
𝑥⟶𝑥−0

𝑓(𝑥) = lim
𝑥⟶𝑥+0

𝑓(𝑥) = lim
𝑥⟶𝑥0

𝑓(𝑥) = 𝑓(𝑥0).

• Si 𝑓 n’est pas définie en 𝑥0, alors :
𝑓 admet une limite en 𝑥0 ⟺

⎧
⎨
⎩

(i) 𝑓 admet une limite à droite et à gauche,
(ii) lim

𝑥⟶𝑥−0
𝑓(𝑥) = lim

𝑥⟶𝑥+0
𝑓(𝑥).

Dans ce cas : lim
𝑥⟶𝑥−0

𝑓(𝑥) = lim
𝑥⟶𝑥+0

𝑓(𝑥) = lim
𝑥⟶𝑥0

𝑓(𝑥).

Il faut savoir adapter ce résultat aussi au cas où une fonction est définie à droite ou
à gauche de 𝑥0 uniquement. Cette proposition est cruciale en pratique pour :

• montrer l’existence d’une limite en un point d’une fonction définie en deux mor-
ceaux (avec rupture de l’expression au point étudié),

• ou pour montrer que des fonctions n’admettent pas de limites en un point.

Exemple 15 La fonction 𝑥 ⟼
1
𝑥2 admet une limite à droite et à gauche en 0,

égale à +∞. Donc admet une limite en zéro qui vaut +∞.

𝑥

𝑦

𝒞𝑓

Exemple 16 Notons 𝑓
|||

|

ℝ ⟶ ℝ

𝑥 ⟼
⎧
⎨
⎩

e𝑥 si 𝑥 ⩾ 0,
1−𝑥 si 𝑥 < 0.

Alors : lim
𝑥⟶0

𝑓(𝑥) = 1.

PEN-FANCY

Exemple 17 (Fonction inverse) On a : lim
𝑥⟶0−

1
𝑥 = −∞, lim

𝑥⟶0+
1
𝑥 = +∞. La fonc-

tion 𝑥 ∈ ℝ⋆ ⟼ 1
𝑥 admet-elle une limite en zéro?

PEN-FANCY

11
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𝑥

𝑦

𝒞𝑓

2.3 Opérations algébriques sur les limites

Soit 𝑥0 ∈ ℝ∪ {±∞}, c’est-à-dire 𝑥0 est soit un nombre réel, soit ±∞) et soient 𝑓 et 𝑔
deux fonctions admettant toutes les deux une limite en 𝑥0. Dans toute la suite, ℓ et
ℓ′ désignent deux nombres réels. «FI » désigne une indétermination du résultat de la
limite indiqué dans le tableau (à traiter au cas par cas). Chaque résultat présent dans
chaque case du tableau peut être démontré en vérifiant la définition de la limite,
nous l’admettrons.

LIMITE DE 𝑓+𝑔

lim
𝑥⟶𝑥0

𝑓(𝑥)
lim
𝑥⟶𝑥0

𝑔(𝑥)
−∞ ℓ +∞

−∞ −∞ −∞ FI

ℓ′ −∞ ℓ+ℓ′ +∞

+∞ +FI +∞ +∞

LIMITE DE 𝑓×𝑔

lim
𝑥⟶𝑥0

𝑓(𝑥)
lim
𝑥⟶𝑥0

𝑔(𝑥)
−∞ ℓ ≠ 0 ℓ = 0 +∞

−∞ +∞ −∞ si ℓ > 0
+∞ si ℓ < 0

FI −∞

ℓ′ ≠ 0 −∞ si ℓ′ > 0
+∞ si ℓ′ < 0

ℓ×ℓ′ 0 +∞ si ℓ′ > 0
−∞ si ℓ′ < 0

ℓ′ = 0 FI 0 0 FI

+∞ −∞ +∞ si ℓ > 0
−∞ si ℓ < 0

FI +∞

LIMITE DE 𝑔/𝑓

lim
𝑥⟶𝑥0

𝑓(𝑥)
lim
𝑥⟶𝑥0

𝑔(𝑥)
−∞ ℓ ≠ 0 ℓ = 0 +∞

−∞ FI 0 0 FI

ℓ′ ≠ 0 −∞ si ℓ′ > 0
+∞ si ℓ′ < 0

ℓ
ℓ

0 +∞ si ℓ′ > 0
−∞ si ℓ′ < 0

ℓ′ = 0− +∞ −∞ si ℓ > 0
+∞ si ℓ < 0

FI −∞

ℓ′ = 0+ −∞ +∞ si ℓ > 0
−∞ si ℓ < 0

FI +∞

+∞ FI 0 0 FI

Attention Pour retenir, mais sans l’écrire
, • On pourra penser très fort, mais sans jamais l’écrire sur une copie, que :

1
∞

= 0,
1
0+

= +∞,
1
0−

= −∞.

• On pourra penser très fort, mais sans jamais l’écrire sur une copie, que les
formes indéterminées « FI » sont les suivantes :

∞−∞, 0×∞,
0
0
,

∞
∞

.

Tout cela avec des gros guillemets donc.

12
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Attention Puissances variables 𝑢(𝑥)𝑣(𝑥)
,

• Dans le cas d’une limite de la forme lim
𝑥⟶𝑎

𝑢(𝑥)𝑣(𝑥), on revient toujours à la
définition de la puissance :

𝑢(𝑥)𝑣(𝑥) = e𝑣(𝑥) ln(𝑢(𝑥)).
On calcule alors la limite de 𝑣(𝑥) ln(𝑢(𝑥)), puis on en déduit la limite recher-
chée, par passage à l’exponentielle.

• En particulier, « 1∞ » est une forme indéterminée!

Exemple 18 (Attention aux formes indéterminées!) Une forme indéterminée
est, comme son nom l’indique, indéterminée ! Tout peut arriver :

lim
𝑥⟶+∞

𝑥3

𝑥2 = +∞, lim
𝑥⟶+∞

√𝑥
𝑥

= 0,

lim
𝑥⟶+∞

𝑥2 +2𝑥
𝑥2 = 1,

𝑥(2+cos𝑥)
𝑥

n’a pas de limite en +∞,

alors que le numérateur et le dénominateur tendent vers +∞ en +∞.

Composition. On ajoute un nouveau résultat : celui sur les limites de fonctions
composées.

Théorème 2 | Compositions de limites (ou Changement de variable) ♥

Soient I et J deux intervalles de ℝ, 𝑓 ∶ I ⟶ ℝ et 𝑔 ∶ J ⟶ ℝ. Soient 𝑥0 un élément
ou une borne, finie ou infinie, de I, 𝑦0 un élément ou une borne, finie ou infinie,
de J. Alors :

⎧
⎨
⎩

lim
𝑥⟶𝑥0

𝑓(𝑥) = 𝑦0
lim
𝑦⟶𝑦0

𝑔(𝑦) existe ⟹ lim
𝑥⟶𝑥0

𝑔 ∘𝑓(𝑥) = lim
𝑦⟶𝑦0

𝑔(𝑦).

Remarque 11
• Cet énoncé confirme l’évidence : pour savoir vers quoi tend 𝑔 ∘ 𝑓(𝑥) =

𝑔(𝑓(𝑥)), on regarde déjà vers quoi tend l’expression 𝑓(𝑥) à l’intérieur de la
parenthèse puis on « applique 𝑔 » à la limite trouvée, si elle existe.

• Ce théorème est parfois aussi appelé « théorème du changement de variable
pour les limites » : on peut penser formellement que l’on pose « 𝑦 = 𝑓(𝑥) »,
avec 𝑦 ⟶ 𝑏 lorsque 𝑥 ⟶ 𝑎.

Exemple 19
1. Déterminer la limite de 𝑥 ⟼ √𝑥+ 1

𝑥 en +∞.

PEN-FANCY

2. Déterminer la limite de 𝑥 ⟼ ln (2− 𝑥2−1
𝑥−1 ) en 1−.

PEN-FANCY

3. Comparer, en cas d’existence, les limites suivantes :

lim
𝑥⟶0

ln(𝑥)
√𝑥

, et lim
𝑦⟶∞√𝑦 ln(𝑦).

PEN-FANCY

4. Soient 𝑥0 ∈ ℝ et F une fonction définie sur ℝ. On suppose que
lim
𝑥⟶𝑥0

F(𝑥)−F(𝑥0)
𝑥−𝑥0

existe. Justifier, en effectuant un changement de variable, que

lim
ℎ⟶0

F(𝑥0+ℎ)−F(𝑥0)
ℎ existe aussi, et que :

lim
𝑥⟶𝑥0

F(𝑥)−F(𝑥0)
𝑥−𝑥0

= lim
ℎ⟶0

F(𝑥0 +ℎ)−F(𝑥0)
ℎ

.

PEN-FANCY
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Note
Quand on dit que l’on pose «ℎ = 𝑥−𝑥0 », sur le fond on fait apparaitre
le terme F(𝑥0+ℎ)−F(𝑥0)

ℎ comme une composée 𝑓(𝑔(𝑥)), puis on applique
le théorème de composition des limites.

Croissances comparées. Il existe des méthodes afin de parfois lever des
formes indéterminées sur les limites. Une des plus importantes est l’utilisation d’un
résultat sur les « croissances comparées ». Dans cet énoncé apparaissent des puis-
sances réelles, nous (re)verrons cela dans la Section 5 sur les fonctions usuelles. ¹

Théorème 3 | Croissances comparées ♥

Soient 𝑎, 𝑏 et 𝑐 des réels strictement positifs.
• [En +∞]

lim
𝑥⟶∞

(ln(𝑥))𝑎

𝑥𝑏 = 0, lim
𝑥⟶∞

𝑥𝑏

e𝑐𝑥
= 0, lim

𝑥⟶∞

(ln(𝑥))𝑎

e𝑐𝑥
= 0.

• [En 0+]
lim
𝑥⟶0+

𝑥𝑏(ln(𝑥))𝑎 = 0.

• [En −∞]
lim

𝑥⟶−∞
𝑥𝑏e𝑐𝑥 = 0.

Remarque 12 Ce théorème s’utilise pour n’importe quels 𝑎,𝑏,𝑐 strictement po-
sitifs, même non entiers. Par exemple si 𝑏 = 1

2 , 𝑥
𝑏 = √𝑥 pour tout 𝑥 > 0.

Comment retenir ce théorème?

Résumé Idée des croissances comparées
♥

On se souviendra que :
• l’exponentielle diverge beaucoup plus vite en +∞ que toute puissance de 𝑥,

qui elle-même diverge plus vite que toute puissance de logarithme. Ce que
l’on peut noter :

(ln𝑥)𝑎 ll
+∞

𝑥𝑏 ll
+∞

e𝑐𝑥.
• Toute puissance de 𝑥 l’emporte en zéro sur toute puissance de logarithme :

𝑥𝑏(ln𝑥)𝑎 ll
0

1.

1. Mais cela n’empêche pas la compréhension de l’énoncé, on peut même considérer pour le mo-
ment les puissances comme entières positives.

♥ • L’exponentielle tend très vite vers 0 en −∞ et l’emporte sur toutes les puis-
sances de 𝑥 :

𝑥𝑏 ll
−∞

e𝑐𝑥.

Méthode (AN) 1.1 (Utiliser les croissances comparées dans une somme/diffé-
rence)
• L’idée est de mettre en facteur le terme qui « pèse le plus lourd » au sens des

croissances comparées. La limite du facteur qui apparait peut alors facile-
ment se calculer en utilisant les croissances comparées.

• Cette idée peut être utilisée pour lever une forme indéterminée, même si le
résultat qui s’utilise ensuite n’est pas des croissances comparées.

Exemple 20 Déterminer les limites ci-après.
lim
𝑥⟶0

ln(𝑥)
√𝑥

,

PEN-FANCY

1. lim
𝑥⟶∞

ln(𝑥)
√𝑥

,

PEN-FANCY

2.

lim
𝑥⟶∞

(𝑥e𝑥 −𝑥2),

PEN-FANCY

3. lim
𝑥⟶∞

e3𝑥−ln𝑥
𝑥2+ln𝑥 ,

PEN-FANCY

4.

14
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lim
𝑥⟶0

e3𝑥−ln𝑥
𝑥2+ln𝑥 ,

PEN-FANCY

5.

Théorèmes d’encadrement (ou des « gendarmes ») Les théorèmes ci-
après énoncent des faits intuitivement clairs :

• si une fonction 𝑓 estminorée par une autre qui diverge en unpoint vers+∞, alors
𝑓 diverge aussi vers +∞ en ce point,

• de-même si une fonction 𝑓 estmajorée par une autre qui diverge en un point vers
−∞, alors 𝑓 diverge aussi vers −∞ en ce point.

• Enfin, si𝑓est encadrépardeuxautresqui tendent vers lamême limite enunpoint,
alors𝑓 tend aussi vers cette limite en ce point. Ce cas-là est souvent appelé « théo-
rème des gendarmes ».

Théorème 4 | Théorème d’encadrement (ou des gendarmes) ♥

Soient I un intervalle, 𝑥0 ∈ I (ou au bord de I) et ℓ ∈ ℝ. On considère trois fonc-
tions 𝑓 ∶ I ⟶ ℝ , 𝑔 ∶ I ⟶ ℝ et ℎ ∶ I ⟶ ℝ telles que :

⎧
⎨
⎩

(i) ∀𝑥 ∈ I, 𝑓(𝑥) ⩽ 𝑔(𝑥) ⩽ ℎ(𝑥) (ou au moins sur un voisinage de 𝑥0),
(ii) les deux fonctions 𝑓 et ℎ admettent ℓ pour limite en 𝑥0.

Alors : 𝑔(𝑥)
𝑥⟶𝑥0−−−−−→ ℓ.

𝑥

𝑦

𝑓

ℎ

𝑔

𝑥0

ℓ

Corollaire 1 | Version valeur absolue & Bornée «× → 0 »
• Soient I un intervalle, 𝑥0 ∈ I (ou au bord de I) et ℓ ∈ ℝ. On considère deux

fonctions 𝑓 ∶ I ⟶ ℝ , 𝑔 ∶ I ⟶ ℝ telles que :
⎧
⎨
⎩

(i) ∀𝑥 ∈ I, |𝑓(𝑥)| ⩽ 𝑔(𝑥) (ou au moins sur un voisinage de 𝑥0)

(ii) 𝑔(𝑥)
𝑥⟶𝑥0−−−−−→ 0.

Alors : 𝑓(𝑥)
𝑥⟶𝑥0−−−−−→ 0.

• Le produit d’une fonction bornée au voisinage de 𝑥0 et fonction tendant vers
zéro en 𝑥0 est une fonction tendant vers zéro en 𝑥0.

Preuve
• L’hypothèse donne au voisinage de 𝑥0 : −𝑔 ⩽ 𝑓 ⩽ 𝑔. Donc puisque 𝑔(𝑥) 𝑥⟶𝑥0−−−−→ 0,

−𝑔(𝑥) 𝑥⟶𝑥0−−−−→ 0 donc par théorème d’encadrement 𝑓(𝑥) 𝑥⟶𝑥0−−−−→ 0.
• Soit 𝑓 une fonction bornée au voisinage de 𝑥0 disons par M ∈ ℝ+, et 𝑔 fonction tendant

vers zéro en 𝑥0. Alors au voisinage de 𝑥0, 0 ⩽ |𝑓𝑔| ⩽ M|𝑔|. Comme |𝑔(𝑥)| 𝑥⟶𝑥0−−−−→ 0, on
conclut à l’aide de la première partie de la preuve.

Théorème 5 | Théorème deminoration ♥

Soient I un intervalle et 𝑥0 ∈ I (ou au bord de I). On considère deux fonctions
𝑓 ∶ I ⟶ ℝ et 𝑔 ∶ I ⟶ ℝ telles que :

⎧
⎨
⎩

(i) ∀𝑥 ∈ I, 𝑓(𝑥) ⩽ 𝑔(𝑥) (ou au moins sur un voisinage de 𝑥0)

(ii) 𝑓(𝑥)
𝑥⟶𝑥0−−−−−→ +∞.

Alors : 𝑔(𝑥)
𝑥⟶𝑥0−−−−−→ +∞.
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Théorème 6 | Théorème demajoration ♥

Soient I un intervalle et 𝑥0 ∈ I (ou au bord de I). On considère deux fonctions
𝑓 ∶ I ⟶ ℝ et 𝑔 ∶ I ⟶ ℝ telles que :

⎧
⎨
⎩

(i) ∀𝑥 ∈ I, 𝑓(𝑥) ⩽ 𝑔(𝑥) (ou au moins sur un voisinage de 𝑥0)

(ii) 𝑔(𝑥)
𝑥⟶𝑥0−−−−−→ −∞.

Alors : 𝑓(𝑥)
𝑥⟶𝑥0−−−−−→ −∞.

Ces deux théorèmes se démontrent, comme celui des gendarmes, à l’aide de la défi-
nition rigoureuse de la limite que nous verrons plus tard.

Exemple 21 Calculer les limites ci-après, en justifiant l’existence.
1. ♥ En rappelant la définition de la partie entière, établir que :

∀𝑥 ∈ ℝ, 𝑥−1 ⩽ ⌊𝑥⌋ ⩽ 𝑥 .

PEN-FANCY

2. lim𝑥→∞
⌊𝑥⌋
𝑥 .

PEN-FANCY

3. lim𝑥→∞
⌊𝑥⌋
√𝑥

. On a :

∀𝑥 ∈ ℝ, 𝑥−1 ⩽ ⌊𝑥⌋ ⩽ 𝑥.

Pour 𝑥 ∈ ℝ⋆, on déduit alors :
𝑥−1
√𝑥

<
⌊𝑥⌋
√𝑥

⩽
𝑥

√𝑥
⟺

𝑥−1
√𝑥

<
⌊𝑥⌋
√𝑥

⩽ √𝑥.

Or, lim
𝑥⟶∞

𝑥−1
√𝑥

= lim
𝑥⟶∞

𝑥(1− 1
𝑥 )

√𝑥
= lim

𝑥⟶∞
√𝑥(1− 1

𝑥 ) = ∞.Donc d’après le théorème de
divergence par minoration, on déduit :

lim
𝑥⟶∞

⌊𝑥⌋
√𝑥

= ∞.

4. lim𝑥→0𝑥sin ( 1𝑥 ).
• [Rédaction avec valeurs absolues (♥)]

PEN-FANCY

• [Rédaction sans valeurs absolues]
PEN-FANCY

5. lim𝑥→∞
cos𝑥
𝑥3 .

• [Rédaction avec valeurs absolues (♥)]
PEN-FANCY

16
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• [Rédaction sans valeurs absolues]
PEN-FANCY

2.4 Continuité

Généralités. Intuitivement, les fonctions continues sont des fonctions que l’on
peut tracer « sans lever le crayon ».

Définition 14 | Continuité en un point
Soient I un intervalle et 𝑓 ∶ I ⟶ ℝ une fonction. Soit 𝑥0 ∈ I . On dit que 𝑓 est
continue en 𝑥0 si : lim

𝑥⟶𝑥0
𝑓(𝑥) = 𝑓(𝑥0)

Attention
,

On parle de continuité en un point de l’ensemble de définition, puisque 𝑥0 ∈
I dans la définition précédente. La question ne se pose donc même pas en les
points qui ne sont pas dans l’ensemble de définition.

Définition 15 | Continuité à droite, continuité à gauche
Soit 𝑓 ∶ I ⟶ ℝ et 𝑥0 ∈ I. On dit que :
• 𝑓 est continue à gauche en 𝑥0 si : lim

𝑥⟶𝑥−0
𝑓(𝑥) = 𝑓(𝑥0).

• 𝑓 est continue à droite en 𝑥0 si : lim
𝑥⟶𝑥+0

𝑓(𝑥) = 𝑓(𝑥0).

Proposition 4 | Continuité, à gauche et à droite ♥

Soit 𝑥0 ∈ ℝ et 𝑓 une fonction définie au voisinage de 𝑥0. Alors :
𝑓 est continue en 𝑥0 ⟺ 𝑓 est continue à droite et à gauche en 𝑥0

♥

⟺ lim
𝑥⟶𝑥−0

𝑓(𝑥) = lim
𝑥⟶𝑥+0

𝑓(𝑥) = 𝑓(𝑥0) .

Note
Attention : puisqu’ici la fonction 𝑓 est définie en 𝑥0 , il ne faut pas oublier
l’égalité à 𝑓(𝑥0).

Exemple 22 Considérons le graphe suivant d’une fonction 𝑓 :

𝑥

𝑦

−3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

Étudier la continuité de 𝑓 sur son domaine de définition.
PEN-FANCY

Définition 16 | Continuité sur un intervalle
Soient I un intervalle et 𝑓 ∶ I ⟶ ℝ une fonction. On dit que 𝑓 est :
• continue sur I si : ∀𝑥0 ∈ I, lim

𝑥⟶𝑥0
𝑓(𝑥) = 𝑓(𝑥0), c’est-à-dire si elle est conti-

nue en tout 𝑥0 ∈ I,
• continue sur I sauf en un nombre fini de points si elle est continue sur I∖E, où

E est un sous-ensemble fini de I.

Notation
Σ

On note 𝒞0(I,ℝ), l’ensemble des fonctions continues sur I à valeurs réelles.

17
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Propriétés des fonctions continues. Passons maintenant aux propriétés
qui vont nouspermettre demontrer quedes fonctions sont continues enpratique.

Proposition 5 | Opérations sur les fonctions continues en un point
Soient Iun intervalle,𝑓 ∶ I ⟶ ℝ et𝑔 ∶ I ⟶ ℝ deux fonctions continues en𝑥0 ∈ I.
Alors :
• les fonctions |𝑓|, 𝑓+𝑔, λ𝑓 (où λ ∈ ℝ) et 𝑓𝑔 sont encore continues en 𝑥0.

• De plus, si 𝑔(𝑎) ≠ 0, alors
𝑓
𝑔

est définie sur un voisinage de 𝑥0 et est continue
en 𝑥0.

On déduit immédiatement de la définition d’une fonction continue, des versions
locales des deux énoncés précédents leur version globale : « Soient 𝑓 ∶ I ⟶ ℝ et
𝑔 ∶ I ⟶ ℝ deux fonctions continues sur I. Alors les fonctions |𝑓|, 𝑓+𝑔, λ𝑓 (où λ ∈ ℝ)

et 𝑓𝑔 sont encore continues sur I. De plus, si 𝑔 ne s’annule pas, alors
𝑓
𝑔

est continue

sur I. »

Théorème 7 | Composition de fonctions continues
Soient I et J deux intervalles, 𝑓 ∶ I ⟶ ℝ,𝑔 ∶ J ⟶ ℝ telles que 𝑓(I) ⊂ J.
• [Version locale] Soit 𝑥0 ∈ I. Alors :

⎧
⎨
⎩

(i) 𝑓 est continue en 𝑥0
(ii) 𝑔 est continue en 𝑓(𝑥0)

⟹ 𝑔∘𝑓 est continue en 𝑥0.

• [Version globale] Si 𝑓 est continue sur I et 𝑔 est continue sur J, alors 𝑔 ∘𝑓
est continue sur I.

Méthode (AN) 1.2 (Montrer qu’une fonction est continue sur un inter-
valle) En pratique, pour montrer qu’une fonction est continue, on utilise la
continuité établie des fonctions de référence combinées par des opérations al-
gébriques ou de composition.

3 CALCULS DE DÉRIVÉES

L’objectif de cette section est de rappeler la définition du nombre dérivé, de fonction
dérivable, les principales formules à connaitre pour dériver une fonction et de savoir
endéduire lamonotonie. Les «grands théorèmes» sur les fonctionsdérivables seront
vus plus tard dans l’année, dans le Chapitre (AN) 6.

3.1 Nombre dérivé, fonction dérivable

Une application principale de la dérivation sera pour nous l’obtention de la mono-
tonie d’une fonction. Considérons 𝑓 ∶ I ⟶ ℝ une fonction. Soit 𝑥0 ∈ ℝ. Comment
savoir si 𝑓 croît après 𝑥0 ? Observons la corde reliant les points (𝑥0,𝑓(𝑥0)) et (𝑥,𝑓(𝑥))
pour 𝑥 > 𝑥0.

𝑥

𝑦

𝑓(𝑥) •

𝑥

𝑓(𝑥) •

𝑥

𝑓(𝑥0) •

𝑥0

𝒞𝑓

𝑎 >
0

𝑎 < 0

• Sur la cordebleue (à droite au-dessus), onobserve un coefficient directeur positif,
alors que la courbe décroît juste après 𝑥0.

• Cela montre qu’il faut bien faire « se rapprocher 𝑥 de 𝑥0 » pour que le signe du co-
efficient directeur de la corde donne la monotonie localement autour de 𝑥0. Vous
voyez l’objet mathématique qui répond à cette problématique : la limite quand 𝑥
tend vers 𝑥0.

Définition 17 | Dérivabilité
Soient 𝑓 ∶ I ⟶ ℝ une fonction et 𝑥0 ∈ I.
• On dit que 𝑓 est dérivable en 𝑥0 si la fonction

|||||

|

I∖ {𝑥0} ⟶ ℝ

𝑥 ⟼
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Taux d’accroissement de 𝑓

entre 𝑥 et 𝑥0
admet une limite finie en 𝑥0. La limite est alors appelée le nombre dérivé de 𝑓
en 𝑥0.
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• On dit que 𝑓 est dérivable à droite en 𝑥0 (resp. à gauche) si on a seulement
existence d’une limite à droite ou à gauche.

Remarque 13 (Version «𝑥0+ℎ ») La limite du taux d’accroissement peut aussi,
par composition des limites (poser «ℎ = 𝑥−𝑥0

𝑥⟶𝑥0−−−−−→ 0 »), être écrite sous cette
forme :

lim
ℎ⟶0

𝑓(𝑥0 +ℎ)−𝑓(𝑥0)
ℎ

= 𝑓′(𝑥0).

Notation
Σ

On note en général (sous réserve d’existence) :

• 𝑓′(𝑥0) = lim
𝑥⟶𝑥0

𝑓(𝑥)−𝑓(𝑥0)
𝑥−𝑥0

la dérivée de 𝑓 en 𝑥0,

• 𝑓′𝑔(𝑥0) = lim
𝑥⟶𝑥−0

𝑓(𝑥)−𝑓(𝑥0)
𝑥−𝑥0

la dérivée de 𝑓 à gauche en 𝑥0,

• 𝑓′𝑑(𝑥0) = lim
𝑥⟶𝑥+0

𝑓(𝑥)−𝑓(𝑥0)
𝑥−𝑥0

la dérivée de 𝑓 à droite en 𝑥0.

On obtient directement des résultats sur les limites, la propriété suivante.

Proposition 6 | Dérivabilité, à gauche et à droite
Soient 𝑓 ∶ I ⟶ ℝ une fonction et 𝑥0 ∈ I. Alors :

𝑓 dérivable en 𝑥0 ⟺
⎧
⎨
⎩

(i) 𝑓 dérivable à droite et à gauche en 𝑥0
(ii) 𝑓′𝑔(𝑥0) = 𝑓′𝑑(𝑥0).

Remarque 14
• Une fonction est donc dérivable en 𝑥0 si son taux d’accroissement tend vers

une limite finie.
• Le tauxd’accroissement s’interprète comme lapentede la cordedugraphede

𝑓 entre les points d’abscisses 𝑥0 et 𝑥. Lorsque 𝑓 est dérivable en 𝑥0, le nombre
𝑓′(𝑥0) s’interprète alors comme la « pente limite » de ces cordes.

Définition 18 | Tangente
Soient 𝑓 ∶ I ⟶ ℝ une fonction et 𝑥0 ∈ I.
• Si𝑓est dérivable en𝑥0 ∈ I, onappelle tangente à𝑓d’abscisse𝑎 la droited’équa-

tion :
𝑦 = 𝑓′(𝑥0)(𝑥−𝑥0)+𝑓(𝑥0).

• Si 𝑓 est dérivable à gauche (resp. droite) en 𝑥0 ∈ I, on appelle demi-tangente à
gauche (resp. droite) à 𝑓 d’abscisse 𝑥0 la droite d’équation :

𝑦 = 𝑓′𝑔(𝑥0)(𝑥−𝑥0)+𝑓(𝑥0) (resp. 𝑦 = 𝑓′𝑑(𝑥0)(𝑥−𝑥0)+𝑓(𝑥0)).

On dit que 𝑓 admet une tangente horizontale en 𝑥0 lorsque 𝑓′(𝑥0) = 0.

Exemple 23 Soit 𝑓 la fonction carré définie sur ℝ par 𝑓(𝑥) = 𝑥2.
1. Montrer que 𝑓 est dérivable en 0 et calculer 𝑓′(0).

PEN-FANCY

2. Montrer que 𝑓 est dérivable en 1 et calculer 𝑓′(1).
PEN-FANCY

3. Déterminer l’équation de la tangente à T0 à 𝒞𝑓 au point d’abscisse 0. Même
question pour T1 au point d’abscisse 1.
PEN-FANCY

4. Représenter les tangentes sur le graphique ci-contre.
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𝑥

𝑦

𝒞𝑓

Exemple 24
• La valeur absolue n’est pas dérivable en zéro.

𝑥

𝑦

𝒞𝑓

Point anguleux

PEN-FANCY

• La fonction racine carrée n’est pas dérivable en 0.

𝑥

𝑦

𝒞√.

PEN-FANCY

Notation
Σ

On note le nombre dérivé en 𝑥0 par 𝑓′(𝑥0), ou encore en « notation physicien »
d𝑓
d𝑥(𝑥0). Cette seconde a le mérite de ne faire pas perdre de vue la définition du
taux d’accroissement.

Notation Dérivée d’une expression
Σ

Soit une expression 𝑓(𝑥) dépendant de 𝑥 ∈ ℝ, avec 𝑓 une fonction dérivable. On
notera dans la suite indifféremment :
• d𝑓

d𝑥(𝑥) la fonction 𝑓′ évaluée en 𝑥,
• d

d𝑥 [𝑓(𝑥)] la dérivée de l’expression 𝑓(𝑥) par rapport à 𝑥.
En particulier, on n’écriera pas 𝑓(𝑥)′.

Il y a un lien entre la continuité et la dérivabilité. En effet, toute fonction dérivable
est continue.

Théorème 8 | Dérivabilité & Continuité
Soient 𝑓 ∶ I ⟶ ℝ une fonction et 𝑥0 ∈ I. Alors :

𝑓 dérivable en 𝑥0 ⟹ 𝑓 continue en 𝑥0.

20
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Preuve On commence par récrire l’expression de la fonction, pour 𝑥 ≠ 𝑥0 dans I, nous
avons :

𝑓(𝑥) =
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
(𝑥−𝑥0)+𝑓(𝑥0).

PEN-FANCY

Attention
,

La réciproque est, en général, fausse. La valeur absolue est continue en zéro,
alors qu’elle n’y est pas dérivable comme nous l’avons déjà constaté.

Enfin, en faisant varier 𝑥0 on créer ainsi une nouvelle fonction notée 𝑓′.

Définition 19 | Fonction dérivée, Fonction dérivable
Soit 𝑓 ∶ I ⟶ ℝ une fonction. On dit que 𝑓 est dérivable sur I si 𝑓 est dérivable en
tout point 𝑥 ∈ I. La fonction 𝑥 ⟼ 𝑓′(𝑥) s’appelle la fonction dérivée de 𝑓.

3.2 Calculs de dérivées

Maintenant, comment calculer concrètement la dérivée d’une fonction? Comment
savoir si une fonction est dérivable? Pour le second point, on établit une bonne fois
pour toute que la plupart des fonctions usuelles le sont. Pour le premier point, nous
aurons des formules. Commençons par un exemple.

Exemple 25 (Avec la définition, fonction racine) Considérons 𝑓 ∶ 𝑥 ⟼ √𝑥,
et montrer que 𝑓 est dérivable en 𝑥0 ∈ ℝ+⋆.
PEN-FANCY

En résumé, on a établi que 𝑓 est dérivable sur ℝ+⋆ et que :

∀𝑥0 ∈ ℝ+⋆,   𝑓′(𝑥0) =
1

2√𝑥0
.

On peut appliquer cela pour la plupart des fonctions usuelles connues, les résultats
seront récapitulés dans la prochaine section, et aussi dans le tableau ci-après.

Formulaire de dérivation : point d’étape. Vous trouverez ci-après le for-
mulaire des dérivées des fonctions connues en fin de Terminale Spécialité (ce for-
mulaire sera élargi en fin de cours).

Dans les tableaux ci-dessous, 𝑥 est une variable réelle, 𝑐 une constante réelle et
𝑛 ∈ ℕ⋆

Fonction 𝑓 𝒟𝑓 Fonction 𝑓′ 𝒟𝑓′ ⊂ 𝒟𝑓

𝑓(𝑥) = 𝑐 ℝ 0 ℝ

𝑥𝑛,𝑛 ∈ ℤ⋆ (ouℝ⋆) 𝑛𝑥𝑛−1 ℝ(ouℝ⋆)

√𝑥 ℝ+
1

2√𝑥
ℝ∗
+

|𝑥| ℝ
⎧
⎨
⎩

1 si 𝑥 > 0,
−1 si 𝑥 < 0

ℝ∗

ln(𝑥) ℝ∗
+

1
𝑥

ℝ∗
+

e𝑥 ℝ e𝑥 ℝ

cos(𝑥) ℝ −sin(𝑥) ℝ

sin(𝑥) ℝ cos(𝑥) ℝ

De plus, tout polynôme ou toute fraction rationnelle (quotient de polynômes) est
dérivable sur son domaine de définition.

Maintenant, comment dériver des sommes/produits/quotients etc.de fonctions dé-
rivables? Nous avons également des formules, qui se démontrent toutes à l’aide de
la définition.

Proposition 7 | Opérations sur les fonctions dérivables et les dérivées
Soient 𝑓 et 𝑔 deux fonctions de I dans ℝ dérivables sur I.
• [Linéarité] pour tout (λ,μ) ∈ ℝ2, λ𝑓+𝑔μ est dérivable sur I, et :

(λ𝑓+μ𝑔)′ = λ𝑓′ +μ𝑔′.
On dit que la dérivation est linéaire.
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• [Produit] 𝑓𝑔 est dérivable sur I et
(𝑓𝑔)′ = 𝑓′𝑔+𝑓𝑔′.

• [Quotient] Si 𝑔(𝑥) ≠ 0 pour tout 𝑥 ∈ I,
𝑓
𝑔

est dérivable sur I et :

(
𝑓
𝑔
)
′

=
𝑓′𝑔−𝑓𝑔′

𝑔2 .

Remarque 15 En revanche, il n’existe pas de formule au programme pour la dé-
rivée 𝑛-ième d’un produit ou quotient.

Exemple 26 (Dérivée de tan) Soit 𝒟 = ℝ∖{
π
2

+𝑘π |𝑘 ∈ ℤ}. Déterminer la dé-

rivée de la fonction tan définie sur 𝒟 par : ∀𝑥 ∈ 𝒟, tan(𝑥) =
sin(𝑥)
cos(𝑥)

.

PEN-FANCY

Exemple 27 Déterminer les fonctions dérivées de chacune des fonctions 𝑓 sui-
vantes et donner, lorsqu’elle existe, l’équation de la tangente à leur courbe au
point d’abscisse 𝑎 ∈ ℝ indiqué. On supposera que 𝑥 appartient à l’ensemble de
définition de 𝑓 que l’on précisera.
1. 𝑓(𝑥) = e𝑥

𝑥+1 (𝑎 = 0)
PEN-FANCY

2. 𝑓(𝑥) = cos𝑥sin𝑥 (𝑎 = 0)
PEN-FANCY

3. 𝑓(𝑥) = 𝑥2 cos(𝑥)
3 + ln(𝑥) (𝑎 = 1)

PEN-FANCY

4. 𝑓(𝑥) = ln𝑥
𝑥2 (𝑎 = 1)

PEN-FANCY

5. 𝑓(𝑥) = 2
𝑥 − 3

𝑥2 (𝑎 = 1)
PEN-FANCY
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Dériver une composée. Commençons là encore par traiter un exemple.

Exemple 28 (Avec la définition, fonction carré composée avec 𝑥 ⟼ 3𝑥+1)
Considérons 𝑔 ∶ 𝑥 ∈ ℝ ⟼ 𝑥2 et 𝑓 ∶ 𝑥 ⟼ 3𝑥 +1. Ces deux fonctions sont déri-
vables sur ℝ. La composée ℎ = 𝑔 ∘𝑓 est ℎ ∶ 𝑥 ⟼ (3𝑥+1)2, on aimerait pouvoir
calculer la dérivée de ℎ en fonction de la dérivée de 𝑓 et 𝑔.
PEN-FANCY

En résumé, on a établi que ℎ est dérivable sur ℝ et que :
∀𝑥 ∈ ℝ,   ℎ′(𝑥) = 3×2(2𝑥+1) = 3

nouveau terme
×𝑔′(2𝑥+1) = 𝑓′(𝑥)𝑔′(𝑓(𝑥)).

Quand on dérivé une composée, il y a donc simplement un terme supplémen-
taire qui apparaît devant : c’est 𝑔′(𝑥).

Théorème 9 | Dérivation d’une composée ♥

Soient 𝑓 ∶ I ⟶ ℝ,𝑔 ∶ J ⟶ ℝ telles que 𝑓(I) ⊂ J. Si 𝑓 est dérivable sur I, 𝑔 est
dérivable sur J, alors 𝑔 ∘𝑓 est dérivable sur I et : (𝑔 ∘𝑓)′ = 𝑓′ ×(𝑔′ ∘𝑓).

Preuve Soit 𝑥0 ∈ I. Il s’agit de montrer que 𝑔 ∘𝑓 est dérivable en 𝑥0, et que :
(𝑔 ∘𝑓)′(𝑥0) = 𝑓′(𝑥0)×𝑔′(𝑓(𝑥0)).

Pour cela fixons-nous 𝑥 ∈ I différent de 𝑥0, et analysons la limite quand 𝑥 tend vers 𝑥0 de
𝑔(𝑓(𝑥)−𝑔(𝑓(𝑥0))

𝑥−𝑥0
=
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
×
𝑔(𝑓(𝑥))−𝑔(𝑓(𝑥0))

𝑓(𝑥)−𝑓(𝑥0)
. (⋆)

On suppose que pour 𝑥 assez proche de 𝑥0, 𝑓(𝑥) ≠ 𝑓(𝑥0) de sorte que le dernier quotient est
bien défini, on admet le cas général. (Il s’agirait de remplacer le terme 𝑔(𝑓(𝑥)−𝑔(𝑓(𝑥0))

𝑓(𝑥)−𝑓(𝑥0)
qui pose

problème dans (⋆) par 𝑔(𝑓(𝑥)−𝑔(𝑓(𝑥0))
𝑓(𝑥)−𝑓(𝑥0)

si 𝑓(𝑥) ≠ 𝑓(𝑥0), et 𝑔′(𝑓(𝑥0)) si 𝑓(𝑥) = 𝑓(𝑥0).)

PEN-FANCY

Résumé Dérivée d’une composée
♥

Nous pouvons retenir cette formule de la manière suivante :
(extérieur∘ intérieur)′ = (extérieur(intérieur))′

= intérieur′ ×(extérieur′ (intérieur)) .

Exemple 29 Soit 𝑓 ∶ | ℝ⋆ ⟶ ℝ
𝑥 ⟼ ln(|𝑥|) . Calculer 𝑓′(𝑥) pour tout 𝑥 ∈ ℝ⋆.

PEN-FANCY

Continuons avec des exemples usuels théoriquement à connaitre, mais qui se re-
trouvent très rapidement à partir du théorème précédent, mieux vaut ne pas les ap-
prendre par coeur inutilement.

Exemple 30 (Formules générales) Soit 𝑢 une fonction numérique dérivable.
Pour les dérivées ci-après, préciser sous quelle condition sur 𝑢 la composition
est possible, et justifier la dérivabilité, puis donner une formule pour la dérivée.
1. 𝑢𝑛, 𝑛 ∈ ℤ⋆.

PEN-FANCY
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2. e𝑢.
PEN-FANCY

3. ln |𝑢|.
PEN-FANCY

4. cos(𝑢),sin(𝑢).
PEN-FANCY

5. tan(𝑢).
PEN-FANCY

6. √𝑢.
PEN-FANCY

Point d’étape : formulaire de dérivation d’une compo-
sée. Pour 𝑢 une fonction réelle à valeurs dans l’ensemble de dériva-
bilité de la fonction par laquelle on compose, on a, pour tout 𝑛 ∈ ℤ⋆ :

(𝑢𝑛)′ = 𝑛𝑢′𝑢𝑛−1 (e𝑢)′ = 𝑢′e𝑢 (ln |𝑢|)′ =
𝑢′

𝑢
(√𝑢)

′
=

𝑢′

2√𝑢
si 𝑢 > 0

(cos𝑢)′ =
−𝑢′ sin(𝑢)

(sin𝑢)′ = 𝑢′ cos𝑢 (tan𝑢)′ =
𝑢′

cos2𝑢
= 𝑢′ (1+ tan2𝑢)

Notez le point important suivant :

pour la plupart des fonctions usuelles, le domaine de définition est
le domaine de dérivabilité. En revanche, cela peut ne pas être le cas
lorsque la fonction fait apparaitre une racine ou une valeur absolue.

Exemple 31 (Exemples de dérivées de composées) Pour les fonctions sui-
vantes, préciser leur domaine de définition, Étudier la dérivabilité des fonctions
suivantes, et calculer leur dérivées.
1. 𝑓(𝑥) = ln (𝑥

4+1
𝑥2+1 )

PEN-FANCY

2. 𝑔(𝑥) = 𝑥 ln(𝑥)
e𝑥2

PEN-FANCY
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3. ℎ(𝑥) = √1+𝑥2

PEN-FANCY

4. 𝑖(𝑥) = √1−𝑥2.
PEN-FANCY

3.3 Lien avec la monotonie

Théorème 10 | Monotonie et signe de la dérivée ♥

Soit I un intervalle non-vide de ℝ et soit 𝑓 une fonction dérivable de I dans ℝ.
Alors :
• [Monotonie]

𝑓 est croissante ⟺ ∀𝑥 ∈ I, 𝑓′(𝑥) ⩾ 0,
𝑓 est décroissante ⟺ ∀𝑥 ∈ I, 𝑓′(𝑥) ⩽ 0.

• [Stricte monotonie]
⋄ Si pour tout 𝑥 ∈ I, 𝑓′(𝑥) < 0 et 𝑓′(𝑥) = 0 éventuellement en des points

(ponctuels), alors 𝑓 est strictement décroissante.
⋄ Si pour tout 𝑥 ∈ I, 𝑓′(𝑥) > 0 et 𝑓′(𝑥) = 0 éventuellement en des points

(ponctuels), alors 𝑓 est strictement croissante.

Remarque 16
• Pour la stricte monotonie, il n’est donc pas indispensable que le signe soit

strict sur tout l’ensemble de définition. Par exemple, la fonction 𝑥 ⟼ 𝑥3 est
strictement croissante, même si sa dérivée s’annule en zéro.

• Un intervalle comme ensemble de définition est cependant crucial : par
exemple, pour 𝑓 ∶ 𝑥 ∈ ℝ⋆ ⟼ 1

𝑥 , on a :

∀𝑥 ∈ ℝ⋆, 𝑓′(𝑥) = −
1
𝑥2 < 0.

Et pourtant 𝑓 n’est pas strictement décroissante sur ℝ à cause du « saut » au-
tour de 0 : −1 < 1 alors que 𝑓(−1) < 𝑓(1).

𝑥

𝑦

𝒞𝑓
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Exemple 32 Par exemple, la fonction

𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ 𝑥− sin(𝑥)

est strictement croissante alors que sa dérivée s’annule un nombre infini de fois.
PEN-FANCY

𝑥

𝑦

𝒞𝑓

3.4 Application aux calculs de limites

Puisqu’un tauxde variation est une limite, faisant apparaître enplus une forme indé-
terminée (le dénominateur tend vers zéro), le calcul d’une dérivée peut donc donner
de précieux résultats sur la valeur cherchée de la limite.

Méthode (AN) 1.3 (Limite calculable par taux de variation) Si une expression
est de la forme suivante, pour 𝑓 ∶ I ⟶ ℝ dérivable en 𝑥0, avec 𝑥0 aux bords de I
ou dans I, alors :

𝑓(𝑥)−𝑓(𝑥0)
𝑥−𝑥0

𝑥⟶𝑥0−−−−−→ 𝑓′(𝑥0).

En particulier, si 𝑓 s’annule en 𝑥0, on a :
𝑓(𝑥)
𝑥−𝑥0

𝑥⟶𝑥0−−−−−→ 𝑓′(𝑥0).

Oncommencepar un exemple simple. Ceux faisant intervenir des fonctions usuelles
seront faits dans la prochaine section.

Exemple 33 Calculer la limite lim
𝑥⟶2

𝑥2−4
𝑥−2 selon deux méthodes.

PEN-FANCY

Exemple 34 Calculer la limite lim𝑥→∞𝑥sin ( 1𝑥 ).
PEN-FANCY
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4 PLAN D’ÉTUDE D’UNE FONCTION

L’objectif majeur de ce chapitre est de savoir étudier complètement une fonction.
Rappelons l’exercice typique sur le sujet.

Pré-requis

• Étudier si nécessaire l’ensemble de définition.
• Rechercher les propriétés géométriques de la courbe : si la fonction est paire ou im-

paire, on se contente de l’étudier sur 𝒟∩ℝ+ ; si la fonction est T-périodique, on peut
se contenter d’une étude sur une période.

• Justifier le caractère dérivable de la fonction sur un certain intervalle. (à ce stade de
l’année, en invoquant les résultats sur les opérations de fonctions dérivables)

• Calculer la dérivée de la fonction sur cet intervalle, et étudier son signe. Le calcul de
la dérivée donne aussi les tangentes remarquables (horizontales en particulier).

• Déterminer les limites et les éventuelles asymptotes aux bornes de l’ensemble
d’étude.

• Dresser le tableau des variations de la fonction. Calculer la valeur des éventuels ex-
trema et quelques valeurs remarquables si nécessaire.

• Étudier éventuellement la position relative de la courbe représentant la fonction par
rapport à certaines de ces tangentes ou asymptotes.

• Tracer une représentation graphique de la fonction.

Afin d’illustrer cela, traitons deux exemples complets.

Exemple 35 Soit la fonction : 𝑓(𝑥) = 𝑥4−4
𝑥2−1 .

1. Déterminer le domaine de définition et le signe de 𝑓.
PEN-FANCY

2. La fonction 𝑓 est-elle paire/impaire? Réduire le domaine d’étude.
PEN-FANCY

3. Calculer les limites de 𝑓 aux bornes du domaine de définition.
PEN-FANCY

4. Dresser le tableau des variations de la fonction 𝑓 sur le domaine d’étude. La
fonction 𝑓 admet-elle des extrema locaux?
PEN-FANCY

5. Tracer le graphe complet de la fonction 𝑓.

𝑥

𝑦

27
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5 FONCTIONS USUELLES

Pour chaque fonction, nous donnons :

la forme de son expression, quelques
propriétés, la dérivée et le domaine de
dérivabilité,

• certaines limites remarquables,•

sa représentation graphique.• Et un contexte (mathématique, phy-
sique, ...) où intervient ladite fonction.

•

Tous ces points doivent être maitrisés car ils sont susceptibles d’intervenir dans les
exercices.

5.1 Fonctions polynomiales

Définition/Proposition 1 | Fonctions affines ♥

• [Définition] 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ 𝑎𝑥+𝑏 avec

(𝑎,𝑏) ∈ ℝ2. Le réel 𝑎 est appelé le coefficient
directeur de 𝑓, 𝑏 son ordonnée à l’origine.

• Si 𝑏 = 0, on dit que 𝑓 est linéaire. Si 𝑎 = 0, 𝑓
est constante.

• [Dérivée] ∀𝑥 ∈ ℝ,   𝑓′(𝑥) = 𝑎.
• [Limites]

⋄ lim
𝑥⟶−∞

(𝑎𝑥+𝑏) = −∞, si 𝑎 > 0,
⋄ lim

𝑥⟶∞
(𝑎𝑥+𝑏) = +∞, si 𝑎 > 0,

⋄ lim
𝑥⟶−∞

(𝑎𝑥+𝑏) = +∞, si 𝑎 < 0,
⋄ lim

𝑥⟶∞
(𝑎𝑥+𝑏) = −∞, si 𝑎 < 0.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝑦 = 2𝑥+1

𝑦 = −𝑥

Exemple 36 D’après la loi d’Ohm, la tension aux bornes d’une résistance est
proportionnelle à l’intensité :U(I) = RI avec les notations du cours de physique.
La tension est donc une fonction linéaire de l’intensité.

Définition/Proposition 2 | Fonction carré, cas 𝑛 = 2 ♥

• [Définition] 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ 𝑥2.

• [Propriété(s)] 𝑓 est paire.
• [Dérivée] ∀𝑥 ∈ ℝ,   𝑓′(𝑥) = 2𝑥.
• [Limites]

⋄ lim
𝑥⟶−∞

𝑥2 = +∞,
⋄ lim

𝑥⟶∞
𝑥2 = +∞.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞𝑓

Exemple 37 L’énergie cinétique est l’énergie que possède un corps du fait de son
mouvement par rapport à un référentiel donné. Elle est proportionnelle au carré

de la vitesse du corps : E𝑐(𝑣) =
1
2
𝑚𝑣2 avec les notations du cours de physique.

Définition/Proposition 3 | Fonction cube, cas 𝑛 = 3 ♥

• [Définition] 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ 𝑥3.

• [Propriété(s)] 𝑓 est impaire.
• [Dérivée] ∀𝑥 ∈ ℝ,   𝑓′(𝑥) = 3𝑥2.
• [Limites]

⋄ lim
𝑥⟶−∞

𝑥3 = −∞,
⋄ lim

𝑥⟶∞
𝑥3 = +∞.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞𝑓
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Définition/Proposition 4 | Fonctionmonôme 𝑥 ⟼ 𝑥𝑛
♥

Soit 𝑛 ∈ ℕ.

• [Définition] 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ 𝑥𝑛.

• [Principales propriétés] 𝑓 est paire si 𝑛
pair et impaire si 𝑛 est impair.

• [Dérivée] 𝑓 est dérivable sur ℝ et :
∀𝑥 ∈ ℝ, 𝑓′(𝑥) = 𝑛𝑥𝑛−1.

• [Limites]
⋄ lim

𝑥⟶−∞
𝑥𝑛 = +∞ si 𝑛 est pair,

⋄ lim
𝑥⟶−∞

𝑥𝑛 = −∞ si 𝑛 est impair,
⋄ lim

𝑥⟶+∞
𝑥𝑛 = +∞.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝑦 = 𝑥3 𝑦 = 𝑥5

𝑦 = 𝑥2 𝑦 = 𝑥4

Définition/Proposition 5 | Fonction polynomiale de degré 𝑛 ♥

• [Définition] P | ℝ ⟶ ℝ
𝑥 ⟼ 𝑎𝑛𝑥𝑛 +𝑎𝑛−1𝑥𝑛−1 +⋯+𝑎1𝑥+𝑎0

avec

(𝑎0,…,𝑎𝑛) ∈ ℝ𝑛+1 des réels appelés les coefficients du polynôme.
• [Dérivée] P est dérivable sur ℝ et,

∀𝑥 ∈ ℝ, P′(𝑥) = 𝑛𝑎𝑛𝑥𝑛−1 +(𝑛−1)𝑎𝑛−1𝑥𝑛−2 +⋯+𝑎1.
• [Limites] lim

𝑥⟶±∞
P(𝑥) = lim

𝑥⟶±∞
(𝑎𝑛𝑥𝑛), c’est-à-dire celle donnée par la plus

grand puissance.

Preuve Démontrons la propriété sur la limite en ±∞.
PEN-FANCY

Méthode (AN) 1.4 (Limite d’un quotient de polynpomes) Pour déterminer la
limite en ±∞ de :

𝑎𝑛𝑥𝑛 +𝑎𝑛−1𝑥𝑛−1 +⋯+𝑎1𝑥+𝑎0
𝑏𝑚𝑥𝑚 +𝑏𝑛−1𝑥𝑛−1 +⋯+𝑏1𝑥+𝑏0

,

on factorise au numérateur par 𝑎𝑛𝑥𝑛 et au dénominateur par 𝑏𝑚𝑥𝑚 et on sim-
plifie le quotient de ces deux termes en 𝑎𝑛𝑥𝑛−𝑚

𝑏𝑚
, avant de passer à la limite. On

dit que l’on «met en facteur les monômes de plus haut degré ».

Attention
,

Cette méthode ne fonctionne que pour les limites en ±∞.

Exemple 38 Déterminer lim
𝑥⟶+∞

𝑥7 +4𝑥2 −1
𝑥9 +1

.

PEN-FANCY

5.2 Fonction monôme inverse

Définition/Proposition 6 | Fonction inverse, cas 𝑛 = 1 ♥

• [Définition] 𝑓
|

|

ℝ⋆ ⟶ ℝ

𝑥 ⟼
1
𝑥.• [Principales propriétés] 𝑓 est impaire.

• [Dérivée] 𝑓 est dérivable sur ℝ∗
+ et sur ℝ∗

−

et : ∀𝑥 ∈ ℝ⋆, 𝑓′(𝑥) = −
1
𝑥2 ⋅ .

• [Limites]
lim

𝑥⟶±∞

1
𝑥

= 0,• lim
𝑥⟶0−

1
𝑥

= −∞,•

lim
𝑥⟶0+

1
𝑥

= +∞.•

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞𝑓

Exemple 39 D’après la loi des gaz parfaits, la pression est inversement propor-

tionnelle au volume : P(V) =
𝑛RT
V

avec les notations du cours de physique.
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Définition/Proposition 7 | Fonction carrée inverse ♥

Soit 𝑛 ∈ ℕ⋆. ²

• [Définition] 𝑓
|

|

ℝ⋆ ⟶ ℝ

𝑥 ⟼
1

𝑥𝑛.• [Principales propriétés] 𝑓 est paire si 𝑛
pair et impaire si 𝑛 est impair.

• [Dérivée] 𝑓 est dérivable sur ℝ∗
+ et sur ℝ∗

−

et ∀𝑥 ∈ ℝ⋆, 𝑓′(𝑥) = −
𝑛

𝑥𝑛+1 .

COURBE REPRÉSENTATIVE (cas
𝑛 = 2)

𝑥

𝑦

𝒞𝑓

• lim
𝑥⟶±∞

1
𝑥𝑛 = 0 ,• lim

𝑥⟶0+
1
𝑥𝑛 = +∞.•

lim
𝑥⟶0−

1
𝑥𝑛 =

⎧
⎨
⎩

+∞ si 𝑛 est pair,
−∞ si 𝑛 est impair,

,•

Exemple 40 Si un corps A et un corps B de masses 𝑚A et 𝑚B sont séparés par
une distance 𝑑, alors la valeur F de la force de gravitation qui s’exerce entre eux
est : F = G

𝑚A𝑚B

𝑑2 avec les notations du cours de physique.

5.3 Fonction racine carrée

Définition/Proposition 8 | Fonction racine carrée ♥

• [Définition] 𝑓 |
ℝ+ ⟶ ℝ
𝑥 ⟼ √𝑥

• [Dérivée] 𝑓 est dérivable sur ℝ∗
+ et :

∀𝑥 ∈ ℝ∗
+, 𝑓′(𝑥) =

1
2√𝑥

.

Elle n’est pas dérivable en zéro.
• [Limites] lim

𝑥⟶+∞
√𝑥 = +∞.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞𝑓

Exemple 41 Le principe deTORRICELLI est un principe demécanique des fluides
qui établit que le carré de la vitesse d’écoulement d’unfluide sous l’effet de la pe-
santeur est proportionnel à la hauteur de fluide située au-dessus de l’ouverture

²Pour 𝑛 = 0, on retrouve une fonction affine, donc déjà étudiée.

par laquelle il s’échappe du cylindre qui le contient.

𝑣2 = 2𝑔ℎ, 𝑣 = √2𝑔ℎ,
avec les notations du cours de physique.

Méthode (AN) 1.5 (Expression conjuguée pour les F.I. avec racines) Pour cal-
culer des limites d’expressions de la forme √𝑢(𝑥) − √𝑣(𝑥) avec lim

𝑥⟶∞
𝑢(𝑥) =

∞, lim
𝑥⟶∞

𝑣(𝑥) = ∞ le plus souvent polynomiale, on a souvent recours à à la tech-
nique de l’expression conjuguée :

√𝑢(𝑥)−√𝑣(𝑥) =
(√𝑢(𝑥)−√𝑣(𝑥))(√𝑢(𝑥)+√𝑣(𝑥))

√𝑢(𝑥)+√𝑣(𝑥)
=

𝑢(𝑥)−𝑣(𝑥)
√𝑢(𝑥)+√𝑣(𝑥)

.

Sous cette forme, la limite n’est souvent plus indéterminée après avoir mis dans
la racine les monômes les plus importants en facteur.

Exemple 42 Calculer la limite : lim
𝑥⟶∞

(𝑥+2−√𝑥2 −3𝑥−1).

PEN-FANCY

5.4 Fonctions exponentielles, logarithme et puissances

5.4.1 Exponentielle et logarithme
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Définition/Proposition 9 | Fonction exponentielle ♥

• [Définition] exp | ℝ ⟶ ℝ
𝑥 ⟼ exp(𝑥), ou

encore e𝑥 commenotation pour exp(𝑥), avec
e la constante de NÉPER, et définie comme
e= exp(1). La fonction exp est l’unique fonc-
tion 𝑓 dérivable, vérifiant 𝑓′ = 𝑓 et 𝑓(0) = 1.

• [Principales propriétés]

∀(𝑥,𝑦) ∈ ℝ2, e𝑥+𝑦 = e𝑥e𝑦, e𝑥−𝑦 =
e𝑥

e𝑦
.

• [Dérivée] exp est dérivable sur ℝ et
∀𝑥 ∈ ℝ, exp′(𝑥) = exp(𝑥).

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞exp

• [Limites]
lim

𝑥⟶−∞
exp(𝑥) = 0,⋄ lim

𝑥⟶+∞
exp(𝑥) = +∞,⋄

[Taux] lim
𝑥⟶0

e𝑥−1
𝑥 = 1.⋄

Exemple 43
• La loi de décroissance radioactive affirme que le nombre de noyaux désinté-

grés au bout d’une durée 𝑡 s’exprime comme
N(𝑡) = N0e−λ𝑡

où N0 est le nombre de noyau à 𝑡 = 0 et λ est la constante radioactive, carac-
téristique du noyau radioactif considéré.

• Le modèle de dynamique des populations de MALTHUS affirme que le
nombre d’individus N(𝑡) au temps 𝑡 ⩾ 0 s’exprime comme :

N(𝑡) = N0eλ𝑡

où N0 est le nombre d’individus au temps initial et λ est le taux de croissance
de la population.

5.4.2 Fonction logarithme népérien ln et décimal log

Définition/Proposition 10 | Logarithme népérien ♥

• [Définition] ln | ℝ∗
+ ⟶ ℝ
𝑥 ⟼ ln(𝑥).

• [Principales propriétés]
∀(𝑥,𝑦) ∈ (ℝ∗

+)2, ln(𝑥𝑦) = ln(𝑥)+ ln(𝑦),

ln(
𝑥
𝑦
) = ln(𝑥)− ln(𝑦)

• [Dérivée] ln est dérivable sur ℝ∗
+ et :

∀𝑥 ∈ ℝ∗
+, ln′(𝑥) =

1
𝑥
.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞ln

[Limites] lim
𝑥⟶0+

ln(𝑥) = −∞,
lim

𝑥⟶+∞
ln(𝑥) = +∞.

[Taux] lim
𝑥⟶0

ln(1+𝑥)
𝑥 = 1.

• [Réciproque de l’exponentielle]
∀𝑥 ∈ ℝ+⋆, exp∘ ln(𝑥) = eln(𝑥) = 𝑥,
∀𝑥 ∈ ℝ, ln∘exp(𝑥) = ln(e𝑥) = 𝑥.

•

La dernière propriété signifie que exp, ln sont réciproques l’une de l’autre, nous étu-
dierons plus en détail cela dans le Chapitre (ALG) 6.

Exemple 44 En physique statistique, la formule de BOLTZMANN (1877) défi-
nit l’entropie microcanonique d’un système physique à l’équilibre macrosco-
pique, libre d’évoluer à l’échelle microscopique entre Ω micro-états différents.
Elle s’écrit :

S = 𝑘B ln(Ω)
où 𝑘B est la constante de BOLTZMANN.

Dans certaines disciplines, notamment en Physique–Chimie pour des grandeurs va-
riant sur des puissances de 10, par exemple entre 10−10 et 1010, il peut être plus pra-
tique de manipuler des « logarithmes décimaux » plutôt que le logarithme népérien.
Par exemple, si 𝑘 ∈ ℕ, ln (10𝑘) = ln (e𝑘 ln10) = 𝑘 ln10(⋆). Plutôt que de manipuler des
ln10 dans certains calculs, on préfère considérer la fonction log= ln

10 , de sorte qu’(⋆)
se simplifie en log (10𝑘) = 𝑘.

Mathématiquement, cette fonction ne représente que peu d’intérêts puisqu’elle est
égale à une constante près à une fonction déjà connue (le logarithme népérien).
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Définition/Proposition 11 | Fonction logarithme décimal ♥

• [Définition]

log
|

|

ℝ+⋆ ⟶ ℝ

𝑥 ⟼ log(𝑥) =
ln(𝑥)
ln(10)

.

• [Principales propriétés]
⋄ ∀(𝑥,𝑦) ∈ (ℝ∗

+)2, log(𝑥𝑦) = log(𝑥) +
log(𝑦),

⋄ ∀𝑥 ∈ ℝ∗
+, 10log(𝑥) = 𝑥,

⋄ ∀𝑎 ∈ ℝ, log(10𝑎) = 𝑎.
• [Dérivée] log est dérivable sur ℝ∗

+ et :

∀𝑥 ∈ ℝ∗
+, log′(𝑥) =

1
ln(10)

ln′(𝑥) =
1

ln(10)𝑥
.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞log

• [Limites]
lim
𝑥⟶0+

log(𝑥) = −∞,• lim
𝑥⟶+∞

log(𝑥) = +∞.•

Exemple 45
• En milieu dilué, on définit le 𝑝H par la relation

𝑝H = − log([H3O+]),
où [H3O+] désigne la concentration en H3O+.

• La magnitude locale d’un séisme se calcule comme

M = log(
A
A0

)

où A représente l’amplitude maximale relevée par le sismographe et A0 une
amplitude de référence.

5.4.3 Puissances générales& Exponentielle en base𝑎 Rappelons les
puissances que nous connaissons déjà.

• 𝑎𝑛 avec 𝑎 ∈ ℝ,𝑛 ∈ ℕ et 𝑎 ∈ ℝ⋆,𝑛 ∈ ℤ. Nous l’avons vu dans le Chapitre (ALG) 2 sur
les nombres réels.

• Nous avions également défini𝑎
1
2 = √𝑎 lorsque𝑎 ⩾ 0, et𝑎

1
3 = 3√𝑎pour tout𝑎 ∈ ℝ.

Nous allons à présent définir 𝑎𝑏 pour tout 𝑏 ∈ ℝ, lorsque 𝑎 > 0. Réecrivons notre dé-
finition duChapitre (ALG) 2 à l’aide de l’exponentielle et du logarithme. On a d’après
les propriétés de l’exponentielle :

𝑎𝑛 = (eln𝑎)𝑛 = e𝑛 ln𝑎.
Il apparaît que cette écriture de la puissance peut être étendue à n’importe quelle
autre puissance réelle (pas seulement un entier 𝑛). On aboutit donc à la définition
ci-après.

Définition 20 | Puissances généralisées
Soient 𝑎 > 0 et 𝑏 ∈ ℝ. On définit le réel 𝑎𝑏 par : 𝑎𝑏 = e𝑏 ln𝑎.

Exemple 46 Écrire sous forme exponentielle (2)
1
3 et( 12 )

− 1
2 .

PEN-FANCY

Exemple 47
1. Montrer que :

∀𝑥 ∈]1,+∞[, ∃𝑛 ∈ ℕ∗, 𝑥𝑛 ⩾ 10.
(Vous pourrez noter que, après le cours sur les suites, cela sera une conséquence directe du fait

que 𝑥𝑛 𝑛⟶∞−−−−→ ∞ (car 𝑥 > 1, résultat classique sur les suites géométriques))

PEN-FANCY

2. Montrer en revanche que :
∃𝑛 ∈ ℕ∗, ∀𝑥 ∈]1,+∞[, 𝑥𝑛 ⩾ 10 est fausse.

PEN-FANCY
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Remarque 17 Cette définition a le bout goût de généraliser l’exposant (autorisé
à être réel cette fois). Cependant, puisque ln est défini uniquement sur ℝ+⋆, elle
est moins générale vis-à-vis de 𝑎 que la définition 𝑎𝑛 = 𝑎 ×⋯×𝑎. On ne peut
pas tout avoir.

Constatons que pour différentes valeurs de 𝑏, on retrouver diverses quantités
usuelles déjà définies dans le Chapitre (ALG) 2.

Proposition 8 | Puissances particulières
Soient 𝑥 ∈ ℝ+⋆ et 𝑛 ∈ ℕ.

[𝑏 = 1/2] 𝑥
1
2 = √𝑥,• [𝑏 = 1/3] 𝑥

1
3 = 3√𝑥.•

Attention
,

La racine cubique d’un réel strictement positif s’écrit donc sous forme d’une
puissance 1

3 . En revanche, nous n’avons rien dit des réels négatifs (dont la ra-
cine cubique existe).

Preuve D’après la définition du Chapitre (ALG) 2, il s’agit de montrer que : 𝑥
1
2 ⩾ 0, et que

(𝑥
1
2 )

2
= 𝑥.

PEN-FANCY

On vérifie sans peine que toutes les propriétés classiques sur les puissances restent
valables.

Proposition 9 | Règles sur les puissances
Soit (𝑎,𝑎1,𝑎2) ∈ (ℝ+⋆)3 et (𝑏,𝑏1,𝑏2) ∈ ℝ3. Alors :
• 𝑎𝑏1+𝑏2 = 𝑎𝑏1 ×𝑎𝑏2 (𝑎𝑏1)𝑏2 = 𝑎𝑏1×𝑏2 (𝑎1 ×𝑎2)𝑏 = 𝑎𝑏

1 ×𝑎𝑏
2 .

• (𝑎1𝑎2 )
𝑏
= 𝑎𝑏1

𝑎𝑏2
, 𝑎𝑏1

𝑎𝑏2 = 𝑎𝑏1−𝑏2 = 1
𝑎𝑏2−𝑏1 .

Remarque 18 (On peut faire encoremieux) Nous pouvons faire encoremieux
dans le cas des puissances 𝑝

𝑞 ∈ ℚ avec 𝑞 un entier impair. Nous verrons cela
dans le Chapitre (ALG) 6 une fois le théorème de la bijection revu.

Remarque 19 (Constante de NÉPER) En début de section, nous avions écrit
exp(𝑥) = e𝑥 pour tout 𝑥 ∈ ℝ, où e = exp(1). Afin de pouvoir utiliser cette nota-

tion, il faudrait alors justifier que :
exp(𝑥) = (exp(1))𝑥.

En effet c’est le cas puisque (exp(1))𝑥 = exp(𝑥 lnexp(1)) = exp(𝑥).

Faire varier 𝑏 : exponentielle en base. Onpeut aussi à présent faire varier
la puissance 𝑏 et étudier la fonction 𝑥 ∈ ℝ ⟼ 𝑎𝑥 = e𝑥 ln𝑎 pour tout 𝑎 > 0. C’est une
fonction qui aura donc des propriétés similaires à la fonction exponentielle. On la
note en général exp𝑎.

Définition/Proposition 12 | Fonction exponentielle en base 𝑎 ♥

• [Définition]

exp𝑎 |
ℝ ⟶ ℝ
𝑥 ⟼ 𝑎𝑥 = e𝑥 ln(𝑎).

• [Principales propriétés]

∀(𝑥,𝑦) ∈ ℝ2, 𝑎𝑥+𝑦 = 𝑎𝑥𝑎𝑦, 𝑎𝑥−𝑦 =
𝑎𝑥

𝑎𝑦 .

• [Dérivée] exp𝑎 est dérivable sur ℝ et

∀𝑥 ∈ ℝ, exp′𝑎(𝑥) =
d (e𝑥 ln𝑎)

d𝑥
= ln(𝑎)𝑎𝑥.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝑎 = 3

𝑎 = 2

𝑎 = 1
3

• [Limites]
lim

𝑥⟶−∞
𝑎𝑥 = +∞ si 𝑎 < 1,• lim

𝑥⟶+∞
𝑎𝑥 = 0 si 𝑎 < 1,•

lim
𝑥⟶−∞

𝑎𝑥 = 0 si 𝑎 > 1,• lim
𝑥⟶+∞

𝑎𝑥 = +∞ si 𝑎 > 1.•

Remarque 20 Pour𝑎 = e, étant donné que ln(e) = 1, on retrouve l’exponentielle.
En d’autres termes : expe = exp. Pour savoir si exp𝑎 est croissante ou décrois-
sante, on analyse simplement le signe de ln𝑎, cela revient à comparer 𝑎 à 1.

Faire varier𝑎. Onpeut aussi à présent faire varier𝑎 dansℝ+⋆ et étudier la fonc-
tion 𝑥 ∈ ℝ+⋆ ⟼ 𝑥α = eα ln𝑥 pour tout α ∈ ℝ. C’est une fonction qui unifie à la fois la
racine carrée α = 1

2 , la racine cubique α = 1
3 , mais aussi la fonction carré α = 2, cube

α = 3, etc. et même l’identité avec α = 0.

Définition/Proposition 13 ♥

Soit α ∈ ℝ.
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• [Définition]

𝑝α |
ℝ+⋆ ⟶ ℝ
𝑥 ⟼ 𝑥α = eα ln(𝑥).

• [Principales propriétés]

∀(𝑥,𝑦) ∈ ℝ2, (𝑥𝑦)α = 𝑥α𝑦α, (
𝑥
𝑦
)
α

=
𝑥α

𝑦α
.

• [Dérivée] 𝑝α est dérivable sur ℝ+⋆ et
∀𝑥 ∈ ℝ+⋆, 𝑝′

α(𝑥) = α𝑥α−1.

COURBE REPRÉSENTATIVE

𝑥

𝑦

α = 5
4

α = 1
3

α = − 1
2

• [Limites]
lim
𝑥⟶0+

𝑥α = +∞ si α > 0,• lim
𝑥⟶∞

𝑥α = +∞ si α > 0,•
lim
𝑥⟶0+

𝑥α = +∞ si α < 0,• lim
𝑥⟶+∞

𝑥α = 0 si α < 0.•

5.5 Fonction valeur absolue

La valeur absolue avait étudiée dans le Chapitre (ALG) 2, mais nous ne l’avions pas
vue encore comme une fonction. C’est ce que nous analysons ici.

Définition/Proposition 14 | Valeur absolue ♥

• [Définition]

𝑓
|||

|

ℝ ⟶ ℝ

𝑥 ⟼ |𝑥| =
⎧
⎨
⎩

𝑥 si 𝑥 ⩾ 0,
−𝑥 si 𝑥 < 0

• [Principales propriétés] 𝑓 est paire.
• [Dérivée] 𝑓 est dérivable surℝ∗

+ d’unepart,
ℝ∗
− d’autre part et :

∀𝑥 ∈ ℝ⋆, 𝑓′(𝑥) =
⎧
⎨
⎩

1 si 𝑥 > 0,
−1 si 𝑥 < 0.

Elle n’est pas dérivable en zéro.

COURBE REPRÉSENTATIVE

𝑥

𝑦

𝒞𝑓

• [Limites]
lim

𝑥⟶−∞
|𝑥| = +∞• lim

𝑥⟶+∞
|𝑥| = +∞•

Exemple 48 Un modèle très simple d’évolution de la température lors d’une
journée consiste à supposer qu’elle augmente régulièrement de 6h à 16h puis
diminue régulièrement jusqu’à minuit. La température T(𝑡) s’exprime alors en
fonction du temps écoulé 𝑡 depuis 6ℎ comme suit :

T(𝑡) = 𝑎|𝑡 −10|+𝑏.

5.6 Fonction partie entière

Définition/Proposition 15 | Fonction partie entière ♥

• [Définition] 𝑓 | ℝ ⟶ ℝ
𝑥 ⟼ ⌊𝑥⌋

• [Principales propriétés] 𝑓 est constante
par morceaux, discontinue en chaque point
𝑛 ∈ ℤ. De plus,

∀𝑥 ∈ ℝ, ⌊𝑥⌋ ⩽ 𝑥 < ⌊𝑥⌋+1.
• [Dérivée]

𝑓 est dérivable sur chaque intervalle ]𝑛;𝑛+1[
avec 𝑛 ∈ ℤ et

∀𝑥 ∈]𝑛;𝑛+1[, 𝑓′(𝑥) = 0.
𝑓 n’est pas dérivable en tout 𝑛 ∈ ℤ.

• [Limites]
⋄ lim

𝑥⟶−∞
⌊𝑥⌋ = −∞,

⋄ lim
𝑥⟶+∞

⌊𝑥⌋ = +∞,
⋄ ∀𝑘 ∈ ℤ, lim

𝑥⟶𝑘−
⌊𝑥⌋ = 𝑘−1, lim

𝑥⟶𝑘+
⌊𝑥⌋ = 𝑘.

COURBE REPRÉSENTATIVE

𝑥

𝑦

Preuve Montrons les deux limites ci-après : lim
𝑥⟶−∞

⌊𝑥⌋ = −∞ et lim
𝑥⟶+∞

⌊𝑥⌋ = +∞.

PEN-FANCY
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5.7 Fonctions circulaires

Rappelons que pour 𝑥 ∈ ℝ, le cosinus, sinus et tangente de 𝑥 peuvent être visualisés
avec la figure ci-après.

𝑥
sin𝑥

cos𝑥

•
M(𝑥)

tan𝑥

−1 − 1
2

1

−1

− 1
2

1
2

1

On voit qu’en faisant varier 𝑥 dans ℝ, le cosinus et le sinus semblent « osciller » entre
−1 et 1, et semblent revenir sur les anciennes valeurs après un intervalle de longueur
2π.

Dans toute la suite, on admettra le lemme suivant³. Il va nous permettre d’établir
l’expression des dérivées de cos et sin.

Lemme 1 | Deux limites

lim
ℎ⟶0

sin(ℎ)
ℎ

= 1, lim
ℎ⟶0

1−cos(ℎ)
ℎ

= 0.

Il est possible de démontrer la seconde avec la première à l’aide de formules de tri-
gonométries (duplication) : en effet, on sait que pour tout ℎ ∈ ℝ :

cos(ℎ) = 1−2sin2 (
ℎ
2
) ⟹

1−cos(ℎ)
ℎ

=
2sin2 (ℎ2 )

ℎ
=
sin2 (ℎ2 )

ℎ
2

.

3. se démontre à l’aide de considérations géométriques sur le cercle trigonométrique

On peut ensuite conclure par composition des limites (puisque ℎ/2 ℎ⟶0−−−−→ 0). Com-
mençons à présent l’étude des fonctions trigonométriques par le cosinus.

Définition/Proposition 16 | Fonction cosinus ♥

• [Définition] cos | ℝ ⟶ ℝ
𝑥 ⟼ cos(𝑥)

• [Principales propriétés] cos est 2π-périodique et paire.
• [Dérivée] cos est dérivable sur ℝ et

∀𝑥 ∈ ℝ, cos′(𝑥) = −sin(𝑥).
• [Limites] La fonction cosinus n’admet pas de limite en ±∞, et

lim
𝑥⟶0

cos𝑥−1
𝑥

= 0.

𝑦

−1

0

1

−3π
2

−π
−π
2

0
π
2

π
3π
2

𝑥

𝒞cos

Preuve [Dérivabilité] Soient 𝑥 ∈ ℝ et ℎ ∈ ℝ⋆.
PEN-FANCY

Exemple 49 Lorsqu’un pendule est écarté de sa position d’équilibre (la verti-
cale), il se met à osciller. La position d’un pendule simple est repérée par l’angle
θ qu’il fait avec la verticale descendante. En l’absence de frottements et pour des
petites oscillations, on a

∀𝑡 ⩾ 0, θ(𝑡) = θ0 sin(ω0𝑡)
où θ0 repère la position initiale du pendule et ω0 est la pulsation.
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Définition/Proposition 17 | Fonction sinus ♥

• [Définition] sin | ℝ ⟶ ℝ
𝑥 ⟼ sin(𝑥).

• [Principales propriétés] sin est 2π-périodique et impaire.
• [Dérivée] sin est dérivable sur ℝ et

∀𝑥 ∈ ℝ, sin′(𝑥) = cos(𝑥).
• [Limites] La fonction sinus n’admet pas de limite en ±∞,

lim
𝑥⟶0

sin𝑥
𝑥

= 1.

𝑦

−1

0

1

−3π
2

−π
−π
2

0
π
2

π
3π
2

𝑥

𝒞sin

Preuve [Dérivabilité] Procéder comme pour le cosinus.
PEN-FANCY

Pour la tangente, on voit que le point semble être « envoyé vers +∞ » lorsque 𝑥 tend
vers +π

2 . Mathématiquement, cela sera traduit avec la notion de limite.

Définition/Proposition 18 | Fonction tangente ♥

• [Définition]

tan
|

|

𝒟tan ⟶ ℝ

𝑥 ⟼ tan(𝑥) =
sin(𝑥)
cos(𝑥)

avec
𝒟tan = ℝ∖{

π
2

+𝑘π |𝑘 ∈ ℤ}.

• [Principales propriétés] tan est π-périodique et impaire.

♥

• [Dérivée] tan est dérivable sur 𝒟tan et

∀𝑥 ∈ 𝒟tan, tan′(𝑥) = 1+ tan2(𝑥) =
1

cos2(𝑥)
.

• [Limites]
lim

𝑥⟶−π/2+
tan(𝑥) = −∞,• lim

𝑥⟶π/2−
tan(𝑥) = +∞,•

[Taux] lim
𝑥⟶0

tan𝑥
𝑥 = 1.•

𝑦

−3

−2

−1

0

1

2

3

−π
−π
2

0
π
2

π 𝑥

𝒞tan

Preuve
• [Périodicité]

PEN-FANCY

• [Imparité]
PEN-FANCY

• [Taux]
PEN-FANCY
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FORMULAIRE DE DÉRIVÉES

Dans les tableaux ci-dessous, 𝑥 est une variable réelle et 𝑎 une constante réelle. Ce
tableau est encore partiel, il nous manque une fonction usuelle (arctan, que nous
allons étudier dans le Chapitre (ALG) 6).

Fonction 𝑓 𝒟𝑓 Fonction 𝑓′ 𝒟𝑓′ ⊂ 𝒟𝑓

𝑓(𝑥) = 𝑎 ℝ 0 ℝ

𝑥𝑎, 𝑎 ∈ ℝ ℝ+⋆ si 𝑎 ∈ ℝ∖ℤ
ℝ si 𝑎 ∈ ℕ

ℝ⋆ si 𝑎 ∈ ℤ∖ℕ

𝑎𝑥𝑎−1 ℝ∗
+

ln(𝑥) ℝ∗
+

1
𝑥 ℝ∗

+

ln(|𝑥|) ℝ∗ 1
𝑥 ℝ∗

√𝑥 ℝ+
1

2√𝑥
ℝ∗
+

|𝑥| ℝ
⎧
⎨
⎩

1 si 𝑥 > 0,
−1 si 𝑥 < 0

ℝ∗

e𝑥 ℝ e𝑥 ℝ

cos(𝑥) ℝ −sin(𝑥) ℝ

sin(𝑥) ℝ cos(𝑥) ℝ

tan(𝑥) ℝ∖{π2 +𝑘π𝑘 ∈ ℤ} 1+ tan2(𝑥) =
1

cos2(𝑥)

ℝ∖{π2 +𝑘π𝑘 ∈ ℤ}
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FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (AN) 1.1 (Utiliser les croissances comparées dans une somme/diffé-
rence)
• L’idée est de mettre en facteur le terme qui « pèse le plus lourd » au sens des

croissances comparées. La limite du facteur qui apparait peut alors facile-
ment se calculer en utilisant les croissances comparées.

• Cette idée peut être utilisée pour lever une forme indéterminée, même si le
résultat qui s’utilise ensuite n’est pas des croissances comparées.

Méthode (AN) 1.2 (Montrer qu’une fonction est continue sur un inter-
valle) En pratique, pour montrer qu’une fonction est continue, on utilise la
continuité établie des fonctions de référence combinées par des opérations al-
gébriques ou de composition.

Méthode (AN) 1.3 (Limite calculable par taux de variation) Si une expression
est de la forme suivante, pour 𝑓 ∶ I ⟶ ℝ dérivable en 𝑥0, avec 𝑥0 aux bords de I
ou dans I, alors :

𝑓(𝑥)−𝑓(𝑥0)
𝑥−𝑥0

𝑥⟶𝑥0−−−−−→ 𝑓′(𝑥0).

En particulier, si 𝑓 s’annule en 𝑥0, on a :
𝑓(𝑥)
𝑥−𝑥0

𝑥⟶𝑥0−−−−−→ 𝑓′(𝑥0).

Méthode (AN) 1.4 (Limite d’un quotient de polynpomes) Pour déterminer la
limite en ±∞ de :

𝑎𝑛𝑥𝑛 +𝑎𝑛−1𝑥𝑛−1 +⋯+𝑎1𝑥+𝑎0
𝑏𝑚𝑥𝑚 +𝑏𝑛−1𝑥𝑛−1 +⋯+𝑏1𝑥+𝑏0

,

on factorise au numérateur par 𝑎𝑛𝑥𝑛 et au dénominateur par 𝑏𝑚𝑥𝑚 et on sim-
plifie le quotient de ces deux termes en 𝑎𝑛𝑥𝑛−𝑚

𝑏𝑚
, avant de passer à la limite. On

dit que l’on «met en facteur les monômes de plus haut degré ».

Méthode (AN) 1.5 (Expression conjuguée pour les F.I. avec racines) Pour cal-
culer des limites d’expressions de la forme √𝑢(𝑥) − √𝑣(𝑥) avec lim

𝑥⟶∞
𝑢(𝑥) =

∞, lim
𝑥⟶∞

𝑣(𝑥) = ∞ le plus souvent polynomiale, on a souvent recours à à la tech-

nique de l’expression conjuguée :

√𝑢(𝑥)−√𝑣(𝑥) =
(√𝑢(𝑥)−√𝑣(𝑥))(√𝑢(𝑥)+√𝑣(𝑥))

√𝑢(𝑥)+√𝑣(𝑥)
=

𝑢(𝑥)−𝑣(𝑥)
√𝑢(𝑥)+√𝑣(𝑥)

.

Sous cette forme, la limite n’est souvent plus indéterminée après avoir mis dans
la racine les monômes les plus importants en facteur.
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QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Question Réponse Commentaire

Si 𝑓 est la fonction définie sur
]0,1[ par : 𝑓(𝑥) = √1−𝑥 sur
l’intervalle ]0,1[, déterminer
l’expression de sa dérivée sur
]0,1[

Soit 𝑥 ∈]0,1[, 𝑓′(𝑥) = −1
2√1−𝑥

Allure de la représentation
graphique de la fonction sin
sur l’intervalle [−π,π]

𝑦

−1
0
1

−π
−π
2

0
π
2

𝑥

𝒞sin

Allure de la représentation
graphique de la fonction cos
sur l’intervalle [−π,π]

𝑦

−1
0
1

−π
−π
2

0
π
2

𝑥

𝒞cos

Allure des représentations
graphiques des fonctions
𝑥 ⟼ ln(𝑥) et 𝑥 ⟼ ln(1+𝑥)

𝑥

𝑦

−1 0 1 2 3 4 5 6 7

−3
−2
−1
0
1
2

𝒞ln

𝒞ln(1+.)

Allure des représentations
graphiques des fonctions
𝑥 ⟼ |𝑥| et 𝑥 ⟼ |𝑥+1|

𝑥

𝑦

−2 −1 0 1 2
0

1

2

𝒞|.|

𝒞|.+1|

Rappeler les deux expressions
de la dérivée de la fonction tan

tan′ = 1+ tan2 = 1
cos2 sur𝒟tan Savoir aussi qu’elle

est dérivable sur
son ensemble de
définition

Équation de la tangente de la
courbe représentative d’une
fonction 𝑓 au point d’abscisse
𝑎

Si 𝑓 est dérivable en 𝑎, elle admet
pour tangente en 𝑎 la droite
d’équation 𝑦 = 𝑓′(𝑎)(𝑥−𝑎)+𝑓(𝑎)

Dérivée d’une composée 𝑓 ∘𝑔 (𝑓 ∘𝑔)′ = 𝑓′ ∘𝑔×𝑔′ si
𝑔 ∶ I⟶ J,𝑓 ∶ K ⊂ J⟶ℝ dérivables
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6 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Savoir déterminer certaines caractéristiques d’une fonction :

• parité et périodicité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• monotonie avec la définition par manipulations d’encadrement . . . . . . . . . . . . . .⬜

2. Connaître la définition des limites :
• connaître les limites usuelles et les croissances comparées . . . . . . . . . . . . . . . . . . . ⬜
• savoir utiliser les théorèmes d’addition, multiplication, quotient de limites . . . .⬜
• savoir calculer la limite d’une composée de fonction . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• reconnaître les limites liées au taux d’accroissement . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

3. Savoir lever les indéterminations classiques :
• polynômes et fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• fonctions avec des radicaux (expression conjuguée) . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

4. Savoir appliquer les théorèmes d’existence de limites (théorème d’encadrement, de
comparaison) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

5. Savoir déterminer le comportement asymptotique d’une fonction (limites, asymp-
totes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

6. Savoir montrer qu’une fonction est continue par opérations (à l’aide de fonctions
usuelles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

7. Savoir montrer qu’une fonction est dérivable par opérations (à l’aide de fonctions
usuelles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

8. Savoir calculer des dérivées de somme, produit, quotient, ou composée . . . . . . . . . ⬜
9. Connaître les fonctions usuelles (variations, dérivées, limites, représentation gra-

phique) :
• fonctions affines et trinômes du second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• fonctions valeur absolue, racine carrée et inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• fonction partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• fonctions ln, exp et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• fonctions trigonométriques (cos, sin, tan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

10. Savoir étudier complètement une fonction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

Cahier de calculs
Fiche(s) à travailler : 7, 10, 21

Note : vous pouvez utiliser GeoGebra (logiciel libre) pour vérifier vos résultats. Allez
dans menu ”affichage”, sélectionnez ”calcul formel” puis utilisez une des commandes
”Résoudre”, ”Dérivée” ou ”Limite”. Tracer par exemple la fonction étudiée vous aidera
à vérifier vos résultats. De plus, l’utilisation de ce logiciel est autorisée au concours
Agro-Véto.

Exercice 1 ∣ VraiouFaux? Les affirmations suivantes sont-elles vraies ou fausses?
Justifier.

1. La fonction 𝑓 définie sur ℝ+ par 𝑓(𝑥) = 𝑥√𝑥 est dérivable sur ℝ+.
2. Toute fonction bornée sur [0,1] est continue sur [0,1].
3. Une fonction𝑓 ∶ ℝ ⟶ ℝ est dérivable en𝑥0 ∈ ℝ si et seulement si elle est continue

en 𝑥0.
4. Pour toute fonction 𝑓 ∶ ℝ ⟶ ℝ une fonction dérivable :

• si 𝑓 est paire sur ℝ, alors 𝑓′ est paire sur ℝ ;
• si 𝑓 est impaire sur ℝ, alors 𝑓′ est paire sur ℝ ;
• si 𝑓 est périodique de période T > 0 sur ℝ, alors 𝑓′ est aussi T-périodique.

5. Pour toutes fonctions 𝑓 et 𝑔 telles que :
∀𝑥 ∈ [0,1], 𝑓(𝑥) ⩽ 𝑔(𝑥) ⟹ ∀𝑥 ∈ [0,1], 𝑓′(𝑥) ⩽ 𝑔′(𝑥).

Solution (exercice 1)
1. VRAI. La fonction 𝑓 est au moins dérivable sur ]0,+∞[ en tant que produit

de telles fonctions.
On étudie la dérivabilité de 𝑓 en 0 à l’aide du taux d’accroissement. Pour tout
𝑥 > 0,

𝑓(𝑥)−𝑓(0)
𝑥−0

=
𝑥√𝑥−0√0

𝑥
=

𝑥√𝑥
𝑥

= √𝑥,

donc : lim
𝑥→0

𝑓(𝑥)−𝑓(0)
𝑥−0

= 0. La fonction 𝑓 est alors dérivable en 0 et 𝑓′(0) =
0. Ainsi :

𝑓 est dérivable sur ℝ+

2. FAUX. Considérer par exemple la fonction 𝑓 définie sur [0,1] par 𝑓(𝑥) = ⌊𝑥⌋.
La fonction 𝑓 est bien bornée (minorée par 0, majorée par 1) mais non conti-
nue en 1 (puisque : lim

𝑥→1−
𝑓(𝑥) = 0 et 𝑓(1) = 1).

3. FAUX. Par exemple, la fonction valeur absolue est continue en 0 mais non
dérivable en 0.

4. • FAUX. Considérer par exemple𝑓 la fonction carré définie surℝpar𝑓(𝑥) =
𝑥2. Cette fonction est paire et a pour dérivée la fonction𝑓′ définie surℝpar
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𝑓′(𝑥) = 2𝑥, une fonction impaire.
• VRAI. Supposons 𝑓 paire : pour tout nombre réel 𝑥, 𝑓(−𝑥) = −𝑓(𝑥). En

dérivant par rapport à 𝑥 des deux côtes de l’égalité (si deux fonctions sont
égales alors elles ontmêmedérivée), onobtient :∀𝑥 ∈ ℝ,−𝑓′(−𝑥) = −𝑓′(𝑥)
(où on a dérivé l’expression de gauche commeune composée). D’où :∀𝑥 ∈
ℝ,𝑓′(−𝑥) = 𝑓′(𝑥). On en déduit que 𝑓′ est paire sur ℝ.

• VRAI. Supposons 𝑓 périodique de période T, où T > 0. On a ainsi : ∀𝑥 ∈
ℝ,𝑓(𝑥+T) = 𝑓(𝑥). En dérivant par rapport à 𝑥 des deux côtes de l’égalité,
on obtient bien : ∀𝑥 ∈ ℝ,𝑓′(𝑥+T) = 𝑓′(𝑥).

5. FAUX. Considérons par exemple les fonctions𝑓 et𝑔définies respectivement
sur [0,1] par 𝑓(𝑥) = 2𝑥 et 𝑔(𝑥) = 𝑥 + 4. On peut vérifier que pour tout 𝑥 ∈
[0,1],𝑓(𝑥) ⩽ 𝑔(𝑥) et 𝑓′(𝑥) > 𝑔′(𝑥).

Exercice 2 ∣ Propositions sur les fonctions Soit (𝑓,𝑔) deux fonctions de ℝ dans
ℝ. Écrire à l’aide des quantificateurs les énoncés suivants puis les nier.

L’application 𝑓 est croissante.1. Il existe un réel positif 𝑥 tel que
𝑓(𝑥) ⩾ 0.

2.

La fonction 𝑓 est paire.3. La fonction 𝑓 ne s’annule jamais.4.

La fonction 𝑓 est inférieure à la fonc-
tion 𝑔.

5. La fonction 𝑓 est périodique.6.

Solution (exercice 2) Étude de chaque propriété :
∀(𝑎,𝑏) ∈
ℝ2 (𝑎 ⩽ 𝑏 ⟹ 𝑓(𝑎) ⩽ 𝑓(𝑏))
Négation : ∃(𝑎,𝑏) ∈ ℝ2, 𝑎 ⩽
𝑏et𝑓(𝑎) > 𝑓(𝑏).

1. ∃𝑥 ∈ ℝ+, 𝑓(𝑥) ⩾ 0
Négation : ∀𝑥 ∈ ℝ+, 𝑓(𝑥) < 0.

2.

∀𝑥 ∈ ℝ, 𝑓(−𝑥) = 𝑓(𝑥)
Négation : ∃𝑥 ∈ ℝ,𝑓(−𝑥) ≠ 𝑓(𝑥).

3. ∀𝑥 ∈ ℝ, 𝑓(𝑥) ≠ 0
Négation : ∃𝑥 ∈ ℝ, 𝑓(𝑥) = 0.

4.

∀𝑥 ∈ ℝ, 𝑓(𝑥) ⩽ 𝑔(𝑥)
Négation : ∃𝑥 ∈ ℝ, 𝑓(𝑥) > 𝑔(𝑥).

5. ∃T ∈ ℝ, ∀𝑥 ∈ ℝ, 𝑓(𝑥+T) = 𝑓(𝑥)
Négation : ∀T ∈ ℝ, ∃𝑥 ∈ ℝ, 𝑓(𝑥+
T) ≠ 𝑓(𝑥).

6.

6.1 Ensembles de définition

Exercice 3 ∣ Déterminer l’ensemble de définition de la fonction 𝑓 dans les cas
suivants :

𝑓(𝑥) = √𝑥31. 𝑓(𝑥) = 1
𝑥− 1

𝑥
2. 𝑓(𝑥) = √𝑥−3+ √5+𝑥

𝑥3.

𝑓(𝑥) = ln ( e
𝑥+1
e𝑥−1 )4. 𝑓(𝑥) = ln ( 2−𝑥𝑥+4 ).5.

Solution (exercice 3)
1. 𝑥 ∈ 𝒟𝑓 ⟺ 𝑥3 ⩾ 0 ⟺ 𝑥 ⩾ 0 d’après le graphe de la fonction cube. Ainsi

𝒟𝑓 = ℝ+ .

2. 𝑥 ∈ 𝒟𝑓 ⟺ { 𝑥 ≠ 0
𝑥− 1

𝑥 ≠ 0 ⟺ {
𝑥 ≠ 0

𝑥2−1
𝑥 ≠ 0

⟺ 𝑥 ∉ {−1,0,1}. Ainsi, on obtient :

𝒟𝑓 = ℝ∖{−1,0,1} .

3. 𝑥 ∈ 𝒟𝑓 ⟺
⎧⎪
⎨⎪
⎩

𝑥−3 ⩾ 0
5+𝑥 ⩾ 0

𝑥 ≠ 0
. Ainsi, on obtient : 𝒟𝑓 = [3,+∞[ .

4. 𝑥 ∈ 𝒟𝑓 ⟺ {
e𝑥+1
e𝑥−1 > 0

e𝑥 −1 ≠ 0 . Comme le numérateur est strictement positif

comme somme de deux termes strictement positifs, on a :
e𝑥 +1
e𝑥 −1

> 0 ⟺ e𝑥 −1 > 0 ⟺ 𝑥 > 0.

Donc : 𝒟𝑓 = ℝ+⋆ .
5. 𝑓(𝑥) = ln ( 2−𝑥𝑥+4 ). La fonction 𝑓 est bien définie si 2−𝑥

𝑥+4 > 0 et 𝑥+4 ≠ 0 (faire un
tableau de signe). Donc 𝒟𝑓 =]−4,2[ .

Exercice 4 ∣ Avec paramètre Déterminer en fonction du paramètre 𝑚 ∈ ℝ l’en-
semble de définition de la fonction de ℝ dans ℝ donnée par :

𝑓(𝑥) = √𝑥2 −(𝑚+1)𝑥+𝑚.

Solution (exercice 4) La fonction 𝑓 est bien définie si et seulement si
𝑥2 −(𝑚+1)𝑥+𝑚 ⩾ 0. Le discriminant donne : Δ = (𝑚+1)2 −4𝑚 = (𝑚−1)2.
• Cas 1 : si 𝑚 = 1 : On obtient alors Δ = 0 et ainsi, pour tout 𝑥 ∈ ℝ, on a : 𝑥2 −

(𝑚+1)𝑥+𝑚 ⩾ 0. Ainsi : 𝒟𝑚=1 = ℝ .
• Cas 2 : si 𝑚 ≠ 1 : On obtient alors Δ > 0 et les deux racines distinctes sont

alors : 𝑚+1+|𝑚−1|
2 et 𝑚+1−|𝑚−1|

2 . Afin de calculer la valeur absolue, on doit en-
core distinguer deux cas :
⋄ Si 𝑚 > 1 : les deux racines sont alors 1 et 𝑚 et on obtient ainsi :
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𝒟𝑚>1 =]−∞,1]∪ [𝑚,+∞[ .
⋄ Si 𝑚 < 1 : les deux racines sont alors 𝑚 et 1 et on obtient ainsi :

𝒟𝑚<1 =]−∞,𝑚]∪[1,+∞[ .

Exercice 5 ∣ Composée Calculer 𝑓∘𝑔 et 𝑔∘𝑓 après avoir indiqué pour quels réels
cela a un sens :

1. 𝑓 ∶ 𝑥 ⟼ 2𝑥2 −𝑥+1 et 𝑔 ∶ 𝑥 ⟼ 2√𝑥−3.
2. 𝑓 ∶ 𝑥 ⟼ 2𝑥2−8

𝑥 et 𝑔 ∶ 𝑥 ⟼ 𝑥+ 1
𝑥 .

Solution (exercice 5)
1. • Étude de 𝑓 ∘𝑔 :

⋄ Domaine de définition : La fonction𝑓∘𝑔 est bien définie si et seulement
si 𝑥 ∈ 𝒟𝑔 et 𝑔(𝑥) ∈ 𝒟𝑓. Comme 𝒟𝑓 = ℝ, la fonction 𝑓 ∘𝑔 est bien définie
si et seulement si 𝑥 ∈ 𝒟𝑔, à savoir si et seulement si 𝑥−3 ⩾ 0 ⟺ 𝑥 ⩾ 3.
Ainsi on obtient : 𝒟𝑓∘𝑔 = [3,+∞[ .

⋄ Expression : Pour tout 𝑥 ⩾ 3, on a : 𝑓 ∘ 𝑔(𝑥) = 𝑓[𝑔(𝑥)] = 2(𝑔(𝑥))2 −
(𝑔(𝑥))+1 = 8(𝑥−3)−2√𝑥−3+1 = 8𝑥−23−2√𝑥−3.

• Étude de 𝑔 ∘𝑓 :
⋄ Domaine de définition : La fonction𝑔∘𝑓 est bien définie si et seulement

si 𝑥 ∈ 𝒟𝑓 et 𝑓(𝑥) ∈ 𝒟𝑔. Comme 𝒟𝑓 = ℝ, la fonction 𝑔 ∘𝑓 est bien définie
si et seulement si 𝑓(𝑥) ∈ 𝒟𝑔, à savoir si et seulement si 𝑓(𝑥)−3 ⩾ 0 ⟺

2𝑥2−𝑥−2 ⩾ 0. Le discriminant vautΔ = 17 et les deux racines sont 1−√17
4

et 1+√17
4 . Ainsi on obtient : 𝒟𝑔∘𝑓 = ]−∞, 1−√17

4 ]∪[ 1+√17
4 ,+∞[ .

⋄ Expression : Pour tout𝑥 ∈ 𝒟𝑔∘𝑓, on a :𝑔∘𝑓(𝑥) = 𝑔[𝑓(𝑥)] = √2𝑥2 −𝑥−2.
2. • Étude de 𝑓 ∘𝑔 :

⋄ Domaine de définition : La fonction𝑓∘𝑔 est bien définie si et seulement
si 𝑥 ∈ 𝒟𝑔 et 𝑔(𝑥) ∈ 𝒟𝑓. Comme 𝒟𝑓 = ℝ⋆ = 𝒟𝑔, la fonction 𝑓 ∘𝑔 est bien
définie si et seulement si 𝑥 ≠ 0 et 𝑔(𝑥) ≠ 0. On a : 𝑔(𝑥) ≠ 0 ⟺ 𝑥2+1

𝑥 ≠
0 ⟺ 𝑥2 +1 ≠ 0 : toujours vrai. Ainsi 𝒟𝑓∘𝑔 = ℝ⋆ .

⋄ Expression : Pour tout 𝑥 ≠ 0, on a : 𝑓 ∘ 𝑔(𝑥) = 𝑓[𝑔(𝑥)] = 2(𝑔(𝑥))2−8
𝑔(𝑥) =

2( 𝑥
2+1
𝑥 )

2
−8

𝑥2+1
𝑥

= 2(𝑥2+1)2−8𝑥2
𝑥2 × 𝑥

𝑥2+1 = 2𝑥4−4𝑥2+2
𝑥(𝑥2+1) .

• Étude de 𝑔 ∘𝑓 :
⋄ Domaine de définition : La fonction𝑔∘𝑓 est bien définie si et seulement

si 𝑥 ∈ 𝒟𝑓 et 𝑓(𝑥) ∈ 𝒟𝑔. Comme 𝒟𝑓 = ℝ⋆ = 𝒟𝑔, la fonction 𝑓 ∘𝑔 est bien

définie si et seulement si 𝑥 ≠ 0 et 𝑓(𝑥) ≠ 0. On a : 𝑓(𝑥) ≠ 0 ⟺ 2𝑥2−8 ≠
0 ⟺ 𝑥 = 2ou𝑥 = −2. Ainsi 𝒟𝑔∘𝑓 = ℝ∖{−2,0,2} .

⋄ Expression : Soit𝑥 ∈ ℝ∖{−2,0,2}, on a :𝑔∘𝑓(𝑥) = 𝑔[𝑓(𝑥)] = 𝑓(𝑥)+ 1
𝑓(𝑥) =

2𝑥2−8
𝑥 + 𝑥

2𝑥2−8 = 4𝑥4−31𝑥2+64
𝑥(2𝑥2−8) .

6.2 Parité, imparité, périodicité, symétrie

Exercice 6 ∣ Dans chacun des cas suivants, étudier la parité et l’imparité de la
fonction 𝑓. Indiquer aussi la périodicité lorsqu’elle est manifeste :

𝑓(𝑥) = √𝑥21. 𝑓(𝑥) = 𝑥2 +𝑥4 +𝑥6 +𝑥82.

𝑓(𝑥) = 𝑥+𝑥3 +𝑥5 +2𝑥73. 𝑓(𝑥) = √ 1−|𝑥|
2−|𝑥|4.

𝑓(𝑥) = 𝑥3+3𝑥
𝑥2+|𝑥|5. 𝑓(𝑥) = |𝑥+1|− |𝑥−1|6.

𝑓(𝑥) = sin𝑥+cos𝑥7. 𝑓(𝑥) = cos𝑥+cos(2𝑥)8.

Solution (exercice 6)
1. • Domaine de définition : La fonction 𝑓 est bien définie si 𝑥2 ⩾ 0 : toujours

vrai. Ainsi 𝒟𝑓 = ℝ.
• Étude de la parité : 𝒟𝑓 est centré en 0, et : ∀𝑥 ∈ 𝒟𝑓, on a : 𝑓(−𝑥) =

√(−𝑥)2 = √𝑥2 = 𝑓(𝑥). Donc la fonction 𝑓 est paire.
2. • Domaine de définition : La fonction 𝑓 est bien définie sur ℝ donc 𝒟𝑓 = ℝ.

• Étude de la parité : 𝒟𝑓 est centré en 0 et : ∀𝑥 ∈ 𝒟𝑓 : 𝑓(−𝑥) = (−𝑥)2 +
(−𝑥)4 + (−𝑥)6 + (−𝑥)8 = 𝑥2 +𝑥4 +𝑥6 +𝑥8 = 𝑓(𝑥). Donc la fonction 𝑓 est
paire.

3. • Domaine de définition : la fonction 𝑓 est bien définie pour tout 𝑥 ∈ ℝ donc
𝒟𝑓 = ℝ.

• Étude de la parité : 𝒟𝑓 est centré en 0, et : ∀𝑥 ∈ ℝ : 𝑓(−𝑥) = −𝑥+(−𝑥)3+
(−𝑥)5 +2(−𝑥)7 = −𝑥−𝑥3 −𝑥5 −2𝑥7 = −(𝑥+𝑥3 +𝑥5 +2𝑥7) = −𝑓(𝑥) Donc
la fonction 𝑓 est impaire.

4. • Domaine de définition : La fonction 𝑓 est bien définie si et seulement si
1−|𝑥|
2−|𝑥| ⩾ 0 et 2− |𝑥| ≠ 0. Comme il y a une valeur absolue, on fait des cas :
⋄ Si 𝑥 ⩾ 0 : on doit résoudre : 1−𝑥2−𝑥 ⩾ 0. Un tableau de signe en prenant en

compte le fait que 𝑥 ⩾ 0 donne : 𝑥 ∈ [0,1]∪]2,+∞[.
⋄ Si 𝑥 < 0 : on doit résoudre : 1+𝑥2+𝑥 ⩾ 0. Un tableau de signe en prenant en

compte le fait que 𝑥 < 0 donne : 𝑥 ∈]−∞,−2[∪[−1,0].
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Ainsi, on obtient 𝒟𝑓 =]−∞,−2[∪[−1,1]∪]2;+∞[.
• Étude de la parité : 𝒟𝑓 est centré en 0, et : ∀𝑥 ∈ 𝒟𝑓, on a : 𝑓(−𝑥) =

√ 1−|−𝑥|
2−|−𝑥| = √ 1−|𝑥|

2−|𝑥| = 𝑓(𝑥) car |−𝑥| = |−1| × |𝑥| = |𝑥|. Donc la fonction 𝑓
est paire.

5. • Domaine de définition : La fonction 𝑓 est bien définie si et seulement si
𝑥2 + |𝑥| ≠ 0. Or cette expression est toujours positive, comme somme de
termes positif, et s’annule uniquement si les deux termes s’annule, c’est-
à-dire si et seulement si 𝑥 = 0. Ainsi, on obtient 𝒟𝑓 = ℝ∖{0}.

• Étude de la parité : 𝒟𝑓 est centré en 0, et : ∀𝑥 ∈ 𝒟𝑓 : 𝑓(−𝑥) = (−𝑥)3−3𝑥
(−𝑥)2+|−𝑥| =

−𝑥3−3𝑥
𝑥2+|𝑥| = −𝑓(𝑥). Donc la fonction 𝑓 est impaire.

6. • Domaine de définition : La fonction𝑓 est bien définie surℝ et ainsi𝒟𝑓 = ℝ.
• Étude de la parité : 𝒟𝑓 est centré en 0, et : ∀𝑥 ∈ 𝒟𝑓 : 𝑓(−𝑥) = |−𝑥+1|−

|−𝑥−1| = |−(𝑥−1)| − |−(𝑥+1)| = |−1| |𝑥−1| − |−1| |𝑥+1| = |𝑥−1| −
|𝑥+1| = −(|𝑥+1|− |𝑥−1|) = −𝑓(𝑥). Donc la fonction 𝑓 est impaire.

7. • Domaine de définition : La fonction𝑓 est bien définie surℝ et ainsi𝒟𝑓 = ℝ.
• Étude de la parité : pas de parité : la fonction 𝑓 n’est ni paire, ni impaire.
• Étude de la périodicité : ∀𝑥 ∈ 𝒟𝑓,𝑥+2π ∈ 𝒟𝑓 et𝑓(𝑥+2π) = sin(𝑥+2π)+

cos(𝑥+2π) = sin𝑥 + cos𝑥 = 𝑓(𝑥) en utilisant la 2π périodicité des fonc-
tions sinus et cosinus. Ainsi la fonction 𝑓 est 2π périodique.

8. • Domaine de définition : La fonction𝑓 est bien définie surℝ et ainsi𝒟𝑓 = ℝ.
• Étude de la parité : 𝒟𝑓 = ℝ est centré en 0, et : ∀𝑥 ∈ 𝒟𝑓 = ℝ : 𝑓(−𝑥) =

cos(−𝑥)+cos(−2𝑥) = cos𝑥+cos2𝑥 = 𝑓(𝑥) en utilisant le fait que la fonc-
tion cosinus est paire. Donc la fonction 𝑓 est paire.

• Étude de la périodicité : ∀𝑥 ∈ 𝒟𝑓 = ℝ, 𝑥 + 2π ∈ 𝒟𝑓 = ℝ et 𝑓(𝑥 + 2π) =
cos(𝑥+2π)+ cos(2(𝑥+2π)) = cos𝑥+ cos(2𝑥+4π) = cos(𝑥)+ cos(2𝑥) =
𝑓(𝑥) en utilisant la 2π périodicité de la fonction cosinus. Ainsi la fonction
𝑓 est 2π périodique.

Exercice 7 ∣ BOMB Propriétés générales Montrer les résultats suivants.

1. La composée de deux fonctions impaires est une fonction impaire.
2. La composée d’une fonction paire et d’une fonction impaire est une fonction

paire.
3. La somme de deux fonctions impaires est une fonction impaire.
4. Le produit de deux fonctions impaires est une fonction paire.

Solution (exercice 7) On considère deux fonctions 𝑓 et 𝑔 toutes les deux
définies sur ℝ.

1. On suppose que 𝑓 et 𝑔 sont deux fonctions impaires. Montrons que 𝑓 ∘𝑔 est
impaire.
• ℝ est bien centré en 0.
• Soit 𝑥 ∈ ℝ : 𝑓∘𝑔(−𝑥) = 𝑓[𝑔(−𝑥)] = 𝑓[−𝑔(𝑥)] car la fonction 𝑔 est impaire.

Puis comme la fonction 𝑓 est elle aussi impaire, on obtient : 𝑓[−𝑔(𝑥)] =
−𝑓[𝑔(𝑥)] = −𝑓 ∘𝑔(𝑥). Ainsi : 𝑓 ∘𝑔(−𝑥) = −𝑓 ∘𝑔(𝑥).

Donc 𝑓 ∘𝑔 est impaire et on a bien montré que :

la composée de deux fonctions impaires est impaire.

2. On suppose par exemple que 𝑓 est paire et que 𝑔 est impaire. Montrons que
𝑓 ∘𝑔 est paire.
• ℝ est bien centré en 0.
• Soit 𝑥 ∈ ℝ : 𝑓∘𝑔(−𝑥) = 𝑓[𝑔(−𝑥)] = 𝑓[−𝑔(𝑥)] car la fonction 𝑔 est impaire.

Puis comme la fonction 𝑓 est paire, on obtient : 𝑓[−𝑔(𝑥)] = 𝑓[𝑔(𝑥)] = 𝑓 ∘
𝑔(𝑥). Ainsi : 𝑓 ∘𝑔(−𝑥) = 𝑓 ∘𝑔(𝑥).

Donc 𝑓 ∘𝑔 est paire et on a bien montré que :

la composée d’une fonction paire et d’une fonction impaire est paire .

3. On suppose que 𝑓 et 𝑔 sont deux fonctions impaires. Montrons que 𝑓+𝑔 est
impaire :
• ℝ est bien centré en 0.
• Soit 𝑥 ∈ ℝ : (𝑓+𝑔)(−𝑥) = 𝑓(−𝑥)+𝑔(−𝑥) = −𝑓(𝑥)−𝑔(𝑥) car les fonctions 𝑓

et 𝑔 sont impaires. Puis on obtient : (𝑓+𝑔)(−𝑥) = −(𝑓(𝑥)+𝑔(𝑥)) = −(𝑓+
𝑔)(𝑥).

Donc 𝑓 + 𝑔 est impaire et on a bien montré que
la somme de deux fonctions impaires est impaire.

4. On suppose que 𝑓 et 𝑔 sont deux fonctions impaires. Montrons que 𝑓×𝑔 est
paire :
• ℝ est bien centré en 0.
• Soit 𝑥 ∈ ℝ : (𝑓 ×𝑔)(−𝑥) = 𝑓(−𝑥)×𝑔(−𝑥) = −𝑓(𝑥)× (−𝑔(𝑥)) car les fonc-

tions 𝑓 et 𝑔 sont impaires. Puis on obtient : (𝑓 ×𝑔)(−𝑥) = 𝑓(𝑥)×𝑔(𝑥) =
(𝑓×𝑔)(𝑥).

Donc 𝑓×𝑔 est paire et on a bien montré que :

le produit de deux fonctions impaires est paire .

6.3 Calculs de limites
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Exercice 8 ∣ Calculer les limites suivantes.

lim
𝑥⟶2

𝑥2−𝑥−2
𝑥−21. lim

𝑥⟶∞
𝑥2−𝑥−2
𝑥−22.

lim
𝑥⟶+∞

(√𝑥2 +4𝑥+3−(𝑥+2))3. lim
𝑥⟶+∞

(e3𝑥 − ln𝑥)4.

lim
𝑥⟶+∞

(2𝑥− sin𝑥)5.

Solution (exercice 8)
1. Notons que pour 𝑥 ≠ 2 :

𝑥2 −𝑥−2
𝑥−2

=
(𝑥−2)(𝑥+1)

𝑥−2
= 𝑥+1.

Ainsi, lim𝑥→2
(𝑥−2)(𝑥+1)

𝑥−2 = 3.

2. Pour la limite lim𝑥→∞
𝑥2−𝑥−2
𝑥−2 :

lim
𝑥→∞

𝑥2 −𝑥−2
𝑥−2

= lim
𝑥→∞

𝑥2(1− 1
𝑥 − 2

𝑥2 )
𝑥(1− 2

𝑥)

= lim
𝑥→∞

𝑥(1− 1
𝑥 − 2

𝑥2 )
1− 2

𝑥
= ∞ .

3. Pour la limite lim𝑥→+∞ (√𝑥2 +4𝑥+3−(𝑥+2)) :

√𝑥2 +4𝑥+3−(𝑥+2) =
(𝑥2 +4𝑥+3)−(𝑥+2)2

√𝑥2 +4𝑥+3+(𝑥+2)

=
(𝑥2 +4𝑥+3)−(𝑥2 +4𝑥+4)

√𝑥2 +4𝑥+3+(𝑥+2)

=
−1

√𝑥2 +4𝑥+3+(𝑥+2)
𝑥⟶∞−−−−−→ 0 .

4. Pour la limite lim𝑥→+∞ (e3𝑥 − ln𝑥), on utilise des croissances comparées :
lim

𝑥→+∞
(e3𝑥 − ln𝑥) = lim

𝑥→+∞
e3𝑥 (1− ln𝑥e−3𝑥) .

Or, par croissances comparées, 1− ln𝑥e−3𝑥 𝑥⟶∞−−−−−→ 1. Ainsi,
lim

𝑥→+∞
(e3𝑥 − ln𝑥) = lim

𝑥→+∞
e3𝑥 = +∞ .

5. Pour la limite lim𝑥→+∞ (2𝑥− sin𝑥), on peut encadrer.
∀𝑥 ∈ ℝ, −1 ⩽ sin𝑥 ⩽ 1 ⟹ 2𝑥−1 ⩽ 2𝑥− sin𝑥 ⩽ 2𝑥+1.

Or, lim
𝑥⟶∞

(2𝑥−1) = +∞ donc par divergence par minoration, on a :

lim
𝑥⟶+∞

(2𝑥− sin𝑥) = +∞.

Exercice 9 ∣ Soit 𝑓 ∶ 𝑥 ⟼ |𝑥−3|−2𝑥
4𝑥−6−|𝑥+3| ⋅

1. Déterminer le domaine de définition de 𝑓.
2. Étudier l’existence d’une limite en 3, d’une limite à droite en 3 et d’une limite à

gauche en 3.

Solution (exercice 9)
1. • Si 𝑥 ≤ −3,𝑓(𝑥) = 3−4𝑥

5𝑥−3 : ce quotient a une valeur interdite, 35 , mais celle-ci
n’est pas inférieure ou égale à -3.

• Si−3 < 𝑥 < 3,𝑓(𝑥) = 3−4𝑥
3𝑥−9 : ce quotient a une valeur interdite, 3,mais celle-

ci n’est pas strictement inférieure à 3.
• Si 𝑥 ⩾ 3,𝑓(𝑥) = −(𝑥+3)

3𝑥−9 ∶ ce quotient a une valeur interdite, 3 , qui est bien
supérieure ou égale à 3.

On en déduit que le domaine de définition de 𝑓 est ℝ\{3} .
2. • lim𝑥→3+ 𝑓(𝑥) = lim𝑥→3+

−(𝑥+3)
3𝑥−9 = −∞ par quotient car 3𝑥−9 ⩾ 0.

• lim𝑥→3− 𝑓(𝑥) = lim𝑥→3−
3−4𝑥
3𝑥−9 = +∞ par quotient car 3𝑥−9 ⩽ 0.

Donc les limites à gauche et à droite en 3 existent, mais comme elles ne sont pas
égales, 𝑓 n’admet pas de limite en 3 .

6.4 Calculs de dérivées

Exercice 10 ∣ Donner l’ensemble de définition et de dérivabilité des fonctions
suivantes, puis calculer leur dérivées :

𝑓(𝑥) = 𝑥2e−
1
𝑥1. 𝑓(𝑥) = sin𝑥

√𝑥2+1
2.

𝑓(𝑥) = √e𝑥3. 𝑓(𝑥) = e𝑥cos(𝑥)4.

𝑓(𝑥) = (1−𝑥)e√𝑥−𝑥25. 𝑓(𝑥) = sin3 (2𝑥)
2+cos(5𝑥)6.

𝑓(𝑥) = sin(ln𝑥)7. 𝑓(𝑥) = ln(e𝑥 +𝑥2)8.

𝑓(𝑥) = 𝑥−e𝑥
e𝑥+19. 𝑓(𝑥) = ln( 𝑥+2

√9𝑥2−4
)10.

𝑓(𝑥) = 1
(cos(𝑥))411. 𝑓(𝑥) = 1

2𝑥+112.

𝑓(𝑥) = (e2𝑥 −1)π13. 𝑓(𝑥) = (√𝑥2+3𝑥
3𝑥 )

4
14.

𝑓(𝑥) = 2ln𝑥15. 𝑓(𝑥) = √ln𝑥
𝑥16.
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𝑓(𝑥) = ln(ln𝑥)17. 𝑓(𝑥) = ln (√𝑥2 −1+𝑥)18.

𝑓(𝑥) = 3𝑥−1 cos𝑥
𝑥𝑥19.

Solution (exercice 10)
1. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement

si 𝑥 ≠ 0. Donc 𝒟𝑓 = ℝ⋆.
• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme

composée et produit de fonctions dérivables.
• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = e−

1
𝑥 (2𝑥+1).

2. • [Ensemble de définition] La fonction 𝑓 est définie si et seulement si
𝑥2+1 ⩾ 0et√𝑥2 +1 ≠ 0. Ainsi elle est biendéfinie si et seulement si𝑥2+1 >
0 ce qui est toujours vrai. Ainsi 𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur ℝ comme
composée et quotient de fonctions dérivables et car 𝑥2 +1 > 0 pour tout
𝑥 ∈ ℝ.

• [Dérivée] Pour tout 𝑥 ∈ ℝ, on a :

𝑓′(𝑥) =
cos𝑥√𝑥2 +1− sin𝑥 2𝑥

2√𝑥2+1

(√𝑥2 +1)2
=

(𝑥2 +1)cos𝑥−𝑥sin𝑥

(𝑥2 +1)√𝑥2 +1
.

3. • [Ensemble de définition] La fonction 𝑓 est définie si et seulement si
e𝑥 ⩾ 0 : toujours vrai. Ainsi 𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] Comme pour tout 𝑥 ∈ ℝ : e𝑥 > 0, la fonction
𝑓 est dérivable sur ℝ comme composée de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ ℝ : 𝑓′(𝑥) = e𝑥

2√e𝑥
.

4. • [Ensemble de définition] La fonction 𝑓 est toujours bien définie. Donc
𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
produit et composée de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = [cos(𝑥)−𝑥sin(𝑥)]e𝑥cos𝑥.
5. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement

si 𝑥−𝑥2 ⩾ 0. C’est un polynôme de deré 2 dont les racies sont 0 et 1. Donc
𝒟𝑓 = [0,1].

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable si 𝑥 − 𝑥2 > 0.
Ainsi la fonction 𝑓 est dérivable sur ]0,1[ comme somme, coposée et pro-
duti de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈]0,1[, on a : 𝑓′(𝑥) = [ (1−𝑥)(1−2𝑥)
2√𝑥−𝑥2

−1]e√𝑥−𝑥2 .

6. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement
si 2+ cos(5𝑥) ≠ 0 ⟺ cos(5𝑥) ≠ −2 : impossible car un cosinus est tou-

jours compris entre -1 et 1. Donc 𝒟𝑓 = ℝ
• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme

produit, composée, somme et quotient de fonctions dérivables.
• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a :

𝑓′(𝑥) =
sin2 (2𝑥)

(2+ cos(𝑥))2

×[12cos(2𝑥)+6cos(2𝑥)cos(5𝑥)+5sin(2𝑥)sin(5𝑥)] .
7. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement

si 𝑥 > 0. Donc 𝒟𝑓 = ℝ+⋆.
• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme

composée de fonctions dérivables.
• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = cos(ln𝑥)

𝑥 .
8. • [Ensemble de définition] La fonction 𝑓 est définie si et seulement si

e𝑥 +𝑥2 > 0 : toujours vrai comme somme de deux nombres positifs dont
l’un est strictement positif. Ainsi 𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur ℝ comme
somme et composée de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ ℝ, on a : 𝑓′(𝑥) = e𝑥+2𝑥
e𝑥+𝑥2 .

9. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement
si e𝑥 +1 ≠ 0 : toujours vrai comme somme de deux termes tous les deux
strictement positifs, une exponentielle étant toujours strictement posi-
tive. Donc 𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
somme et quotient de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = 1−𝑥e𝑥
(e𝑥+1)2 .

10. • [Ensemblededéfinition] La fonction𝑓 est biendéfinie si et seulement
si 9𝑥2−4 > 0 et 𝑥+2

√9𝑥2−4
> 0. Commeune racine carrée est toujours positive,

la fonction 𝑓 est bien définie si et seulement si 9𝑥2 −4 > 0 et 𝑥+2 > 0. La
première condition est un polynôme de degré 2 dont les racines sont − 2

3
et 2

3 . Donc 𝒟𝑓 = ]−2,− 2
3[∪ ] 23 ,+∞[.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 (car
ce qui est sous la racine est déjà strictement positif) comme produit,
sommes, composées et quotient de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = −2(9𝑥+2)
(𝑥+2)(9𝑥2−4) .

11. • [Ensemble dedéfinition] La fonction𝑓 est bien définie si et seulement
si cos4 (𝑥) ≠ 0 ⟺ cos𝑥 ≠ 0. Donc 𝒟𝑓 = ℝ∖{π2 +𝑘π, 𝑘 ∈ ℤ}.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
composée et quotient de fonctions dérivables.
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• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = 4sin(𝑥)
(cos(𝑥))5 .

12. • [Ensemblededéfinition] La fonction𝑓 est bien définie si et seulement
si 2𝑥+1 ≠ 0 ⟺ e(𝑥+1) ln2 ≠ 0 : toujours vrai car une exponentielle est tou-
jours strictement positive. Donc 𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
produit, composée et quotient de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = − ln2
2𝑥+1 . On peut pour cela re-

marquer que 𝑓(𝑥) = e−(𝑥+1) ln2.
13. • [Ensemblededéfinition] La fonction𝑓 est bien définie si et seulement

si e2𝑥−1 > 0 car on a : (e2𝑥−1)π = eπ ln(e
2𝑥−1). Or e2𝑥−1 > 0 ⟺ e2𝑥 > 1 ⟺

𝑥 > 0 par passage au logarithme népérien qui est strictement croissante
sur ℝ+⋆. Donc 𝒟𝑓 = ℝ+⋆.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
composée, somme et produit de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = 2πe2𝑥
e2𝑥−1(e

2𝑥 −1)π.
14. • [Ensemblededéfinition] La fonction𝑓 est biendéfinie si et seulement

si 𝑥2+3𝑥 ⩾ 0 et 3𝑥 = e𝑥 ln3 ≠ 0. La deuxième condition est toujours vérifiée
car une exponentielle est toujours strictement positive. Pour la première
condition, on reconnaît un polynôme de degré 2 dont les racines sont 0 et
-3. Donc 𝒟𝑓 =]−∞,−3]∪ [0,+∞[.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur ] −
∞,−3[∪]0,+∞[ car on doit avoir 𝑥2 +3𝑥 > 0 puis comme sommes, pro-
duit, composées et quotient de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a :

𝑓′(𝑥) = 2(𝑥2+3𝑥)
34𝑥 [2𝑥+3−2(𝑥2 +3𝑥) ln3].

15. • [Ensemblededéfinition] La fonction𝑓 est biendéfinie si et seulement
si 𝑥 > 0 en écrivant que 2ln𝑥 = eln(𝑥) ln2. Donc 𝒟𝑓 = ℝ+⋆.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
produit et composée de fonctions dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = ln2
𝑥 2ln𝑥.

16. • [Ensemblededéfinition] La fonction𝑓 est biendéfinie si et seulement
si𝑥 > 0, ln𝑥 ⩾ 0 et𝑥 ≠ 0. Ladeuxièmeconditiondonne : ln𝑥 ⩾ 0 ⟺ 𝑥 ⩾ 1.
Donc 𝒟𝑓 = [1,+∞[.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur ]1,+∞[ car
on doit avoir ln𝑥 > 0 comme composée et quotient de fonctions déri-
vables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = 1−2 ln𝑥
2𝑥2√ln𝑥

.

17. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement

si 𝑥 > 0 et ln(𝑥) > 0. Or on a : ln(𝑥) > 0 ⟺ 𝑥 > 1. Donc 𝒟𝑓 =]1,+∞[.
• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme

composée de fonctions dérivables.
• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = 1

𝑥 ln(𝑥) .
18. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seule-

ment si √𝑥2 −1 + 𝑥 > 0 ⟺ √𝑥2 −1 > −𝑥 et 𝑥2 − 1 ⩾ 0 ⟺ 𝑥 ∈
]−∞,−1]∪[1,+∞[. On doit donc étudier deux cas afin de résoudre la pre-
mière inéquation :
⋄ Si 𝑥 ⩾ 1, alors −𝑥 ⩽ −1 et l’inéquation est toujours vérifiée car une ra-

cine carrée est toujours supérieure à un nombre négatif.
⋄ Si 𝑥 ⩽ −1 alors −𝑥 ⩾ 1 et on peut donc passer au carrée tout en conser-

vant l’équivalence, la fonction carrée étant strictement croissante sur
ℝ+. On obtient alors : √𝑥2 −1 > −𝑥 ⟺ 𝑥2 −1 > 𝑥2 ⟺ −1 > 0. Tou-
jours faux.

Donc 𝒟𝑓 = [1,+∞[.
• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur ]1,+∞[ car

on doit avoir en plus 𝑥2 −1 > 0 comme somme et composée de fonctions
dérivables.

• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a : 𝑓′(𝑥) = 1
√𝑥2−1

.

19. • [Ensemblededéfinition] La fonction𝑓 est biendéfinie si et seulement
si 𝑥 > 0 et 𝑥𝑥 = e𝑥 ln𝑥 ≠ 0. La deuxième inéquation est toujours vérifiée,
une exponentielle étant toujours strictement négative. Donc𝒟𝑓 = ℝ+⋆ (on
commence par écrire que : 3

𝑥−1 cos𝑥
𝑥𝑥 = cos(𝑥)𝑒(𝑥−1) ln(3)

e𝑥 ln𝑥 ).
• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme

produit, composées et quotient de fonctions dérivables.
• [Dérivée] Pour tout 𝑥 ∈ 𝒟𝑓, on a :

𝑓′(𝑥) =
e(𝑥−1) ln(3)

𝑥𝑥 ×

[−sin(𝑥)+ ln(3)cos(𝑥)−cos(𝑥)(ln(𝑥)+1)] .

Exercice 11 ∣ Avec valeurs absolues Donner l’ensemble de définition des fonc-
tions suivantes, puis leur ensemble de dérivabilité, et calculer leur dérivée.

𝑓(𝑥) = ln(|𝑥2−1|)
𝑥1. 𝑓(𝑥) = 𝑥

√|e𝑥−1|+1
.2.

Solution (exercice 11)
1. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement
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si |𝑥2 −1| > 0 et 𝑥 ≠ 0. Or une valeur absolue est toujours positive ou nulle
donc on a : |𝑥2 −1| > 0 ⟺ 𝑥2 −1 ≠ 0 ⟺ 𝑥 ∉ {−1,1}. Donc 𝒟𝑓 = ℝ∖
{−1,0,1}.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable sur 𝒟𝑓 comme
somme, composée et quotient de fonctions dérivables (il y a une valeur
absolue mais on a bien 𝑥2 −1 ≠ 0 sur 𝒟𝑓 donc le domaine de dérivabilité
est bien égal au domaine de définition).

• [Dérivée] Comme il y a une valeur absolue, on étudie des cas afin d’en-
lever la valeur absolue. On a :

𝑥

|𝑥2 −1|

𝑓(𝑥)

−∞ −1 1 +∞

𝑥2 −1 0 1−𝑥2 0 𝑥2 −1

ln(𝑥2−1)
𝑥

ln(1−𝑥2)
𝑥

ln(𝑥2−1)
𝑥

Onobtient donc ainsi l’expressionde𝑓′ endérivant l’expressionde𝑓 selon
les cas :
⋄ Si 𝑥 ∈]−∞,−1[∪]1,+∞[ : on a alors 𝑓′(𝑥) = 2𝑥2−(𝑥2−1) ln(𝑥2−1)

𝑥2(𝑥2−1) .

⋄ Si 𝑥 ∈]−1,0[∪]0,1[ : on a alors 𝑓′(𝑥) = 2𝑥2−(𝑥2−1) ln(1−𝑥2)
𝑥2(𝑥2−1) .

On peut remarquer que l’on peut regrouper ces deux cas en une for-
mule générale en utilisant de nouveau la valeur absolue et on obtient :

∀𝑥 ∈ 𝒟𝑓, 𝑓′(𝑥) = 2𝑥2−(𝑥2−1) ln |𝑥2−1|
𝑥2(𝑥2−1) .

2. • [Ensemble de définition] La fonction 𝑓 est bien définie si et seulement
si |e𝑥 −1| + 1 > 0 : toujours vrai comme somme de deux termes positifs
dont l’un est strictementpositif car 1 > 0 et une valeur absolue est toujours
positive ou nulle. Donc 𝒟𝑓 = ℝ.

• [Ensemble de dérivabilité] La fonction 𝑓 est dérivable si et seulement
si 𝑥 ∈ 𝒟𝑓 et e𝑥 −1 ≠ 0 (à cause de la présence de la valeur absolue). Or on
a : e𝑥 −1 ≠ 0 ⟺ 𝑥 ≠ 0. Ainsi la fonction 𝑓 est dérivable sur ℝ⋆ comme
somme composée et quotient de fonctions dérivables.

• [Dérivée] Comme il y a une valeur absolue, on étudie des cas afin d’en-
lever la valeur absolue. On a :

𝑥

|e𝑥 −1|

𝑓(𝑥)

−∞ 0 +∞

1−e𝑥 0 e𝑥 −1

𝑥
√2−e𝑥

𝑥
√e𝑥

Onobtient donc ainsi l’expressionde𝑓′ endérivant l’expressionde𝑓 selon
les cas :
⋄ Si 𝑥 ∈]−∞,0[ : on a alors 𝑓′(𝑥) = 4−2e𝑥+𝑥e𝑥

2(2−e𝑥)√2−e𝑥
.

⋄ Si 𝑥 ∈]0,+∞[ : on a alors 𝑓′(𝑥) = 2−𝑥
2√e𝑥

.

6.5 Fonctions usuelles & Études de fonctions

Exercice 12 ∣ Valeurs absolues On considère les fonctions 𝑓 et 𝑔 définies sur ℝ
par : 𝑓 ∶ 𝑥 ⟼ |2𝑥−3|+ |𝑥−5| , 𝑔 ∶ 𝑥 ⟼ |2𝑥2 −5|− |𝑥2 −1| .

Simplifier les expressions de 𝑓(𝑥) et de𝑔(𝑥) en fonction des valeurs de 𝑥. En déduire
les représentations graphiques de ces deux fonctions.

Solution (exercice 12)
1. Étude de 𝑓 : on fait un tableau donnant les valeurs de 𝑓 selon la valeur de 𝑥 :

𝑥

|2𝑥−3|

|𝑥−5|

𝑓(𝑥)

−∞ 3
2 5 +∞

−2𝑥+3 0 2𝑥−3 2𝑥−3

−𝑥+5 −𝑥+5 0 𝑥−5

−3𝑥+8 𝑥+2 3𝑥−8

On peut alors tracer la fonction qui correspond à 3 bouts de droite, qui se
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rejoignent en 3
2 et en 5.

2. Étude de 𝑔 : On fait de même pour la fonction 𝑔 :
𝑥

|2𝑥2 −5|

|𝑥2 −1|

𝑔(𝑥)

−∞ −√5/2 −1 1 √5/2 +∞

2𝑥2 −5 0 5−2𝑥2 5−2𝑥2 5−2𝑥2 0 2𝑥2 −5

𝑥2 −1 𝑥2 −1 0 1−𝑥2 0 𝑥2 −1 𝑥2 −1

𝑥2 −4 −3𝑥2 +6 −𝑥2 +4 −3𝑥2 +6 𝑥2 −4

Exercice 13 ∣ Soit 𝑓 la fonction définie par :  𝑓(𝑥) = 1−𝑥
2𝑥 .

1. Déterminer l’ensemble de définition 𝒟𝑓 de 𝑓, étudier sa dérivabilité et calculer sa
dérivée.

2. Déterminer les limites de 𝑓 aux bords de 𝒟𝑓 et dresser son tableau de variations.
3. Étudier les asymptotes.
4. Déterminer l’équation de la tangente à 𝒞𝑓 en 𝑥 = 1.
5. Montrer que : ∀𝑥 ∈ 𝒟𝑓, −𝑥 ∈ 𝒟𝑓 et 𝑓(−𝑥) = −1−𝑓(𝑥). Donner une interpréta-

tion graphique.
6. Tracer la courbe représentative de 𝑓.
7. Montrer que l’équation 𝑓(𝑥) = 𝑥 admet exactement deux solutions sur ℝ et les

déterminer. Que représentent ces solutions pour la courbe représentative de 𝑓?

Solution (exercice 13)
1. La fonction 𝑓 est bien définie si et seulement si 2𝑥 ≠ 0 et ainsi 𝒟𝑓 = ℝ⋆. La

fonction 𝑓 est dérivable sur ℝ⋆ comme somme et quotient dont le dénomi-
nateur ne s’annule pas de fonctions dérivables. De plus, pour tout 𝑥 ≠ 0, on
a : 𝑓′(𝑥) = −1

2𝑥2 .
2. • Limites en ±∞ : lim

𝑥⟶+∞
𝑓(𝑥) = − 1

2 = lim
𝑥⟶−∞

𝑓(𝑥) d’après le théorème des
monomes de plus haut degré. La courbe 𝒞𝑓 admet une asymptote hori-
zontale d’équation 𝑦 = − 1

2 au voisinage de ±∞.
• Limites en 0 : lim

𝑥⟶0+
𝑓(𝑥) = +∞ et lim

𝑥⟶0−
𝑓(𝑥) = −∞ par propriétés sur les

somme et quotient de limites. La courbe 𝒞𝑓 admet une asymptote verti-
cale d’équation 𝑥 = 0.

On obtient alors le tableau de variation suivant :

𝑥

𝑓′(𝑥)

𝑓

−∞ 0 +∞

− −

− 1
2− 1
2

−∞

+∞

− 1
2− 1
2

3. Déjà fait à la question précédente.
4. La fonction𝑓 est dérivable en 1 ainsi la tangenteT1 à la courbe aupoint d’abs-

cisse 1 existe bien et son équation est : 𝑦 = 𝑓′(1)(𝑥 − 1) + 𝑓(1). Les calculs
donnent : 𝑦 = − 1

2(𝑥−1).
5. • Le domaine de définition est bien centré en 0 car : ∀𝑥 ∈ ℝ⋆,−𝑥 ∈ ℝ⋆.

• Soit𝑥 ∈ ℝ⋆, on a :𝑓(−𝑥) = 𝑥+1
−2𝑥 = −𝑥+1

2𝑥 et−1−𝑓(𝑥) = −2𝑥+𝑥−1
2𝑥 = −𝑥+1

2𝑥 . Ainsi,
on a bien : 𝑓(−𝑥) = −1−𝑓(𝑥).

On cherche alors une symétrie 𝑠 entre les points (𝑥,𝑓(𝑥)) et (−𝑥,𝑓(−𝑥)) sur
le graphe de 𝑓, soit 𝑠 telle que (−𝑥,𝑓(−𝑥)) = 𝑠(𝑥,𝑓(𝑥)). Pour cela, essayons
de trouver quelles conditions doit vérifier (𝑥,𝑓(𝑥)) pour que le point soit
inchangé par la symétrie. Le point (𝑥,𝑓(𝑥)) est un point fixe de 𝑠 si on a
𝑠(𝑥,𝑓(𝑥)) = (𝑥,𝑓(𝑥)). Or 𝑠(𝑥,𝑓(𝑥)) = (−𝑥,𝑓(−𝑥)), donc on doit avoir :

{ −𝑥 = 𝑥
𝑓(−𝑥) = 𝑓(𝑥) ⟺ { 2𝑥 = 0

−1−𝑓(𝑥) = 𝑓(𝑥) ⟺ { 2𝑥 = 0
𝑓(𝑥) = − 1

2
.

Le seul point fixe de la transformation est Ω(0,− 1
2 ). On vérifie alors que l’on

a bien : 𝑥+(−𝑥)
2 = 0 et 𝑓(𝑥)+𝑓(−𝑥)

2 = − 1
2 , autrement dit que Ω est le milieu entre

les points (𝑥,𝑓(𝑥)) et (−𝑥,𝑓(−𝑥)). On obtient alors que la courbe 𝒞𝑓 est sy-
métrique par rapport au point Ω(0,− 1

2 ).
6. Graphe de 𝑓 :
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𝑦

−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4 5 𝑥

𝒞𝑓

7. On a pour tout 𝑥 ∈ ℝ⋆ : 𝑓(𝑥) = 𝑥 ⟺ 𝑓(𝑥)−𝑥 = 0 ⟺ −𝑥+1−2𝑥2
2𝑥 = 0 ⟺

−2𝑥2 −𝑥+1 = 0. Le discriminant vaut Δ = 9 et les deux racines sont −1 et 1
2 .

Ces solutions correspondent aux abscisses des points fixes pour la fonction
𝑓.

Exercice 14 ∣ Soit 𝑓 la fonction définie par :  𝑓(𝑥) = 𝑥2
𝑥−1 .

1. Déterminer trois réels 𝑎,𝑏,𝑐 tels que :

∀𝑥 ∈ ℝ\{1}, 𝑓(𝑥) = 𝑎𝑥+𝑏+
𝑐

𝑥−1
.

2. Dresser le tableau des variations de 𝑓. On précisera ses limites aux bornes du do-
maine.

3. Calculer lim
𝑥⟶∞

(𝑓(𝑥)−(𝑥+1)) et lim
𝑥⟶−∞

(𝑓(𝑥)−(𝑥+1)).
4. Tracer la courbe représentant 𝑓 et placer sur le même graphique la droite d’équa-

tion 𝑦 = 𝑥+1.
5. Montrer que la courbe représentant 𝑓 admet le point de coordonnées (1,2)

comme centre de symétrie.

Solution (exercice 14)
1. Réduisons au même dénominateur : on a pour tout 𝑥 ∈ ℝ∖{1},

𝑎𝑥(𝑥−1)+𝑏(𝑥−1)+𝑐
𝑥−1

=
𝑎𝑥2 +(𝑏−𝑎)𝑥+(𝑐−𝑏)

𝑥−1
.

Par identification, on cherche 𝑎,𝑏,𝑐 vérifiant :
⎧⎪
⎨⎪
⎩

𝑎 = 1
𝑏−𝑎 = 0
𝑐−𝑏 = 0

⟺ 𝑎 = 1, 𝑏 = 1, 𝑐 = 1.

Ainsi, on a :

∀𝑥 ∈ ℝ∖{1}, 𝑓(𝑥) = 𝑥+1+
1

𝑥−1
.

2. Nous devons calculer les limites suivantes :
lim
𝑥→∞

(𝑓(𝑥)−(𝑥+1)) = lim
𝑥→∞

1
𝑥−1

= 0.

On obtient de-même en zéro. Ainsi :
lim

𝑥⟶±∞
(𝑓(𝑥)−(𝑥+1)) = 0.

3.

𝑥

𝑦

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

𝑦 = 𝑥+1

𝑓(𝑥) = 𝑥2
𝑥−1

4. Il suffit de montrer que 𝑓(2−𝑥) = 2−𝑓(𝑥), pour tout 𝑥 ≠ 1. Calculons :

𝑓(2−𝑥) =
(2−𝑥)2

2−𝑥−1
=

(2−𝑥)2

1−𝑥
.

Par ailleurs, on montre que 2−𝑓(𝑥) = (2−𝑥)2
1−𝑥 . Ainsi,

la courbe admet bien le point (1,2) comme centre de symétrie.
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Exercice 15 ∣ Étude complète de la fonction : 𝑓 ∶ 𝑥 ⟼ e𝑥
2

𝑥 .

Solution (exercice 15)
• Domaine de définition : 𝑥 ∈ 𝒟𝑓 ⟺ 𝑥 ≠ 0. Donc 𝒟𝑓 = ℝ⋆.
• La fonction est dérivable sur ℝ⋆ en quotient de telles fonctions à dénomina-

teur non nul. De plus :

∀𝑥 ∈ ℝ⋆, 𝑓′(𝑥) =
(2𝑥)e𝑥

2
𝑥−e𝑥

2

𝑥2 =
e𝑥

2
(2𝑥2 −1)
𝑥2 .

De plus,

2𝑥2 −1 = 0 ⟺ 𝑥2 =
1
2

⟺ 𝑥 = ±
1

√2
= ±

√2
2

.

On déduit alors le tableau de variations :
𝑥

𝑓′(𝑥)

𝑓(𝑥)

−∞ −√2
2

0 √2
2

+∞

+ 0 − − 0 +

−∞−∞

𝑓(−√2
2 )𝑓(−√2
2 )

−∞

+∞

𝑓(√2
2 )𝑓(√2
2 )

+∞+∞

Les limites en zéro proviennent de règles usuelles, celles en ±∞ des crois-
sances comparées.

• On peut maintenant tracer cette fonction.
𝑦

−6

−4

−2

0

2

4

6

−4 −3 −2 −1 0 1 2 3 4 𝑥

𝒞𝑓

Exercice 16 ∣ Soit la fonction ℎ définie par :
ℎ(𝑥) = 𝑥exp |ln |𝑥||.

1. Donner l’ensemble de définition de ℎ.
2. Représenter graphiquement la fonction ℎ.

Solution (exercice 16)
1. La fonction 𝑓 est bien définie si et seulement si 𝑥 ≠ 0. Ainsi on a : 𝒟𝑓 = ℝ⋆.
2. On commence par donner l’expression de 𝑓(𝑥) selon les valeurs de 𝑥.

• Si 𝑥 > 0, on a : 𝑓(𝑥) = 𝑥e|ln𝑥|. Il s’agit alors d’étudier le signe de ln𝑥.
⋄ Si 𝑥 ⩾ 1, on obtient : 𝑓(𝑥) = 𝑥eln𝑥 = 𝑥2.
⋄ Si 0 < 𝑥 < 1, on obtient : 𝑓(𝑥) = 𝑥e− ln𝑥 = 𝑥eln

1
𝑥 = 𝑥× 1

𝑥 = 1.
• Si 𝑥 < 0, on a : 𝑓(𝑥) = 𝑥e|ln(−𝑥)|. Là encore, il s’agit d’étudier le signe de

ln(−𝑥) :
⋄ Si −1 ⩽ 𝑥 < 0 alors 0 < −𝑥 ⩽ 1 et on obtient : 𝑓(𝑥) = 𝑥e− ln(−𝑥) = 𝑥eln

−1
𝑥 =

𝑥× −1
𝑥 = −1.

⋄ Si 𝑥 < −1 alors −𝑥 > 1, on obtient : 𝑓(𝑥) = 𝑥eln(−𝑥) = −𝑥2.
Ainsi, on obtient les valeurs suivantes pour 𝑓 selon les valeurs de 𝑥 :

𝑥

𝑓(𝑥)

−∞ −1 0 1 +∞

−𝑥2 −1 1 𝑥2

On peut alors tracer la fonction :
𝑦

−5
−4
−3
−2
−1
0
1
2
3
4
5

−5 −4 −3 −2 −1 0 1 2 3 4 5 𝑥

𝒞𝑓

50



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

51
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Exercice 17 ∣ Fonctions trigonométriques Soit 𝑓 une fonction définie par :
𝑓(𝑥) = ln |cos(𝑥)sin(𝑥)|.

1. Déterminer le domaine de définition 𝒟𝑓 de 𝑓.
2. Montrer que 𝑓 est π périodique, paire et que : ∀𝑥 ∈ 𝒟𝑓, 𝑓(π2 −𝑥) = 𝑓(𝑥). A quel

intervalle peut-on réduire l’étude de la fonction 𝑓?
3. Montrer soigneusement que 𝑓 est dérivable sur ]0, π4 ] et calculer sa dérivée. Dres-

ser le tableau de variation de 𝑓 sur cet intervalle.
4. Tracer la courbe de 𝑓 en justifiant sa construction.

Solution (exercice 17)
1. La fonction 𝑓 est bien définie si et seulement si cos𝑥sin𝑥 ≠ 0. Or on a :

cos𝑥sin𝑥 = 0 ⟺ ∃𝑘 ∈ ℤ, 𝑥 = π
2 + 𝑘π ou ∃𝑘 ∈ ℤ, 𝑥 = 𝑘π. Ainsi 𝒟𝑓 =

ℝ∖{π2 +𝑘π, 𝑘π, 𝑘 ∈ ℤ}.
2. Réduction d’intervalle :

• Montrons que 𝑓 est π périodique : pour tout 𝑥 ∈ 𝒟𝑓, on a bien 𝑥 +
π ∈ 𝒟𝑓 et 𝑓(𝑥 + π) = ln |cos(𝑥+π)sin(𝑥+π)| = ln |−cos𝑥×(−sin𝑥)| =
ln |cos𝑥sin𝑥| = 𝑓(𝑥). Ainsi la fonction 𝑓 est π périodique et on peut res-
treindre l’intervalle d’étude à ]−π

2 ,
π
2 [∖ {0}.

• Montrons que 𝑓 est paire :𝒟𝑓 est centré en 0, et : ∀𝑥 ∈ 𝒟𝑓, on a : 𝑓(−𝑥) =
ln |cos(−𝑥)sin(−𝑥)| = ln |cos𝑥×(−sin𝑥)| = ln |cos𝑥sin𝑥| = 𝑓(𝑥) en uti-
lisant le fait que la fonction cosinus est paire, la fonction sinus impaire et le
fait que |−1| = 1. Ainsi la fonction 𝑓 est paire et on peut restreindre l’étude
à ]0, π2 [.

• Soit 𝑥 ∈ 𝒟𝑓, on a : 𝑓(π2 −𝑥) = ln |cos (π2 −𝑥)sin (π2 −𝑥)| = ln |sin𝑥cos𝑥| =
𝑓(𝑥) en utilisant le formulaire de trigonométrie.
On peut faire un dessin pour s’en rendre compte mais une telle égalité si-
gnifie que la droite d’équation 𝑥 = π

4 est axe de symétrie pour la courbe.
Ainsi onpeut étudier la fonction sur ]0, π4 ]puis faire la symétrie d’axe𝑥 = π

4
pour obtenir la courbe sur ]0, π2 [.

3. La fonction 𝑥 ⟼ cos𝑥sin𝑥 est dérivable sur ]0, π4 ] comme produit de fonc-
tions dérivables. De plus, sur cet ensemble, cette fonction ne s’annule pas.
Comme la fonction valeur absolue est dérivable sur ℝ⋆, on obtient que 𝑥 ⟼
|cos𝑥sin𝑥| est dérivable sur ]0, π4 ] par composition. Comme sur cet inter-
valle, la fonction est à valeurs strictement positives et que la fonction loga-
rithmenépérien est dérivable surℝ+⋆,𝑓 est bien dérivable sur ]0, π4 ]par com-
position.
De plus, en étudiant des cas, on sait que (ln |𝑢|)′ = 𝑢′

𝑢 si 𝑢 dérivable. Ainsi ici
on obtient que : 𝑓′(𝑥) = cos2𝑥−sin2𝑥

cos𝑥sin𝑥 = cos(2𝑥)
cos𝑥sin𝑥 .

Sur ]0, π4 ], on a : cos𝑥 > 0, sin𝑥 > 0 et cos(2𝑥) ⩾ 0 car 2𝑥 ∈ ]0, π2 ]. Ainsi on a :

𝑓′(𝑥) ⩾ 0 sur ]0, π4 ].

𝑥

𝑓

0 π
4

−∞−∞

− ln2− ln2

En effet : lim
𝑥⟶0+

𝑓(𝑥) = −∞ par propriétés sur les produit et composées de li-
mites.

4. Graphe de 𝑓 :

COURBE REPRÉSENTATIVE
𝑦

−5

−4

−3

−2

−1

0
−5 −4 −3 −2 −1 0 1 2 3 4 5 𝑥

𝒞𝑓

Exercice 18 ∣ Fonctions trigonométriques Soit la fonction 𝑓 définie par :
𝑓(𝑥) = 3cos𝑥−cos(3𝑥).

1. Étudier la parité et la périodicité de 𝑓.
2. Montrer que 𝑓 est dérivable sur ℝ, montrer que :

∀𝑥 ∈ ℝ, 𝑓′(𝑥) = 6cos(2𝑥)sin(𝑥).
3. Étudier les variations de 𝑓 sur [0,π].
4. Déterminer l’équation de la tangente au graphe de 𝑓 en 𝑥 = π/2. Déterminer les

abscisses pour lesquelles la tangente est horizontale.
5. Représenter 𝑓 sur l’intervalle [−3π2 , 3π2 ]

Solution (exercice 18)
1. La fonction 𝑓 est définie sur ℝ.

• Étude de la parité : ℝ est centré en 0. Soit 𝑥 ∈ ℝ : 𝑓(−𝑥) = 3cos(−𝑥) −
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cos(−3𝑥) = 3cos𝑥 − cos(3𝑥) car la fonction 𝑓 est paire. Ainsi 𝑓(−𝑥) =
𝑓(𝑥), et la fonction 𝑓 est paire.

• Étude de la périodicité : vérifions que la fonction est 2π périodique :
⋄ Pour tout 𝑥 ∈ ℝ, 𝑥+2π ∈ ℝ.
⋄ Soit 𝑥 ∈ ℝ : 𝑓(𝑥+2π) = 3cos(𝑥+2π)−cos(3(𝑥+2π)) = 3cos(𝑥+2π)−
cos(3𝑥+6π) = 𝑓(𝑥) enutilisant la 2πpériodicité de la fonction cosinus.

Ainsi la fonction 𝑓 est 2π périodique.
Par 2π périodicité, on peut restreindre l’étude à tout intervalle d’amplitude
2π, par exemple [−π,π]. Puis par parité, on peut restreindre l’intervalle à
[0,π]. La courbe 𝒞𝑓 sera alors obtenue par symétrie par rapport à l’axe des
ordonnées puis par translation de vecteur 2π ⃗𝑖.

2. La fonction 𝑓 est dérivable sur ℝ comme composée et somme de fonctions
dérivables. Pour tout 𝑥 ∈ ℝ, on a : 𝑓′(𝑥) = −3sin𝑥 +3sin(3𝑥) = 3(sin(3𝑥)−
sin𝑥). On déduit ensuite :

𝑓′(𝑥) = 3(sin(2𝑥+𝑥)− sin𝑥)
= 3(sin(2𝑥)cos𝑥+ cos(2𝑥)sin𝑥− sin𝑥)
= 3(2sin𝑥cos2𝑥+cos(2𝑥)sin𝑥− sin𝑥)
= 3sin𝑥(2cos2(𝑥)+cos(2𝑥)−1) = 3sin𝑥×(2cos(2𝑥))

= 6cos(2𝑥)sin(𝑥).
3. Étude du signe de 𝑓′ sur [0,π] :

Sur [0,π], on a : sin(𝑥) ⩾ 0 et ainsi le signe de 𝑓′ ne dépend que du signe de
cos(2𝑥). On a : cos(2𝑥) ⩾ 0 ⟺ ∃𝑘 ∈ ℤ, −π

2 +2𝑘π ⩽ 2𝑥 ⩽ π
2 +2𝑘π ⟺

∃𝑘 ∈ ℤ, −π
4 +𝑘π ⩽ 𝑥 ⩽ π

4 +𝑘π. En faisant un cercle trigonométrique, on
remarque que sur [0,π], on obtient : cos(2𝑥) ⩾ 0 ⟺ 𝑥 ∈ [0, π4 ]∪ [ 3π4 ,π]. On
obtient ainsi le tableau des variation suivant :

𝑥

𝑓′(𝑥)

𝑓

0 π
4

3π
4 π

+ 0 − 0 +

22

2√22√2

−2√2−2√2

−2−2

4. • La fonction 𝑓 est dérivable en π
2 donc la tangente à la courbe 𝒞𝑓 au point

d’abscisse π
2 existe bien et son équation est : 𝑦 = 𝑓′ (π2 ) (𝑥− π

2 ) +𝑓(π2 ). On
obtient ainsi : 𝑦 = −6(𝑥− π

2 ).
• La tangente est horizontale lorsque 𝑓′(𝑥) = 0. On obtient donc : 𝑓′(𝑥) =

0 ⟺ cos(2𝑥) = 0ou sin𝑥 = 0 ⟺ ∃𝑘 ∈ ℤ, 𝑥 = π
4 + 𝑘π

2 ou∃𝑘 ∈ ℤ, 𝑥 =
𝑘π.

5. Graphe de 𝑓 :

𝑦

−3
−2
−1
0
1
2
3

−5 −4 −3 −2 −1 0 1 2 3 4 5 𝑥

6.6 Devoir-maisonLaptop-House

Exercice 19 ∣ On définit la fonction 𝑓 par :

𝑓 ∶ 𝑥 ∈ 𝒟𝑓  ⟼
𝑥

e𝑥 −𝑥
,

où 𝒟𝑓 ⊂ ℝ désigne le domaine de définition de 𝑓 qui sera à déterminer.

1. Montrer que e𝑥−𝑥 ⩾ 1 pour tout 𝑥 ∈ ℝ. En déduire le domaine de définition de 𝑓.
2. Donner les limites aux bornes du domaine de définition et interpréter graphique-

ment les deux résultats.
3. Étudier les variations de 𝑓.
4. Donner l’équation de la tangente notéeT à la courbe𝒞𝑓 aupoint d’abscisse𝑥 = 0.
5. Tracer les courbes 𝒞𝑓 et T (on fera apparaître les tangentes horizontales et les

asymptotes trouvées dans les questions précédentes).

Solution (exercice 19)
1. La fonction 𝑓 est bien définie si et seulement si e𝑥−𝑥 ≠ 0. Comme on ne sait

pas résoudre cette équationpar équivalences successives, onpose la fonction
𝑔 ∶ 𝑥 ⟼ e𝑥−𝑥. Cette fonction 𝑔 est bien définie sur ℝ et elle est dérivable sur
ℝ comme somme de fonctions dérivables. Pour tout 𝑥 ∈ ℝ : 𝑔′(𝑥) = e𝑥−1. On
en déduit le tableau de variations de 𝑔 :
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𝑥

𝑔′(𝑥)

𝑔

−∞ 0 +∞

− 0 +

00

11

00

On a en effet 𝑔(0) = 1. Ainsi 1 est le minimum de la fonction 𝑔 sur ℝ. Donc
pour tout 𝑥 ∈ ℝ : 𝑔(𝑥) ≥ 1, c’est-à-dire e𝑥 −𝑥 ⩾ 1 . En particulier on vient de
montrer que pour tout 𝑥 ∈ ℝ : e𝑥 −𝑥 ≠ 0.
Ainsi la fonction 𝑓 est bien définie sur ℝ et 𝒟𝑓 = ℝ .

2. • Limite en −∞ : Comme on a une forme indéterminée, on commence par
transformer l’expression de 𝑓 en mettant 𝑥 en facteur au dénominateur
(terme dominant) : 𝑓(𝑥) = 1

−1+ e𝑥
𝑥
. Par propriété sur les quotients de li-

mites : lim
𝑥→−∞

e𝑥
𝑥 = 0. Ainsi par propriété sur les somme et quotient de li-

mites, on obtient que : lim
𝑥→−∞

𝑓(𝑥) = −1 . La courbe 𝒞𝑓 admet une asymp-
tote horizontale d’équation 𝑦 = −1 en −∞.

• Limite en +∞ : Comme on a une forme indéterminée, on commence par
transformer l’expression de 𝑓 en mettant e𝑥 en facteur au dénominateur
(terme dominant) : 𝑓(𝑥) = 𝑥

e𝑥(1− 𝑥
e𝑥 )

= 𝑥
e𝑥 × 1

1− 𝑥
e𝑥

. Par croissance comparée :
lim

𝑥→+∞
𝑥
e𝑥 = 0. Ainsi par propriété sur les somme, quotients et produit de li-

mites, on obtient que : lim
𝑥→+∞

𝑓(𝑥) = 0. La courbe 𝒞𝑓 admet une asymptote
horizontale d’équation 𝑦 = 0 en +∞.

3. La fonction 𝑓 est dérivable sur ℝ comme somme et quotient dont le dénomi-
nateur ne s’annule pas de fonctions dérivables.

∀𝑥 ∈ ℝ, 𝑓′(𝑥) =
e𝑥(1−𝑥)
(e𝑥 −𝑥)2

.

4. On en déduit le signe de la dérivée et donc le tableau de variations de 𝑓 :
5. La fonction𝑓 est dérivable surℝ, elle est doncdérivable en0. Ainsi la tangente

à la courbe 𝒞𝑓 au point d’abscisse 0 existe bien et son équation est donnée
par

T ∶ 𝑦 = 𝑓′(0)𝑥+𝑓(0) ⟺ T ∶ 𝑦 = 𝑥.
6. On a donc à présent tous les éléments pour pouvoir tracer la courbe.

COURBE REPRÉSENTATIVE

𝑥

𝑦

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

0

1
𝒞𝑓

Exercice 20 ∣ On considère la fonction définie sur ℝ par :

𝑓(𝑥) =
1
2
cos(2𝑥)+

1
4
cos(4𝑥)+

1
6
cos(6𝑥).

1. Montrer que 𝑓 est périodique de période π, puis étudier sa parité. En déduire une
réduction de l’intervalle d’étude.

2. Calculer 𝑓′ et montrer que :
∀𝑥 ∈ ℝ, 𝑓′(𝑥) = −sin(4𝑥)(1+2cos(2𝑥)).

3. Etudier les variations de 𝑓 sur l’intervalle réduit. On précisera bien les valeurs
d’annulation de 𝑓′ ainsi que l’étude de son signe.

4. Calculer les valeurs de 𝑓 pour 𝑥 ∈ {0, π4 ,
π
3 ,

π
2 }.

5. Tracer la courbe sur l’intervalle [0,π].

Solution (exercice 20)
1. Commençons par étudier la périodicité.

• On a bien pour tout 𝑥 ∈ ℝ, 𝑥+π ∈ ℝ.
• De plus, soit 𝑥 ∈ ℝ :

𝑓(𝑥+π) =
1
2
cos(2(𝑥+π))+

1
4
cos(4(𝑥+π))+

1
6
cos(6(𝑥+π))

=
1
2
cos(2𝑥+2π)+

1
4
cos(4𝑥+4π)+

1
6
cos(6𝑥+6π)

=
1
2
cos(2𝑥)+

1
4
cos(4𝑥)+

1
6
cos(6𝑥)

= 𝑓(𝑥).
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car la fonction cosinus est 2π périodique.
Ainsi la fonction 𝑓 est bien π-périodique et on peut donc restreindre son
étude à tout intervalle d’amplitude π. Montrons à présent que 𝑓 est paire.
• On a bien pour tout 𝑥 ∈ ℝ, −𝑥 ∈ ℝ.
• De plus, soit 𝑥 ∈ ℝ :

𝑓(−𝑥) =
1
2
cos(−2𝑥)+

1
4
cos(−4𝑥)+

1
6
cos(−6𝑥)

=
1
2
cos(2𝑥)+

1
4
cos(4𝑥)+

1
6
cos(6𝑥)

= 𝑓(𝑥)
car la fonction cosinus est paire.

Ainsi la fonction 𝑓 est bien paire et on peut donc restreindre son étude à
[0, π2 ] ; d’abord [−π

2 ,
π
2 ] puis [0, π2 ] par parité. La courbe complète s’obtient

ensuite par symétrie axiale par rapport à l’axe des ordonnées puis par trans-
lation de vecteur π ⃗𝑖.

2. • La fonction 𝑓 est dérivable sur ℝ comme composées, produits et sommes
de fonctions dérivables.

• De plus, pour tout 𝑥 ∈ ℝ, on a, en factorisant grâce au formulaire de trigo-
nométrie :

𝑓′(𝑥) = −sin(2𝑥)− sin(4𝑥)− sin(6𝑥)
= −(sin(2𝑥)+ sin(4𝑥)+ sin(6𝑥))
= −(sin(4𝑥)+2sin(4𝑥)cos(2𝑥))
= −sin(4𝑥)(1+2cos(2𝑥)) .

3. On doit donc étudier le signe de sin(4𝑥) et de 1+ 2cos(2𝑥) sur l’intervalle
[0, π2 ].
• On a : sin(4𝑥) ≥ 0 ⟺ ∃𝑘 ∈ ℤ, 2𝑘π ≤ 4𝑥 ≤ π+2𝑘π ⟺ 𝑘π

2 ≤ 𝑥 ≤ π
4 + 𝑘π

2 .
Ainsi, sur [0, π2 ], on a : sin(4𝑥) ≥ 0 si 𝑥 ∈ [0, π4 ] et il est négatif sinon.

• On a par résolution sur le cercle trigonométrique :
1+2cos(2𝑥) ≥ 0

⟺ cos(2𝑥) ≥ −
1
2

⟺ ∃𝑘 ∈ ℤ, −
2π
3

+2𝑘π ≤ 2𝑥 ≤
2π
3

+2𝑘π

⟺ ∃𝑘 ∈ ℤ, −
π
3

+𝑘π ≤ 𝑥 ≤
π
3

+𝑘π.

Ainsi, sur [0, π2 ], on a : 1+2cos(2𝑥) ≥ 0 si 𝑥 ∈ [0, π3 ] et il est négatif sinon.
• On peut alors faire le tableau de signe et le tableau de variation :

𝑥

−sin(4𝑥)

1+2cos(2𝑥)

𝑓′(𝑥)

𝑓(𝑥)

0 π
4

π
3

π
2

0 - 0 + + 0

+ + 0 -

0 - 0 + 0 - 0

11
12
11
12

− 1
4− 1
4

− 5
24− 5
24

− 5
12− 5
12

4. Le calcul des valeurs particulières donne :

𝑓(0) =
11
12

, 𝑓(
π
4
) = −

1
4
, 𝑓(

π
3
) = −

5
24

, 𝑓(
π
2
) = −

5
12

.
5.

𝑥

𝑦

0 1 2 3

−1

0

1
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III Troisième partie
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