BCPST1 € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

o ET (N \K) ¥ Calculs de sommes et produits

1 Notations ) et []............. Résumé & Plan
2 Coefficients binomiaux et for- Vous avez peut-étre déja rencon-
mule du binéme................ tré la notation ) dans les classes
Sommes doubles ...nnonnnnnn... antérieures. Nous allons la revoir
EXErCiCes ..uvevrennereenanennns dans ce chapitre, et en complément
454554+ 6%+ 754954 115= voir son analogue pour les produits.
125 Enfin on termine avec les sommes

doubles ainsi qu'une généralisation
des identités remarquables : la for-
mule du bindme de NEWTON.

— Le saviez-vous ?

® Les énoncés importants (hors définitions) sont indiqués par un 9.

® Les énoncés et faits a la limite du programme, mais trés classiques parfois, seront
indiqués par le logo [H.P]. Si vous souhaitez les utiliser & un concours, il faut donc
en connaitre la preuve ou la méthode mise en jeu. Ils doivent étre considérés comme
un exercice important.

® Les preuves déja tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent étre lues uniquement par les curieuses et curieux. Nous n'en

parlerons pas en cours.

Pour commencer, nous allons introduire diverses notations et régles de calculs.

Cadre
Dans tout le chapitre, 'ensemble K désignera R ou C. L'ensemble C désigne
les « nombres complexes », que nous étudierons dans un prochain chapitre. Les
exemples de ce cours resteront donc dans R pour le moment.

On rappelle que pour tout couple dentiers (a,b) € Z? tels que a <
I'ensemble [a, b] = [a, b] N Z contient b — a + 1 éléments.

b,

Le triangle de PASCAL était
déja connu en Orient et au
Moyen-Orient plusieurs
siecles avant la publication
de Blaise PASCAL.

— Le saviez-vous ?

NOTATIONS ) ET []

n Sommes

Au lycée, vous avez peut-étre déja rencontré des formules de ce type. « Pour g # 1,
ona:

1 _ qn+1
qo+ql+qz+q3+---+q”=—1 ».
—-q
Lutilisation des points de suspension pour écrire cette somme rend I’écriture assez
lourde et potentiellement compliquée a manipuler. Ce chapitre introduit une nota-
tion plus concise. En lieu et place de la formule précédente, nous noterons plutot :
n
G"=q"+q' +q*+q>+-+q".
k=0
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1 faut la comprendre ainsi : on additionne tous les g* avec k parcourant tout I'inter- , PP L N o .
. quavant, on définit Y a; = u,, ot (u) s, est la suite vérifiant la relation de
valle entier [0, n]. = g
récurrence :
e Notation ~Symbole ) Vk<m,u,=0, Yk=m, Ug, =uUg+ad;,.

® Soit (n,m) € Z?> avec n < met (a,, ..., a,) € K™ "*1_On appelle somme des i
m Exemple 1 Ecrire en extension les sommes ci-apres. Préciser a chaque fois le

a,n < k < m, la quantité notée a; ou encore a a; et dé- . . . .
e aq 2. a Y an ), nombre de termes, et devinez une relation en fonction des bornes lorsqu'il est

k=n n<k<m ke[n,m]
finie par: non nul.
m Somme ‘ Nombre de termes ‘
Y ap=a,+-+a,. B A
y 2 -k:n s 2 2 y 2 . . Z ak =
L'écriture avec «...» est généralement appelée I'écriture en extension de la frr?
somme.
® On appelle bornes de la somme les entiers relatifs n, m, indice de la somme la I
variable k et a;, n < k < m le terme général d’ordre k. Y ap=
® [Convention]' Soit (1, m) € Z* tel que n > m, alors on pose : k=103
m
Y a;=0. 10
k=n Z k =
k=0
Ainsi, lorsque les bornes ne sont pas dans le bon ordre, la somme est décrétée étre
égale a zéro : cette convention sera justifiée plus tard. n )
o Attention L'indice d’'une somme est « muet » el
En effet, il n"apparait que dans la notation )_ et non dans ce qu'elle représente. -
- e
On peut donc écrire : Y In(1+(cosk —sink)?) =
m m m k=n+1
Y ar=) a;= ) a;.
k=n i=n j=n

Lindice n’a de sens qu’a l'intérieur de la somme; en dehors, il n'est plus défini.
S’il vous reste un indice dans I'expression apres le calcul de la somme, c’est que

vous vous étes trompé!” PROPRIETES ET TECHNIQUES DE CALCUL. Les propriétés ci-apres découlent di-

rectement de la définition de la somme, on peut les établir sans difficulté par récur-
Remarque 1 (Définition plus rigoureuse : par récurrence) L'usage des points rence.

de suspension pour définir la notation somme n’est pas parfaitement satisfai-
sante. D'un point de vue purement formel, on préfererait donc une définition o5 K2
qui s'appuie sur le caractere récursif de la somme. En effet, si on sait définir une k=2" "
somme jusqu’au rang n, alors il suffit de rajouter un seul élément pour avoir o’
une somme jusqu’'au rang n + 1. Ainsi, on peut formuler une définition équiva-
lente de la somme a I'aide du principe de récurrence : avec les mémes notations

Exemple 2 Calculer

. 4
1. Pour des bornes mal ordonnées ® Zk:l ln(k)-
2. Cen’est pas le cas en Python ol on peut récupérer la valeur du dernier indice d’'une boucle for "

apres la fin de la boucle, nous le verrons en Informatique.
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— Proposition 1| Propriétés des sommes
Soient (n,p) € N*, n = p, ¢,\,p € K et (ay,...,a,) € K" P, (b, ...,b,) €
Kn—p+1.
® [Nombre de termes dans une somme] Une somme dont les bornes sont

p et n contient n — p + 1 termes. En particulier une somme allant de 1 a n
contient n termes, et une somme allant de 0 a n en contient n + 1.
® [Somme d’une constante]
n
Y c=cx(n—-p+1).
k=p
® [Linéarité] Soit (b,,...,b,) € K" P*! Alors:

n n n

Y Aar+ub)=A ) ap+p ) b
k=p k=p k=p

® [Relation de CHASLES] SoitdeplusreN, p <r <n.Alors:

n r n
Yoag= ) ag+ ) ay.
k= k=p

p k=r+1
o Attention

Dans la relation de CHASLES, attention a bien recommencer a l'indice p + 1, et
non a I'indice p pour ne compter qu'une seule fois le terme d’indice p.

Remarque 2 (Utilité de la convention) Que donne la relation de CHASLES
lorsque par exemple r = n?

4

Exemple3 Soitn e N.
n

1. Calculer ) (3% -2%).
k=0

4

2. Calculonslasomme 1+3+5+7+---+99 des entiers impairs entre 1 a 99, en
commencant par la réecrire avec un symbole somme.

R4

3. Calculer ¥}° jmin(k, 7).

Passons maintenant a une technique trés importante pour calculer une somme :
celle du changement d’'indice. Commencons par un exemple :

n n+l
(k+1)*=1*+2*+--+n*+(n+1)>= ) 02
k=0 =
On a constaté que lorsque k € [0, n], (k + 1) décrit & = {1%,...,(n+1)?}. Mais
lorsque £ € [1, n + 1], £? décrit ce méme ensemble &. En résumé :

k €[o0,n] i lel,n+1].
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Méthode (ALG) 41 (Changement d’indice de translation « ¢ = k+1,¢ = k+?»)
® [Décalage d’'un rang]

n nil (—)enposantf =k +1
Yoac= ), ar { (—)enposantk=/¢—1.

k=p {=p+1
® [Décalage de plusieurs rangs] Soit N un entier. Alors :
1 niN (—)enposant £ = k+N
a = ag_
k;, k 5:%‘;1\] A { (<) enposant k = ¢ —N.

Pour justifier la formule de changement d’indice, simplement écrire la définition
d’'une somme. Nous verrons parfois des changements d’indice plus compliqués. Ce
qu’il faut toujours garantir, c’est qu'on n'a ni supprimé ni ajouté aucun terme a la
somme initiale, mais qu'on a juste changé le nom de 'indice.

o Attention On ne peut pas « poser n'importe quoi »!

n

Dans ) ay, on ne peut pas poser :
k=p
® «k = ¢?» (dans ce cas on oublierait les indices qui ne sont pas des carrés),

® ou encore « k = 2¢ + 1 » (dans ce cas on oublierait les indices qui ne sont pas
des pairs) etc..
Seuls les changements d’indices mentionnés dans ce cours sont autorisés.

- i s, i c =
Lors d’'un changement d’indice, ce qu’il faut toujours garantir, c’est
quon n’a ni supprimé ni ajouté aucun terme a la somme initiale.

Exemple & Compléter les pointillés (ou1 n € N).
n+1

3 .. n e .
Z ap = Z a. Z Apy1 = Z ae Z Ap_3 = Z ayg.
k=0 /=1 k=0 l=... k=6 l=...

n
Exemple 5 Déterminer une expression de G,, = Y g*avecq # 1 pour n =0
k=0
sans symbole somme, en commengant par effectuer le changement ¢ = k + 1.

® Montronsque: G, = (G,+4""' -1).

4

® Déduisons la valeur de G,,.

Méthode (ALG) 4.2 (Changement d’indice de renversement « £ = n — k »)
L 2 (—)enposantf =n—-k
,;0“" B ;,a"'[ { (—)enposantk=n-¢.

A droite, on doit conserver une borne de début de somme qui est inférieure a la
borne de fin de somme pour ne pas avoir une somme vide (gardez a l'esprit la
convention d’ordre des bornes).

n
Exemple 6 Déterminer une expression de S, = )_ k pour n = 0 sans symbole

k=0
somme, en commencant par effectuer le changement ¢ = n — k.
7
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Passons maintenant a un type de somme particulier qui se calculent par simplifica-
tions successives des termes : les sommes téléscopiques.

Proposition 2| Somme téléscopique décalée de 1
Soit (n,p) eN?, n=pet(a,,...,a,) e K" P+ Alors:

n
Z (A1 — ) = Ay — a,.
k=p

Une somme de la forme précédente est appelée somme téléscopique.

Exemple 8 DéterminerS, =Y7_ In(1+ 1), pourn=>1.

Preuve
® Une premiere preuve peut utiliser directement la définition d’'une somme. D’
n
Z(akﬂ —ap)=app _%"'%_M"' Q1 — Ay = Ay — Ay
k=p
® Une seconde preuve consiste a utiliser un changement d’indice.
4
Exemple 7
1. Soit k > 1. Réduire au méme dénominateur  — .
7
P . = 1 Exemple 9 (Téléscopage généralisé
2. Etablir une expressionde S, = Y ——— pourn > 1. P ( . Page 8 ) . -
o1 k(k+1) 1. Avec les mémes notations que dans la proposition précédente, proposer une
n
e expression simplifiée de ) (ay,, — ai).

k=p
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® [1ére Méthode : en se ramenant a un téléscopage classique]

® [2eme Méthode : en utilisant un changement d’indice]

2. De la méme maniere, on établirait que :
n

Z (ak+3 - ak) =pi3 T apip+apyy — ap+2 - ap+1 - ap'
k=p

Méthode (ALG) 4.3 (Séparation de somme en indices pairs/impairs) Lorsque
le signe change en fonction de la parité de I'indice, il est parfois intéressant
de séparer la somme des indices pairs de celle des indices impairs. En d’autres

termes :
2n
Z ak = ao +a1 aF 000 +a2n_1 +a2n
k=0

=(ag+ay+-+ay,)+(a;+as+---+ay, )

n n—1
=) Gyt ) Ay
k=0 k=0

2n

Exemple 10 (Somme alternée) Etablir une expression de > (-1)*k pour n €
k=0

N.

7

SOMMES USUELLES. Vous devez connaitre certaines sommes usuelles qui fi-
gurent dans le programme, les voici.

— Proposition 3| Sommes usuelles o—
Soient n,n, e Net g € K. Alors :

& n(n+1 & nn+1)2n+1 & n(n+1)\*

ot g, n(nsD@nt1) Zk3=(( ))'

k=0 2 k=0 6 k=0 2

n+1
nqk— 1_1‘167 sig #1,
k=0 n+1 sinon.

La premieére et la troisieme formule seront généralisées dans le Chapitre (AN) 4, car
elles sont des cas particuliers des formules de sommation de termes de suites arith-
métiques et géométriques.
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Preuve "
® Soitn e N, notons S, = Y k. Montrons le résultat par récurrence sur n € N.
k=0
4
o Conclure.
P4
n
® Soit n € N, notons G,, = Y_ g*. On calcule (1 - q)G,. (Une récurrence serait la encore
n k=0
® Soit n e N, notons T, = Y k2. Montrons le résultat par récurrence sur 7 € N. possible!)
k=0 4
P4
Plus généralement, les sommes 1 et 4 précédentes peuvent étre généralisées a une
borne du bas non nulle. Formules que I'on peut établir de nouveau par récurrence,
ou bien exploitant la relation de CHASLES.
n
® Soit n € N, notons U,, = Z k3. Montrons le résultat en deux étapes. (Une récurrence Proposition 4 | Sommes usuelles

k=0

serait Ia encore possible!) Soientn,ny e N, n = ny et g € K. Alors::

o Justifierque: VkeN, (k+1)*—k*=4k®+6k>+4k+1. n (1 +n)(n - ng+1) oo g 1—671"_""+1 sig#1,
9’ Z k = 2 , Z q = —-q ]
k=nq k=nq n-ny+1 sinon.
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Preuve
® Sin, =0, laformule a déja été établie. Supposons n, € N*, alors :
n n ny—1
2 k=) k=) k
k=ng k=0 k=0
_n(n+1) (ng—-1)(ny—1+1) n(n+1)-ny(ny—1)
2 2 - 2 ’
Or, n(n+1)-ny(ny—1) = n*—ni+n+ny, = (n—ny)(n+ny)+n+ny = (ng+n)(n—ny+1),
on déduit alors la formule.
® Sin, = 0, la formule a déja été établie. Supposons r, € N*. La formule est évidente si
q =1, on suppose donc que g # 1. Alors :
n n no—1
Ya'=Yq"- ) q"
k=0 k=0

k=ng

> formules précédentes

> formules précédentes

n+1 n+1

1-q"" 1-q™ q™-¢q
1-q 1-q  1-gq

_ q"—"n"‘l

I-q

= q"O

L'énoncé précédent peut étre retenu plutdt sous la forme ci-apres, puisque n—rn,+1
correspond au nombre de termes des sommes, et pour la seconde g™ au premier
terme.

o Résumé Sommes de termes arithmétiques et geométriques

Nous pouvons retenir ces formules de la maniére suivante :
premier terme + dernier terme

2

moyenne des termes extrémes

)

) suite arithmétique = nb termes x

1 — rais Onnb termes

) suite géométrique = premier terme x -
1 —raison

la suite (k). étant arithmétique de raison 1, tandis que (g*);cy est géomé-
trique de raison q.

Exemple 11
1. Calculer 1+2+4+8+---+1024, en commencant par I'écrire sous forme d’'une

somimne.

4

2. Calculer Y}° k* ety ;2 k>

CODAGE INFORMATIQUE D'UNE SOMME. Passons maintenant 2 I'aspect infor-

matique du symbole somme.

n

>_® (Calculde ) a;)
k=p
def somme a(p, n):
S=0
for k in range(p, n+l):
S += a; # le terme a k est a taper a la main en |\
— fonction de la somme
return S

n
Par exemple, la fonction ci-apres réalise le calcul de ) cos(kx), avec x € R.
k=p
def somme cos(p, n, Xx):
S=0
for k in range(p, n+l):
S += ma.cos (k*x)
return S

>>> somme_cos (0, 10, 1)
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-0.4174477464559059

>>> somme_cos (0, 10, 0) # résultat attendu car on somme 1, onze |\
— fois

11.0

Remarque 3 Vous noterez qu’ils n'est pas utile de préciser la convention n < p
(somme nulle) : en effet, si n < p, le range sera vide et on retournera bien la
variable S restée a 0.

Exemple 12 Ecrire une fonction d’argument somme_ent(n) prenant en argu-
ment un entier n, et retournant la valeur de ZZ:O k.

4

n Produits

Notation Notation [ |

® Soit (n,m) € Z? avec n < met (a,, ..., a,,) € K™ "*1. On appelle produit des
m

[T aw, JI axetdé-

m<k<n kelIm,n]]

ar,n < k < m, la quantité notée [] a; ou encore
k=n
finie par :

m
[T ax=a,x-xa,.
k=n

Lécriture avec «.... » est généralement appelée I'écriture en extension du pro-
duit.

® On appelle bornes du produit les entiers relatifs n, m, indice de la somme la
variable k et a;, n < k < m le terme général d’ordre k.

o

—

® [Convention]’ Soit (1, m) € Z? tel que n > m, alors on pose :

m
H ap = 1.
k=n

Remarque 4 (Définition plus rigoureuse : par récurrence) Comme pour les

sommes, une définition équivalente plus rigoureuse du produit serait : avec les
m

mémes notations qu’avant, on définit [] a; = u,, ot (1) ez est la suite véri-

k=n
fiant la relation de récurrence :

Vk<m,u,=1, VYk=2m, U, = U X Q-

Remarque5 (A proposdesconventions) Lorsquunesomme estvide, elle vaut
0, cela correspond al’élément neutre pour le +. En effet, additionner 0 ne change
paslavaleur d'un nombre. De méme, lorsqu’un produit est vide, il vaut1l’élément
neutre de x, c’est-a-dire 1 car si on multiplie un nombre par 1, il est inchangé.
Parfois, I'utilisation d’'une somme ou d'un produit vide peut simplifier 'expres-
sion de certaines propriétés en évitant de traiter des cas particuliers a part.

8
Exemple 13 Calculer [] k.

k=5
ol
Attention Lindice d’un produit est « muet »

Comme pour les sommes, il n’apparait que dans la notation [] et non dans ce
qu'elle représente. On peut donc écrire :

m m m
[Tar=1la= H“j-
k=n i=n j=n

Proposition 5 | Propriété des produits

Soient (n,p) eN?, n= p, ceKet(ay,...,a,) € K" P, (b, ..., b,) e K" P

n
., a
Tk _ P
(5=

n n n
'l_[(akxbk)=l_[ale_[bky .
k=p k=p k=p k=p H bk
k=p

3. Pour des bornes mal ordonnées
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n

k=p k=p k=p

® Ya e R, (telque toutes les puissances soient définies)

® [Relation de CHASLES] SoitdeplusreN, p <r <n.Alors:

n r n
Hak=kl_[akx Hak-
=p

k=p k=r+1

n
c=chrt! ® H(Cxak)=cn_p+1 [1 ax.

Remarque 6 Les changements d’indice se réalisent de la méme facon qu’avec

les sSOmImes, nous ne revenons pas dessus.

Proposition 6 | Compatibilité avec exp /In

Soient (n,p) eN?, n = p, (a,,...,a,) € R"P*!. Alors :
o ZZ:,; In(a;)=In (HLP ak) sia, >0pourtoutk € [p, nj.

n
® I}, e% =e"ir,

Preuve  Conséquence directe des propriétés sur 'exponentielle et le logarithme.

n

k

Exemple 14 Calculer [] e*.
k=1

Proposition 7 | Produits téléscopiques
Soit (n,p) eN?, n = p et (ay, ...,a,) € K"7P*! non nuls. Alors :
n e nn
k=p ag ap ‘
Un produit de la forme précédente est appelé produit téléscopique.

Preuve

® Une premiére preuve peut utiliser directement la définition d'un produit.

" a a a a
Hﬂ:"_ﬂxﬁx...x/ﬁ:n_ﬂ,
k=p A 9K LT a, a,
® Une seconde preuve consiste a utiliser un changement d’indice.

4

" k+3
Exemple 15 Soit n € N*. Calculer [] —

k=1
® [1ére Méthode : en se ramenant a un téléscopage classique]

4
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® [2éme Méthode : en utilisant un changement d’indice]

Remarque 7 Les téléscopages plus généraux se traitent comme ceux des
sommes, nous n'y revenons pas ici.

o Attention Il n’existe pas de formule pour ....

M@ +h) =% Ylaxb)=? Y(a)=2

Autrement dit :

® on sépare facilement une somme en deux s’il y a une somme ou une sous-
traction entre les termes.

® On sépare facilement un produit en deux s’il y a un produit ou une division
entre les termes.

On termine par une grandeur qui va nous intéresser dans la suite.

Exemple 16 Calculer n! pour n € [0, 6].

Proposition 8 | Par récurrence
La suite (n!) ey est 'unique suite (a,,) ,en Vérifiant :

a,=1, VneN, a,,,=(n+1)-a,.

— Définition 1| Factorielle d’'un entier positif
Soit n = 0. Alors on appelle factorielle de n, notée n!, la quantité suivante :

n
[Tk sin=1,
n! = k=1

1 sin=0.

0

Vous pouvez noter que le cas n = 0 est inclus dans le ler puisque [| k=1
Note k=1
par convention.

Preuve

4

Exemple 17 Simplifier les expressions suivantes.
!

1.

6!

R4

11!
9121’

13! -12!

12!

7

)

4 4 4
———t—.
12! 11! 10!

4
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n
Exemple 18 Calculer [] 5\/E(k +3) pour n = 1, exprimer le résultat a 'aide de
k=1
factorielles.

P4

Méthode (ALG) 4.4 (Séparation de produit en indices pairs/impairs) Il est
parfois intéressant aussi de séparer les produits selon leurs termes impairs et
pairs. En d’autres termes, on a :

2n n n—1
H ai = H Ayp % H Ao +1
k=0 k=0 k=0
=(ag xayx - xay,)x(ay xagx... xaz, ;).

Exemple 19 (Produit des pairs et impairs avec la factorielle) Exprimer en
fonction de factorielles les produits ci-dessous, soit n € N*.
1. [T, (2k).

4

2. I} ,(2k+1).

Exemple 20 (Produit des négatifs) Exprimer en fonction de factorielles les
produits ci-dessous.
1. [, (k).

R4

2. 1", (~2k).
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Remarque 8 La factorielle est une suite qui grandit tres vite, plus que les suites
exponentielles! Pour 'exemple, le nombre d’arbres phylogénétiques théorique-
ment possibles grandit en fonction du nombre d’espéces considérées comme
une factorielle.

Exemple 21 Ecrire une fonction d’argument produit cos(n) prenant en argu-
ment un entier n, et retournant la valeur de []}}_, cos(k).

4

13
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CODAGE INFORMATIQUE D'UN PRODUIT. Passons maintenant a l'aspect infor-
matique du symbole produit.

n
>_® (Calculde [] a;)
k=p
def produit(p, n):
P=1
for k in range(p, n+1l):
P *= a, # a adapter en fonction de la somme
return P

n
Par exemple, la fonction ci-apres réalise le calcul de [] ek*, avec x € R.
k=p
def produit(p, n, Xx):
P=1
for k in range(p, n+l):
P *= ma.exp(k*x)
return P
>>> produit(0, 10, 1)
7.694785265142015e+23
>>> produit(0, 10, 0) # résultat attendu
1.0

n COEFFICIENTS BINOMIAUX ET FORMULE DU BINOME

m Coefficients binomiaux

Les coefficients binomiaux seront revus dans le Chapitre (ALG) 8 dans un contexte
de dénombrement. Pour le moment, nous nous intéressons qu’al’aspect calculatoire
et analytique.

Définition 2 | Coefficients binomiaux
Soit n e N et k € Z. On définit alors :

Remarque 9 ) » Go<ke<n
® Vous noterez qu’ils n'est pas utile de préciser la convention n < p (produit (k) = { Kin-k)! . ’
valant1):eneffet,sin < p,le range seravide et on retournera bien la variable 0 Sinon.

Prestéeal.
Exemple 22 (Quelques coefficients binomiaux) Soit 7 € N.

e (1)=1, ()=n, (")=0.Eneffet,

o’ o’

n
® Lorsque n = p, calculer le produit:  [] ekx.
k=p
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e ()= @ En effet,
o [Cas n =2 : expression factorielle]

4

o [Cas n € {0,1} : vérification « a la main »|

e (1)= —”("_16)("_2). En effet,
o [Cas n = 3 : expression factorielle]

4

o [Cas n €{0,1,2} : vérification « ala main »]

Proposition 9 | Propriété des coefficients binomiaux
fSoitneNetkeZ.

® [Forme simplifiée] Si0O<k<n,

(n): nn-1)...(n-k+1) ﬁn k+l

k k! Pk
® [Valeurs remarquables]
n n n n
= = 1, = =n.
PR
® [Symétrie] ® [Formule d’absorption]
n n-1
kl. |= )
-1

® [Formule de Pascat]

et

Preuve  Pour simplifier, nous faisons les preuves uniquement dans le cas ol 'expression

factorielle est en vigueur. Les autres cas se traitent a part sans difficulté.

® [’idée aretenir c’'est qu'on peut simplifier n! avec (n — k)!. On a plus formellement :

(n) B i = H?ZI i = "_‘1 L% H?_"‘k“ i — H;l:n—kﬂ i _ H?:n—k+1 i
= — = — = = = .
k] kin-k) k!x[I"Fi k! XM k! k!
On obtient alors la premiére forme. On a par ailleurs, en faisant un changement d’indice
au numeérateur :
l_[:L:n—k+1 l — l_[;l:n—k+1 l
k! e, i
Lo ) i=n-k+je j=i-n+k
_ Hj:l(n —k+j)

n
tll

(n k+i) * n- k+l

= - H

zll -

® Valeurs remarquables déja vues partlellement, les valeurs (") et (") sont une consé-

quence de la symétrie que nous allons justifier plus tard.

® Supposons que 0 < k < n.Alorson a0 < n—k < n al'aide dopérations élémentaires sur

I'encadrement. On a alors :

n o\ _ n! _ n! _[n
n-k| (n-k)l(n-(n-k)) (n-k)lk! \k|

® Nous faisons uniquement la preuve dansle cas 0 < k < n, les autres se vérifient a part. On
aalors 1 < k < ndoncen particulier0 < k s net0 < k—1 < n—1,'expression factorielle
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est en vigueur.

® Nous faisons uniquement la preuve dansle cas 0 < k < n, les autres cas se vérifient a part.

n n\_ n! n!
k) k1) =k T e+ Din-k-1)!

_ n! 1 1

= k!(n—k—l)!(n—k+ k+1)
_ n! k+1+(n-k)
- k!(n—k—l)!((n—k)(k+1))

_ n! n+1

Tkl (n-k-1)!(n-k)(k+1)
3 (n+1)!

T (k+1)((n+1) - (k+1))

_ n+1
“k+1)

VISUALISATION A L'AIDE DU TRIANGLE DE PASCAL. La formule de PASCAL per-
met aussi de calculer la valeur des premiers coefficients binomiaux, de maniére «ré-
cursive » (i.e. en utilisant les valeurs calculées précédemment).

Dans le tableau ci-contre, les cases
contiennent les valeurs de (). D'apres
la formule ci-dessus, chaque case est la
somme de celle directement au-dessus,
et de celle au-dessus a gauche puisque la

nlk— 01 2 3 4 56
0 1
1 11

2 121 formule de PASCAL est :
1 n n
3 13]3]1 vinen, |77 = +[ ).
' T olk+1 k+1) \k
4 14641 Par exemple :
5 151010 5 1 (4)_(3)+(2)
6 16 15 20 15 6 1 3 3 2

4=1+3.

' Exemple 23 Dans cet exemple, deux exercices classiques (indépendants)
sur les coefficients binomiaux. Soit (p, n) € N2,

1. Justifier que: ﬁ(g)=ﬁ(;ﬂ)
04

p

2. 21) Montrer, en utilisant la formule de Pascar, que:  Yj_ ('; )=(00)
4

2.2) Interpréter (a I'aide d'un dessin sur le triangle de Pascat) la formule
précédente.

4

La formule de PascaL permet aussi de démontrer un fait qui pour I'instant n’était
pas évident : les coefficients binomiaux sont des entiers.

Corollaire 1 ] ] ] -
Les coefficients binomiaux sont des entiers positifs.

Preuve  Montrons la propriété 2#(n) «Vk <n, (Z) eN» pour n € N, par récurrence
simple sur n. (notez que la propriété ne dépend que de n, l'indice k étant muet a cause du
symbole V)

Initialisation. Montrons que:
®Sik <0,alors (})=0€N.

Vk<0, (})eN.
®Sik=0,alors (j)=1€N.
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Hérédité. Soit n € N. Supposons que: Vk < n, (;)€N. Montrons que :

n+1
Vk<n+1,( k )EN.

Soitdonc k < n+1.
® Sik=n+1,alors (") =("")=1€eN.
® Si k < n. Alors d’'apres la formule de PascaL:

) 1) e

eN (HR) eN(HR)
Le corollaire est donc établi par principe de récurrence.

— Théoréme 1| Formule du binéme de NEwWTON
Soient (a,b) e K*etneN.Ona:

(a+b)" = f(;)akb"-k (zi(Z)a”‘kbk).

k=0 k=0

version en général utilisée version en général utilisée

pour citer la formule pour développer

Preuve  Constatons d’abord que :

o L I N L P
a“b = a" "b".
£ it £

Soit (a, b) € K?. Montrons par récurrence que :

YneN, (a+b)"=)Y (:)a"h"".

k=0

o (0 0
Initialisation. Ona(a+b)’=1et ) (k)akbo'k = (O)aobo =1.
k=0

Hérédité. Soit n €N, on suppose que (@ +b)" = Y (k) kpn=k_ Alors :
k=0

(a+b)™ = (a+Db) Z (Z)a"b""
- Xn:( ) Ic+1hn—k+ Xn"

k=0

k

en posant i =k +1

> linéarité de la somme
(I’l kbn+1 k \>

+ n n
— ( )aibn—i+l+ Z kbn+1 k
-1 k=0

— n+1+ Z n akbn+1—k+bn+1
k=1 k

i (n + 1) kbn+1—k + bn+1

_'il(”"' ) kpn+l-k_

D’ou le résultat par principe de récurrence.

( n+1 bo + Z (l B l)aibn—iﬂ + Z (k)akbnﬂ—k + (Z)a()bnﬂ—o

> formule de PAscAL

Remarque 10 Danslaformule dubiné6me de NEwTON, que nous utiliserons pour

I'instant seulement dans des cas ou n a une valeur précise (et petite) :

1. tous les termes sont des produits d'une puissance de a et d'une puissance de
b, de telle sorte que la somme de ces puissances monrougeonne 7. Et toutes
les possibilités apparaissent.

2. Le coefficient binomial devant le terme a*b" ¥ est (1) ou (cest pareil) (,",),
autrement dit c’est la puissance de a ou de b parmi la puissance totale 7.

3. En particulier les coefficients devant a*b"* et devant a"*b* sont les
mémes. La formule est donc symétrique par rapport au « milieu » de la
somme.

4. Quand n est petit, il suffit donc souvent de calculer jusqu’a (;’ ), au pire des cas
jusqu’a (g) et ceci peut se faire facilement avec la formule avec la factorielle
ou le triangle de PAsCAL.

5. Traditionnellement, lorsqu'on applique la formule, on commence par les
grandes puissances de a (forme entre parenthéses de la formule).

Exemple 24 Développer, pour a et b deux éléments de KK, (a + b)?, (a+b)3, (a+
b)*,(a + b)°. Complétez en méme temps le triangle de PAascaL dans la colonne
de droite.



O
N [ i ””””””””””””””””””””””””” o TTTTTTTT T T T e T '
3 (a+b’s 1 1
g 1 1
8 : : :
© 1 1 -
= e L ! Exemple 26 Simplifier pour n e Net p €]0,1[ :
g (a+b) = 3 3 = (1) k n—k I LI n-k
2 | | | L=) |, |p*(-p)"™%, E=) k|, |p*Q-p)" "
1 | 1 k=0 \k k=0 \k
3 3 3 Toute l'assemblée aura bien siir reconnu l'espérance d’'une loi binomiale
! ! ! Note dansE
AP G e |
| (a+b)* = | 3 4
C(a+b¥®= §

17

Exemple 25 Ecrire une formule pour (a — b)".

n SOMMES DOUBLES

Le résultat qui suit n'est a apprendre par coeur, mais est tres classique.

Corollaire 2 | Deux cas particuliers

Soit 1€ N. D}ans ceitte der.mere section, on s'in-
" n . téresse a la notion de somme double,
n\ ., n k_JO sin=1, : ) L
> ol = 2", ) f (-1)*= ] i.e. de termes possédant deux indices
k=0 k=0 1 sinon. etnotés a;;,1 <i<n,1<j<pavec

n,p = 0. Afin d’alléger la présenta-
P"e“"e tion, on suppose donc que les indices
- i,j sont définis a partir de 1, mais na-
turellement ces notions peuvent étre
étendues a des sommes doubles plus
générales, comme pour les sommes

simples.

On peut alors imaginer que les termes sont regroupés dans un tableau a deux en-
trées. La zone sur fond rouge correspond alors ce que nous appellerons dans la suite

/M/ Lycée Michel MONTAIGNE — Bordeaux
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la surdiagonale du tableau.

m Sommes doubles libres

Commencons par une propriété qui nous servira dans la suite : on peut toujours
permuter deux sommes simples.

Proposition 10 | Permuation de sommes simples
Soient (n, p) € (N*) et (a; ;)1<i<n € K", alors :
1<j

n p p n R
2 a=) ) ai
i=1j=1 j=li=1

La formule se justifie sans trop de difficultés en revenant a la définition de somme
simple. Mais de maniere plus visuelle, constatons qu'elle signifie qu’il revient au-
méme de sommer tous les termes du tableau en le parcourant ligne apres ligne ou
colonne apres colonne. Logique! Plus précisément,

p
® pour i fixé, ) a; ; correspond a la somme des coefficients sur la ligne i,
j=1
n
® pourjfixé, > a; ; correspond a la somme des coefficients sur la colonne j.
i=1

Lordre de sommation n'a pas d'importance et on peut adopter la notation com-
pacte:

Notation Somme double libre

Soient (1, p) € (N*)? et (a; ;)1<i<n € K.
T lsjsp
® On appelle somme double des a;;,1 < i < n,1 < j < p, la quantité notée

> a; j ou encore > a; j, définie par :
1<isn (i,))e[1,n] x[1,p]

1sj<p
n p P n
D A=) ) ai=) ) a4

1<isn i=1j=1 j=1i=1

1sjsp
® FEtlorsqu’'on somme sur la méme plage d’indices, c’est-a-dire n = p, on note :

n n n n
2 @y= ) @ =) ) 4= ) a

1<i,j<n (i,j)e[1,n]? i=1 j=1 j=1i=1

Remarque 11 Méme si ci-dessus il n'y a qu'un symbole somme, on a bien deux
sommes simples cachées derriéere.

Exemple 27 Calculer ) (j-—i).

1<i,jsn

CAS PARTICULIER : SOMMES DOUBLES A INDICES SEPARABLES. On préciseici
le cas de sommes doubles libres s’écrivant sous une forme particuliere. Commen-
cons par un premier exemple.

Exemple 28 Calculer Z 277 pour nn = 1.
1<i,jsn
7

De maniere générale, on a la formule suivante.
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Proposition 11| Somme double a « variables séparables »

Soient (n, p) € (N*)? et (a,1)1<,<n € K"P, alors :
1<j<p

£ o) (o)

—

P p
Preuwve Ona: Vie[l,n], ) ab;= (Z
=

) par linéarité de la somme (a; est une
j=

constante par rapport a la somme en j).
p

Or, B = Zi b; est une constante par rapporta i, donc:
i

£ o= £ol£o)- Lan[Lafo-(Ea)[£0)

m Sommes doubles sous contrainte

L'idée estici de définir la somme sur le triangle supérieur du tableau (en rouge clair).
Cela consiste a instaurer une contrainte entre les deux indices. Regardons la seconde
ligne du tableau, pour i = 2, alors j parcourt 2 = 2,3,..., p, plus généralement on a
ligne par ligne larelation 1<i<j<p.

Proposition 12 | Permuation de sommes triangulaires
Soient (1, p) € (N*)? et (a,])1<,<n e K"P avec n = p, alors:

1sj<p
n
p3

o Attention

Contrairement a la somme sur un rectangle, les bornes de la somme intérieure
dépendent de I'indice de la somme extérieure.

Méthode (ALG) 4.5 (Permuter des sommes simples a indices liés) Pour retenir

ZZa,, ZZ%

i=1j=i j=li=1
toujours garder a I'esprit 'encadrement entre les indices: 1 <1i <j < p. Ainsi,

n o J
pour Y ) a;:

j=1i=1
® si i n'existe pas, j se balade entre 1 et p, ce qui explique la somme extérieure
enj.

® Sijestfixé entre 1 et n, alors i se balade entre 1 et j, ce qui explique la somme

intérieure en i.

Notation Somme double sous contrainte

Soient (1, p) € (N*)? et (a”)1<l<n e K"P avec n = p. On appelle alors :
<p
® somme double sur le trlangle supérieur la somme

P p P
Y, =2 ) a=2 ) aj
1$l$]$p i=1 ]:l ]=1 i=1
® somme double sur le triangle supérieur strict la somme

Z Qaij = Z Za,] ZZ“,}

1<i<jsp i=1 j=i+1 j=2i=1
Exemple 29
1. Soitn eN. Calculer Y (j-—i).
O<isjs<n
D’

2. Soit n € N*. Calculer ZZE
i=1j= iJ
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CODAGE INFORMATIQUE D'UNE SOMME DOUBLE. Passons maintenant a l'as-
pect informatique du symbole somme double.

n p
>_® (calculde ) > a;))
i=1j=1

def somme(p, n):

S=20

for i in range(1l, n+l):

for j in range(1l, p+1):
S += a;; # a adapter en fonction de la somme
return S

On adapte aussi facilement aux sommes doubles a indices liés.

>_® (calculde ) a;;

1<sisjsp
def somme(p):
S=0
for i in range(1l, p+1):
for j in range(i, p+1):
S += a;; # a adapter en fonction de la somme
return S

Exemple 30 Ecrire deux fonctions d’en-tétes sommedoublel(n, p) et
sommedouble2(n, p) prenant en argument deux entiers n et p, et retour-
nant les valeurs des sommes ci-dessous.
o« Y (j-iy

p<i,jsn

P4
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FICHE METHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

(Changement d’indice de translation « ¢ = k+1,¢ = k+7?»)
® [Décalage d’un rang]

ntl { (—)enposant =k +1

Zak_g%"ﬂae ! («~)enposant k =¢ —1.

® [Décalage de plusieurs rangs] Soit N un entier. Alors :
niN { (—)enposantf =k +N

de—egera[ N (<) enposant k = ¢ —N.

(Changement d’indice de renversement « ¢ = n — k »)
Za Z“ (—)enposant¥ =n—k
LI n=¢ («<)enposantk=n-/¢.
A dr01te, on d01t conserver une borne de début de somme qui est inférieure a la

borne de fin de somme pour ne pas avoir une somme vide (gardez a l'esprit la
convention d’ordre des bornes).

(Séparation de somme en indices pairs/impairs) Lorsque
le signe change en fonction de la parité de 'indice, il est parfois intéressant
de séparer la somme des indices pairs de celle des indices impairs. En d’autres

termes :
2n
Y ap=ag+a; +-
k=0

+ a1+ ayy
= (a0+a2+"'

n n—1
=) Gt ) Ay
k=0 k=0

+ay,) +(ay +ag+ -+ az,_q)

(Séparation de produit en indices pairs/impairs) 1l est
parfois intéressant aussi de séparer les produits selon leurs termes impairs et
pairs. En d’autres termes, on a :

2n n n—1
H ai = H Ay X H Ak+1
k=0 k=0 k=0

=(ay x ay x - xay,) x (@ xagx ... xdy, ).

(Permuter des sommes simples a indices liés) Pour retenir

n n n Jj
L LG = 2 2 i
i=1j=i j=li=1

toujours garder a 'esprit 'encadrement entre les indices :
noJj
pour ) ) a;;:
j=1i=1

® si i n'existe pas, j se balade entre 1 et p, ce qui explique la somme extérieure
enj.

® Sijestfixé entre 1 et n, alors i se balade entre 1 et j, ce qui explique la somme
intérieure en i.

1<i<j<p.Ainsi,
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QUESTIONS DE COURS POSEES AU CONCOURS AGRO—VETO n EXERCICES
- - - La liste ci-dessous représente les éléments a maitriser absolument. Pour les travailler,
Question Reponse Commentaire ‘ il sagit de refaire les exemples du cours et les exercices associés a chaque item.
Pour n un entier naturel, Yo k=20 et L.
rappeler les valeurs des Y7o k2 = nosiend) - Savoir-faire .
sommes ZZ—O k et ZZ—O 2 1. Connaitre les manlpl‘ll.atlons sur les sommes et prodl'nts :
= = ® connaitre la définition de la somme et sa convention ........................ O
Pour 7 et k entiers naturels, ("= { T Sf Osks<n, R a T : savoir passer c!’un'e'notation en fextension a une notation avec le symbole }, [T
donner Pexpression du 0 sinon. conventions. connaltre la définition de produit et sa convention .................... ... ... ([
. . R ® connaitreles sommesusuelles. ............. .o i O
coefficient binomial (k) ® savoir utiliser la linéarité, 1a relation de CHASLES .« .. .uvvveneneeeeeenanennnnn O
Formule de PascAL sur les (2 + (" = (1) ® connaitre les différentes propriétés des sommes et produits.................. O
coefficients binomiaux 2. Savoir utiliser les méthodes de calcul de sommes et produits :
® lechangementdevariable.......... ... . i (I
® les sommes et produits télescopiques......... ..ot O
3. Concernant les notions de factorielle et coefficients binomiaux :
® connaitre les définitions et propriétés de la factorielle........................ O
® connaitre les définitions et propriétés des coefficients binomiaux ............ O
® savoir utiliser la formule du bindme de NEWTON . ...............coiiiiii.n. (I
4. Concernant les sommes doubles :
® connaitre la définition d'une sommedouble ............. ... ... .. ol O
® savoir effectuer une permutation de SOMMES. ........covvvreenreninennnn... O
Signalétique du TD
® Lelogo B désigneles exercices que vous traiterez en devoir 4 la maison. Vous pouvez
m'en rendre un ou plusieurs, au plus tard le lundi qui précede un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.
® Lelogo @ désigne les exercices un peu plus difficiles; a aborder une fois le reste du
TD bien maitrisé.
Cahier de calculs
Fiche(s) a travailler : 19

Factorielles

Exercice 1 | Soit n €N, n = 3. Simplifier les nombres suivants :
7! _ 3x4! C= n! _(n+1)! —(n+1)!+ n!
e T @32 T (n-1) T (n=-3)Y T (n=-2) (n-1)V




O
S Solution (exercice 1)
8 e A=D=D8 -
x4! x4 x3!
63 i Is:ziﬂ; = ;;2;2-_I!I
_ _ nx(n-1)! _

'\: ® C= (n 1)| - (n-1) -
%) e D= (n+1)! _ (n+1)><n><(n 1)x(n—-2)x(n-3)!
®, = (3 T (n-3)!
m __(n+1N

® E=(im t ooy

—|(n +1)n(n-1)(n-2).

=(n+n(n-1)+n=nn*-1+1)= -

23
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Sommes

Exercice 2 | Des points de suspension au symbole Y Ecrire les sommes sui-
vantes en utilisant le symbole }_ :

1. In2+In3+In4+--+In1o0, 2. 3*%43%+3%4 .. 4315
1 1 1 1 1 1 1
3. 2+4+6+8+--+1024, he 1+3+3+1+i+2+243,
1 2 3 4
5. E+Z+§+E+ +@, 6- 2_4+6_8+-.-+50-

Exercice 3 | Soit n € N*. Remplacer le symbole * dans les égalités suivantes :

n+3

Z -1 = Z aj,

*
Z Gyp + Z A1 = ) a;.
k=1 k=1 j=*

1 Z(k+l)ak— Z]a*, 2.
] *
n+l1

3. Zank—Za, 4.

Solutlon (exercice 3)

n+1

Z(k+l)ak— Z] ]_
k=1 j=2
n+3 n+2
2. Z ak_l = Z a;,
I’l+l
3. Z Ay = Z a;,
j=—1
n] 2n+1
4, Zazk"' Z a2k+1 =(12+a4+"'+02n+a3+a5+‘”+02n+1 = Z Llj.
k=1 k=1 j=2

Exercice 4 | Calculs de sommes (hors téléscopage) Calculer les sommes sui-
vantes (ol n désigne un entier naturel non nul) :

10.

13.

10 2022

Yk, 2 Y o, 3.
k=1 £=2000

n —k n

Y 27k, 5 ) (2k+1), 6.
k=0 k=1

n Sk n

> = 8 Y (2F+k*+2) 9.
14 k=0

i i 2kl . i 2% x K avecx #0, 12.
k=0 k=0 k=0

n n—1

Y (3x2F+1), 1. 13 exp (k)
k=1 k=0 n

Solution (exercice 4)

N

10 10(10+1
LI
2022

> n:(2022—2000+1)><n:.
x(6+1)x(2x6+1)

552000
y i<t
=0 $

55]

i=0

i 2k
5%,

k=0

nok* -1

k; k+1

n

Y (2i-1)°

n
Y 25*
k=0

=7x13=[91]
n no1 n 1k no(1\k
Ona: ) 27%=3Y —=3% —= Z(—) .Puisque ; # 1,0na:
k=0 k=02"  k=02"  k=0\2
no(1\k 1- 1\n+l 1\n+1
& -5 =2 6))
k=0\2 1-3 2
1 n 1 n(n+1)
Z(2k+1)=22k+Zl:ZxT+n=n(n+1)+n=.
k=1 k=1 k=1
n n n
Ona: Y 5% = Y (5%)F = Y 25 Puisque 25 # 1, on a :
k=0 = k=0
1-25"1 1
= —(25"“—1).
1-25
nogk 1 23k
=- .Puisque 2 # 1,0ona:
§4k+1 4,;(4) 1€
i(s)k (3)1 - s 1-@)
—_ = |- X = —X
= \4 4 -3 4 1
D’ou:
R A i
=+ X —-X =|— i K
=) 4k+1 4 4 4
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8. Puisque 2 # 1 (pour la calcul de la somme géométrique), on a:
n n 1-2"" n(n+1)2n+1
Y (2F+k*+2)= + ( X )

Y2k Y K2+ Y 2=

k=0 k=0 k=0 k=0 1-2 6

1 +1)2n+1
donc: Z(2k+k2+2):2"“—1+n(n ;(n )+2(n+1).

nop2_1 n -1 n n-l1 n—1)n
—Z( )M_Z(k—l) Zh( ) _
- k+1 o J=+T 2

10. On reconnait la somme des termes d'une sulte geometrlque et on ob-

Z (xZ)k —
k=0

+2(n+1),

9.

tient donc en utilisant le fait que x%* = (x2)* : Z x2k

1_x2n+2 . .
T2 Slx#Fletx#-1ln+1l six=1loux=-1. |
On reconnait pour la deuxieme la somme des termes d’'une suite géomé-

trique et on obtient donc en utilisant le fait que x***! = (x2)* x x

n n
Y a2k = x ) (x2)k
k=0 k=0

X x l‘lfi";z six#1,x# -1,
=dn+l six =1,
—(n+1)
11. On reconnait la somme des termes d’'une suite géométrique et on obtient

. - kodk .~k _ _k(o3yky 1 _ k._ak. (1\k _ (8a\k.
donc en utilisant le fait que a*2°*x™* = a*(2%)* x Jr = a* x8" x (1)" = (&)":

six=-1.

8a n+1
n "o (8a\k i six #8a
Z ak23kx—k — Z (_) — 1_(8_a) )
- —\ x x
k=0 k=0 n+1 six =8a.

12. On commence par développer la puissance cube a I'intérieur de la somme
n

puis on utilise la linéarité de la somme. On obtient donc : Y (2i —1)% =
n n n i=1

Y (8i*-12i*+6i-1)=8) i*-12) i*+6

i=1 i=1 i=1

n n
Y i—)_1.Onutilise ensuite le
i=1 =1
“ n(n+1
formulaire sur les sommes et on obtient alors: Y (2i—1)° =8 (%) -
i=1

nn+1)2n+1 n(n+1
12 )6( ) 46 (2 )—nz\n2(4n2+4n+1).|
n n n —on
3. Y (3x2F+1)=3 )Y 2F+ Y 1=3x2x : + n par linéarité et car 2 # 1.
k=1 k=1 k=1 -

n
Donc Z(3x2k+1):6(2”—1)+n.
k=1

1\n
LS k 11k 11_(6") 1 .
14. - ) exp(—| = — (en) = = : car e» # 1. Ainsi
k=0 n = n 1-en
, el ky 1 1-e
S expl—|=— T
k=0 n nl—en

Exercice 5 | Calculs de sommes avec formule du binéme Soit n € N*. Calculer
les expressions suivantes :

M=

n n+l1
> (’?)aj, > (;Z)af avec a € R,

j=1

~
I

e £ e
i)
T= kék(k— 1)(2),

1 (n
i+1\il
n

n\| . i A " n| .
1) ( )af = (1+ a)"|enreconnaissant un binome de NEWTON car )_ ( ,)a’ =
]:0 j=0 ]

=
—_

S
~————
~

|
R~
=
—
~
S
|

b
Il

0

2]

—

|

=

~.
—_——
~. S
~—————

(2]

puisS, = Y kz(Z),

k=1

®
1M

Solution (exercice 5)

n
Z ( )afln ~J. Pour la seconde, on se raméne a la formule du binéme de

n+1 n . n (n i n
NEwTON en utilisant la relation de CHASLES : ) | . |a' =Y [ |4’ - 0 a® +
j=1\J j=0

( ) "*1, Par convention, ona: (" ) =0 etainsi on obtient en utilisant le

n+1
n+l(p) .

bindme de NEwWTON :| ) ( =0 +a)" -
j=1

n n (n .

2. Z ( 1Y =0| grace au binome de NeEwrton car ) [ |(-1) =

j=0 j=o0\J

n

Z( )( 1))1"7 = (1 — 1)". Pour la seconde, on se raméne a la for-

j=0

mule du bindme de NeEwTON en utilisant la relation de CHASLES :

Z(n+1)( N = ’il(n+1)( - (n+1)(_ o _ (n+1)( el =

i=0
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. On peut déja remarquer que : S; = Z ]( )

Q-1 —1-(-1D)"" =1+ (-1)"? =1+ (-1)"=(-1)"-1.

n+1
Ainsi on obtient que : Z( ; )( 1) =(-1)"-1.
i=1

. On se ramene a la formule du bindbme de NEwTON en utilisant les pro-

n\(-1y7! -1 1\
priétés sur les puissances. On obtient : Z j = Z ( )

0 2]+1
—1( 1)" -1
—(1-=| = .
2 2 2n+1

n-1

i=03%\k)  =o\k

"1 (n n\(1\k_, . o o
= =) (5) 1"7*. Afin de pouvoir utiliser la formule du biné6me

n-11 [n
de NEwTON, on utilise la relation de CHASLES pour obtenir : »_ S_k(k) =
k=0

éo(Z)(é)kln_k‘(Z)(%)n:(H%)"_gin:(%)”_gin: 4';;1.

(e S0 e

on ne sait pas calculer la somme sans transformation car il y a le j. On utilise
d’abord une propriété des coefficients binomiaux, et on obtient :

- S5)- Sl )£ (0

car n est alors 1ndependant de l'indice de sommation donc on peut le sor-
tir de la somme. Pour se ramener a du bindme de NEWTON, on commence

" |n
par poser le changement d’indice : i = j — 1 et on obtient S; = )_ j( ) =
j=0

n Z ( ) (c’est ici qu'il est mieux d’étre passé au début d'une somme al-

lant de 0 a n aune somme allant de 1 a n car sinon on aurait un indice com-
mencant a -1. Si on n’a pas changé la somme au début, une autre méthode
est alors de faire ici une relation de CHASLES afin d’isoler I'indice -1). On re-

= Z](n) =n2" 1.
j=0 \J

connait alors un bin6me de NEwWTON et on obtient|S;

. 1l s'agit ici d’appliquer deux fois de suite la propriété sur les coefficients bi-

-1

nomiaux: T=n Z (k- 1)( . 1) en reprenant les calculs faits au-dessus. On
k=2

pourra aussi remarquer que la somme T peut étre commencée a 2. Puis en

réappliquant la propriété sur les coeflicients binomiaux : (k — 1)(2:}) =(n-

15 )onobtlentque T=n(n-1) Z(k—

2
) On effectue alors le change-

1. Justifier que: L = ﬁ -

2. Calculer: )

Solution (exercice 6) Soitk=>2,0ona: X —

n-2 -2
mentd'indice j = k—2 etonobtientT = n(n-1) ) ( ) Donc en utilisant
j=0 .]

n

le binéme de NEWTON, on a : ‘T =n(n- 1)2"‘2.‘ Calculde S, = ) kz(i) :
k=1

Comme k? = k(k — 1) + k et par linéarité de la somme, on obtient que :

S, = sz(”) - fk(k—l)(”)+ Zk(”) - ik(k—l)(”)+ Zk(”) .
k=1 \k) &= kI s \k) k= k] = \k

. La encore, il faut commencer par utiliser la propriété sur les coefficients

binomiaux. Comme (i + 1)(}}) = (n +1)(7), on obtent que : (7)) =
" 1 [n 1 [n+1
1 (n+l . . .
—(.. ). Ainsi, la somme devient : S; = — =
n+1(1+1) 3 i:0i+1 ) E&n%—l i+1

1 n+1
1 Y (i+ 1) car — ne dépend pas de l'indice de sommation i. On
i=0

fait le changement d’indice j = i + 1 et on utilise aussi la relation de
CHASLES pour faire apparaitre le binbme de NEwToN. On obtient S =

i-l (n): 1 'il(n-f-l): 1 g(n;-l)_(n(-)i-l)

. Ainsi, on ob-

ol t1li n+l ;3\ Jj n+1
1 (n 1

tient|S; = ) - 1= [27+1 -1].
ol +1\1 n+1

Exercice 6 | Téléscopage simple Soit 1> 2.

1

e 1, pour tout entier k > 2.
L 1

=
_ K- _

1
k-1~ k — k(k-1) ~ k>—k

) )

Il
=
|
N —
+
ot
|
N —

Exercice 7 | Téléscopage multiple
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1. Déterminer trois réels a, b et c tels que :

Vk e N¥, ; a+L+ ¢ .
k(k+1)(k+2) k k+1 k+2
n 1

En déduire la valeur d _ .
n déduire la valeur ek;lk(k+l)(k+2)

2. Retrouver ce dernier résultat par récurrence : montrer que pour tout n = 1,
i 1 3 n(n+3)
Sk(k+1)(k+2) 4(n+1)(n+2)

Solution (exercice7)
1. ® On commence par montrer qu’il exjste trois réels a, b et c tels que pour
tout k e N* @ oy = £ + —b_ 4 _¢ Enmettant au méme dénomina-

k(k+1)(k+2) k+1 k+2
* 1 _ (a+b+c)k®+(3a+2b+c)k+2a
teur, on obtient que : Vk eN, s = ()

Cette relation doit étre vraie pour tout k € N* donc, par identification,
a+b+c =0,

on obtient que : { 3a+2b+c =0, donca =c = % et b = —1. Ainsi,
2a =1
btient linéarité i 1 lil i 1+
on obtient, par linéarité, que : - -z - _ —
P e Lk D(k+2) 25k Akl

1 n
2 X es

k+2
® ]| s'agit alors bien d'une somme télescopique. On pose le changement

d’indice : j = k + 1 dans la deuxieme somme et le changement d’indice :
i = k +2 dans la troisieme somme et on obtient :

&

PPN S I SL S
i k(k+1)(k+2) 2ok ) 23
1 21 nll 1n+21
= — —_— —_ 4+ — —
2Lk BrTzhk
1 1 1 1 1 1
:_1+_)_(1+ )+_( " )
2 2 n+1l 2\n+1 n+2
3 n(n+3)
T l4(n+1)(n+2)

en utilisation le fait que 'indice de sommation est muet, la relation de
CHASLES et en mettant tout au méme dénominateur.
2. On établie maintenant le résultat précédent par récurrence sur n € N* la pro-
priété:
1 n(n+3)
P(n): Z

k(k+)(k+2) 4n+)(n+2)

1 1 1 1
Initialisation. D’un c6té, ona: =—.De
Z k(k+1)(k+2) 1(1+1)(1+2) 6
’ Az . n(n+3) _ 1(1+3) _ 4 1
l'autre coté, on a: D) = T0+1(152) = Ix6 = 5 Ponc 22(1) est vraie.

Héréditée. Soit n € N* fixé. On suppose la propriété vraie au rang

n+l 1
k; k(k+D)(k+2)

d’apres la relation de CHASLES.

n, montrons qu'elle est vraie au rang n + 1.

d 1 1
L GG 2 T D2+ 3)
Puis par hypothese de récurrence, on obtient que :
ntl 1 _ n(n+3) 1
k; k(k+1)(k+2) 4(n+1)(n+2) " (n+1)(n+2)(n+3)
_ n*+6n°+9n+4
T 4(n+1D)(n+2)(n+3)
en mettant au méme dénominateur. Pour le numérateur on remarque que -1
est racine évidente et ainsi en factorisant par n + 1 on obtient par identifica-
tion des coefficients que : n® +6n?+9n+4 = (n+1)(n*+5n+4). Puis le calcul
du discriminant donne que n®+6n?+9n+4 = (n+1)(n*+5n+4) = (n+1)(n+

o . n+1 1 (n+1)(n+4)
1 4). A btient : - D
)(n +4). Ainsi on obtient que k; k(k+D(k+2)  4(n+2)(n+3)

P(n+ 1) est vraie.
Conclusion : il résulte du principe de récurrence que pour tout n € N* :
2": 1 3 n(n+3)
Zk(k+1)(k+2) 4n+1)(n+2)|

Exercice 8 | @ Une récurrence

1. Montrer, par récurrence, que pour tout 7 € N,

n
Y kxkl=(n+1)-1.
k=0
2. Retrouver le résultat précédent en faisant apparaitre une somme téléscopique.

Solution (exercice 8)

n
1. Montrons par récurrence sur n € N la propriété 2(n): ) kk!=(n+1)!-1.
k=0
Initialisation. pourn=0:ona Z kk!'=0et1!—
k=0

Soit n € N. On suppose la propriété vraie a I'ordre n, vérifions que

1 =0. Ainsi, £2(0) est vraie.

Hérédite.
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2 (n + 1) est vraie. On a, en mettant a part le dernier terme de la somme :

n+l n
Y kk!=)Y kk!'+(n+1)(n+1).
= k=0
Par hypothese de récurrence, on a
n+1
Y kkl=(n+1D)!I-1+(n+1)(n+1)! =(n+(n+2)-1=(n+2)!-1.

k=0
Ainsi, Z(n + 1) est démontrée. Il résulte du principe de récurrence que :

n
VneN, ) kk!'=(n+1)!-1
k=0
2. On peut aussi calculer directement :

Y okxkl= Y (k+1-1)xk!
k= k=0

- f (k+1)k!—k!) = i ((k+1)!= kD
k=0 k=0

> téléscopage

Exercice 9 | & Sommes et dérivation Soit 7 € N*. Pour tout x € R~{1}, on pose
n
f)= Y xk.
k=0

1. Calculer f(x).
n n
2. En dérivant, calculer Y kx*~!, eten déduire Y kx*.
k=1 k=1
n
3. Calculer delaméme fagcon: ) k(k-— 1)xk=2
k=2

Solution (exercice 9) 1 s'agit ici du méme type de méthode que pour
I'exercice précédent sauf que cette fois ci, on 'applique a la somme des termes
d’une suite géométrique et plus au bindme de NEWTON.

1. On reconnait la somme des termes d'une suite géométrique et ainsi, on ob-

n+1

d’'une somme étant égale a la somme des dérivées, on obtient que :

VxeR~{1}, f'(x)= kak !

La somme commence bien a k =1 car le terme pour k = 0 dans f(x) est
le terme constant 1 qui est nul lorsqu’on dérive.

1+nx"" —(n+1)x"
(1-x)?

n
On obtient donc que : [Yx e R~{1}, Y kx*'=

n n
Ona: Y kx*= )Y kxxx*'= x*~1. D’apres la question précédente,
=1

k=1

3 *M:

1 +nx" —(n+1)x"

on obtient donc : [Vx € R~ {1}, Z kex* (1—x)

. Il faut ici remarquer que la somme correspond a dériver deux fois la somme
n n

f(x)= Y x* =1+x+ Y x*. La fonction f est bien deux fois dérivables
k=0 k=2
comme fonction polynomiale.

Et en dérivant deux fois, on obtient bien: Vx e R~ {1}, f"(x) = Z k(k -
1)x*~2. Cette somme commence bien a k = 2 car quand on dérive deux fois

les termes 1 et x, ils deviennent nuls. En dérivant deux fois 'autre expression
de f, on obtient la valeur de la somme :

Vx e R~ {1}, k;k(k—l)xk‘2 =2

_2-n(n+Dx""+2(n® -1)x" - n(n-1)x""!

Exercice 10 | @ Sommes d’indices pairs et impairs Soit 7 un entier naturel
non nul. On définit les sommes suivantes :

n (2n n=lf 2p
S, = , T, = .
,;0 (Zk) ,§0 (2k + 1)

tient,comme x # 1: |VxeR~{1}, f(x) = 1=2—

. La fonction f est dérivable sur R~ {1} comme produit, somme et quotient

dont le dénominateur ne s'annule pas de fonctions dérivables.
® D’un c6té, la fonction f vaut: f(x) = == i, en dérivant, on obtient
que:

1+nx" —(n+1)x"
(1-x)?

VxeR~{1}, f'(x) =

n n
® De l'autre coté, la fonction f vaut f(x) = Y xF =1+ ) x*. La dérivée
k=0 k=1

1. Montrer que S, +T, =2?" etS, - T, = 0.
2. En déduire une expression de S, et de T, en fonction de n.

Solution (exercice 10)
1. ® Sion ne voit pas comment débuter, on commence par écrire la somme
2n
S, + T, sous forme développée. On obtient alors que : S, + T, = ) ( r )
k=0

car on se rend compte en écrivant les sommes sous forme développées
que l'on obtient au final la somme de tous les coefficients binomiaux: S,,
correspond en effet ala somme des coefficients binomiaux (2’? )avec k pair
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2. Il s’agit alors juste de résoudre le systeme {

et T, correspond ala somme des coefficients binomiaux (21? )avec k impair

donc en sommant les deux on a bien la somme de tous les coefficients
binomiaux pour k allant de 0 a 2n. Ainsi, d’apres le bindme de NEwTON,
on obtient que:|S, + T, = 2" = 4”.|

De méme, on peut commencer par écrire la somme S,, — T, sous forme

2n 2n
développée. On obtient alors que: S, - T, = >_ p )(—l)k car on se rend
k=0

compte en écrivant les sommes sous forme développées que 'on obtient
au final la somme de tous les coefficients binomiaux coefficientés par 1
ou par -1 : les coefficients binomiaux (2,:1) avec k pair sont coefficienté par
2,?) avec k impair sont coefficienté par -
1. Ainsi cela revient bien a sommer tous les nombres (2;)(—1)’C pour k
allant de 0 a 27n. Ainsi, d’'apres le bindme de NEWTON, on obtient que :

S, +T,=(1-1)"=0|

1 et les coefficients binomiaux (

S,+T, =2°",
S,-T, =0.

On obtient alors : 2, = 22", donc: [, =2*""etT, =S, = 22"

Exercice 11 | @ Inégalité de CAucHY-SCHWARZ Soient 7 > 1 un entier, et
x,), (..

(xq, .-

, V) deux éléments de R”.

1. Pourtout A € R, on définit: P(A) = ) (y; + Ax;)%
i1

11)

1.2)
1.3)

2. [Application] En déduire que: (Z —’.) <iy xi

Justifier que P est une fonction trin6me ou affine, dont on précisera les co-
efficients.

Quel est le signe de P?

En déduire I'inégalité de CAUCHY-SCHWARZ :

n n n
IEAA VDI RS DI+
i=1 i-1 i=1

Indication : On commencera par étudier le cas oiL :

Vie[l, n], x;=0

Solution (exercice 11)

1. 11)

1.2)
1.3)

2. [Application]

Soit A € R. Alors en développant le carré :

PO) = 3 (3i-+Axy)?
i=1

Y (¥ +2Axy; + A%x5)
izl

n n n
Y yEH2A Y xy + A Y X7
i=1 i=1 i=1

Il sagit donc:

> linéarité de la somme

n
® d'une fonction affine si )_ x% = 0. Alors dans ce cas le coefficient
i=1 Y
directeur esta =2 )_ x;y;, et l'ordonnée a l'origine b = Y_ y?2.
i=1 i=1
n n n
® D'untrindmesinon:aveca= Y x?>0,b=2) x;y;etc= Y y2.
i=1 i=1 i=1
Puisque P est une somme de carrés,ona: |[VA€R, P(A)=0]

n
® CasVie[l, n], x; =0, cest-a-dire ) x? = 0. Linégalité est simple-
i=1
ment 0 < 0, qui est bien s{ir vérifiée.
n
® Cas ) x? # 0. Dans ce cas, la fonction P est un trindme de signe

i=1
(positif) constant, donc son discriminant est négatif. Or,

n 2 n n
2 2 2
A=b"-4ac= (2 inyl-) —4Y xZx ) y?<o0.
i=1 i=1 i=1
n 2 n n
Ainsi, (2 Y x;3;| <4 ) x%x Y y?. Doulon tire en passant a la
i=1 i=1 i=1
racine (qui est une fonction croissante) et en simplifiant par 4 :

D XY <\/ lef x \/ Zyzz
i=1 i= i=1

Il suffit de choisir: Vi€ [1,n], y =.

L'inégalité de CaAucHY-SCHWARZ (€élevée au carré) donne alors :

noy. n no1
S ey adny o

13
i-1 o1 i-14

apparait alors dans le majorant une somme géométrique de raison i :

. 2 n
On adonc établique: || ) —'.) <1y xi

g1 _11-(G) 111
D44 1-1 a4
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Exercice 12 | @ Transformation d’ABEL  Soient n > 1 un entier, et

(x1,.e-, %), (M1y -+ ¥,,) deux éléments de R”. On définit de plus :
n n
Xn: Zxk’ Yn: Z.Vk'
k=1 k=1

1. Justifier que y,. =Y, - Yk 1 pour tout k=2

Z XY = Z (%r = Xps1) Y+ X, Y,
=1 k=1
tion sert pour I’ tude de la convergence de certaines suites numeériques.

2. Montrer1'égalité: Ce type de transforma-

Solution (exercice 12)

1. Laformule [y, = Y; —Y; ] m pour tout k = 2 découle d’un simple téléscopage.
-1

Zxkyk_ Z (xk xk+1)Yk+x Y
k=1 k=

2. Montrons I'égalité :

Commen(;ons par traiter le cas n > 2.D’ apres la questlon precedente, nous
avons
Z XYk =X+ Z X (Y —Yeoy)
k=1 k 2 linéarité de la somme
=N+t Z XYy — Z X3 Yoy
k=2 k=2 changement d'indice ¢ =k —1
n n-1 dans la deuxieme
=00+ 2 Xk Ye— 2 Xpa Yo
k=2 /=1 > o
indice muet
n n—1
=001+ ) X Ye— ) X Y
k=2 k=1 regroupement des sommes sur
n-1 les bornes communes
=x +x,Y, —x,Y; + Xp—X Y
1N n-n 21l kX::Z ( k k+1) k les termes surlignés
n-l correspondent au terme k =1
de la somme
= Y (X = Xpu1) Yie + X, Y,
k=1

Produits

Exercice 13 | Soit (n, p, i) € N? non nuls avec p < n. Calculer les produits sui-
vants, en exprimant les résultats éventuellement en fonction de factorielles :

2k
2. k= 1exp( ) 3. ko 35

M, (1- %) 6. Tl k.

1. [Ii ket H’*”k

4 TI7_,(4k-2) 5.

Solution (exercice 13)
1. [I;_, k = n! par définition. Pour le second, il manque des entiers pour avoir
une factorielle, qu’il convient de rajouter.

ﬁlk ExInk _[(+n)
"_lk RGN

2. Par propriété de 'exponentielle :
n k l n n+
flew () - b4 =[]
k=1 n
3. On utilise la méme technique que dans le cours. Le produit des pairs se cal-
cule directement, mais pour les impairs on rajoute les pairs.
ﬁ 2k 2nx(2n-2)x..x4x2
o1 2k+1 (2n+1)x(2n-1)x..x3x1
_ (2nx(2n-2)x ... x4x2)?
T (2n+1)x2nx...x3x2x1
_(@"nx(n-1)x..x2x1))
- (2n+1)!

22n(n!)2

@Cn+1)

4, En sortant un 2, on retombe sur le produit des impairs. On utilise alors la
méme technique que précédemment.

ﬁ(4k—2): ﬁ2(2k—1)
k=1 k=1

=2"x(2n-1)x(2n—-3)x...x3x1
_2"x2nx(2n-1)x(2n—-2)x...x3x2x1
B 2nx(2n—-2)x...x4x2
3 "x(2n)!
S 2nxnx(n-1)x..x2x1
_|(2n)!

n!
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5. Une fois le terme général simplifié, on tombe sur des produits téléscopiques. Hérédité. Supposons la propriété vraie au rang n, alors :
n 1 no(k* -1 lﬂ[ (1+x0)
1- —) = + X
kE[z( k? knz( k? ) k=0
n-1
_ szz(kz -1 _ i, (k-1) 9 i, (k+1) =[] +x)(1+x,)
k2 Z:Z k Z:Z k changements ],;i(l) el hypothese de récurrence
]'[Z }k H””k n+1 dindice = H(1+xk)+xn' [T +x:)
k‘ H 2n k=0 > HR + produit de réels = 1
6 ’i:fn—k I—[k:(,(n—k) Zxk+x
TP -k P ip-k n
° gﬁzo(p f) en posant { = n—k en haut, { = p —k en bas Z

{=n-p+1 k=0

= Z—IH La propriété est donc établie par récurrence. On a donc:
[T, ¢

= n-1 n-1

n-p n =

_ H[:l € x len—pﬂ ¢ kl:[()(l +xk) kX::OXk

- n-p p
Mooy €M, ¢

n!
(n—p)xp! Sommes doubles

Ainsi on obtient au final que :

1:[ n! n
k=0 P—k |pl(n-p) (P) Exercice 15 | Dans cet exercice, n, m sont deux entiers naturels non nuls. Calculer
les sommes doubles suivantes :

1 Yoo Xiopr(@®+1) 2 YL Y1 et 3. YL X, i?,
le]szsn L,
r .
4, Z]” 1’7 5. Yick<t<n 747 6. Yi<j<i<n x’, avec x un
réel,
k+2 2! j
A 5, TR S Y AN S o. T, xp()
Exercice 14 | @ Soientn =>1etx,,..., X, , € R**. Démontrer que :
n-1 n-1 . H
[Ta+x) =Y x4 Solution (exercice 15)
k=0 k=0 1.
n m 5 n m
LYpa+n=2 pXd’ +pZI
p=04g=0 p=0 q=0
& m(m+1)2m+1
-3 o™ Cnn Ly
s 6
Solution (exercice 14) Faisons une récurrence sur n € N*. m(m+1)2m+1) &
o : Zp+(m+1)ZP
Initialisation. Pour n =1, on a bien 1 + x;, = x,,. 6
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m(m+1)2m+1) n(n+1)

= +(m+1
6 2 ( ) 2

= %(m+1)(2m2+m+6)n(n+l).

M=
M=
W
NgE
M=
Il
M=
=
Il
S
g
i
S

Il
—
~.
Il
—
~
Il
—

n i n i n n 1
) 1=Z[ 1= Y=y =MD
i=1j=1 i=1[j=1 i=1 i=1 2
n n . n n
yyi=Y |y i
i=1j=1 i=1]j=1
=Y |iY
i=1] j=1
n 1-2"
=) |ix2 ]
i=1 -
n
=2(2"-1)) i
i=1
=[(2"-Dn(n+1).]
n n i2 n Jj i2
22 ==1)
i=1j=i J j=li=1 J
R PSSV (EaV RS
]:1]1:1 ]:1/ 6
1z
=2 (j®+3j+1)
=
1 nn+1)(2n+1) 3n(n+1)+n
"6 6 2
|2 (n+4)(n+2)
= 1811 n n .

5. On commence par essayer de calculer la somme la plus intérieure. On n’y ar-
rive pas car on ne connait pas la somme des inverses. Ainsi on va donc com-
mencer par inverser le sens des symboles sommes. On a :

n(n+1)

Ainsi on obtient que:

%x[z?d 1-¥,x ]

.. . .y n i J— _x_ —
Ainsi on obtient que : (Y7, ¥i_, X/ = 1% [Vl x

1-x"
1-x |°

=

||f“13

Eee-E 8]

[k (K + (k+1)*+ (k+2)%)]

E
Il
[=)
~
Il
ko

1
>
3, g[>/j§v

k(3k? +6k +5)

=

=0
n
Z +62k2+52k

n 1 l
Sihcblaasy
_ef 1 eesn] 1, [ai+D
_ggo /+1° " 2 _2§ '
. ® Six=1,ona:Y}, Z]‘f_lxj: L1=X" i= n(nT-i-l)
® Six#1:3X1, ¥ /=YL I[Z]’ lx] " l[xll_’;l]zﬁzlflzl(l—xi):

zg(M
2

) +n?(n®>+1)(2n*+1)+5

n?(n?+1)

2

I
M=
.[:]&.

~
1l
[=)

M-
T~
LA

.

ﬂ‘

|
R,
+
s

.
Il
—

I
.rvjs

I
M=

Rl= K= R
T
\S]

~.
1l
—
[\
<.
+
_
—
—

I
~.

™=
—_——

\S]

X
. —_——
wiN
A ——
.

[
—_——
W~
Nl
~.
SN—

1l
=~
—_—
—
|
—_——
[SSHIS)
—_——
S
|
N~
—_——
p—t
| I
—_— [\
Wl = w
—_——
S
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9. On commence par essayer de calculer la somme la plus intérieure. On n'y
arrive pas. Ainsi on va donc commencer par inverser le sens des symboles
sommes. On a:

n n (; ; n j (;
i:lj:i(l 1<isjsn\!) j=1i=1\!

Ainsi on obtient que :

Frl)-£ |2 ()| Ll

j j=11li=1 l

- D7)

Devoir-maison fjl:l

Exercice 16 | Dans tout I'exercice, n désigne un entier naturel non nul.

n
1. Calculer lasomme suivante: S, = ) (3x2%** —2k?-3).
k=1

R_”l n
" kzlkk_l.

21) Soit k € [1, n]. Montrer (al'aide de factorielles) que :

l n _ 1 n+1
k\k-1) n+1\ k |
_ 2(2"-1)

22) Endéduireque: R, =

n n+l

2. Notons:

Solution (exercice 16)
1. On commence par remarquer que pour tout k € [1; n],
24k+1 — 2 x (24)k — 2 x 16k.
Ainsi, par linéarité de la somme,
n
S, =Y (3x2%+ _2k2_3)
k=1

(6 x 16* —2k% - 3)

M=

k=1
n n n

=6 x Y 16" -2x Y k* -3x Y1
k=1 k=1 k=1
—— —— N——

somme géométrique, car 16#1 somme usuelle somme de termes constants
1-16" n(n+1)(2n+1)
=6 x 16 x —-2x -3xn

1-16 6

2. 21)

3. 31)

6x16 nn+1)(2n+1)
- -3xn

=——(16"-1
15 ( ) 3
32 +1)(2n+1
=—(16”—1)—n(n )2n )—3n
5 3
2. 21) Soitk € [1;n].Alors: k—1€[0;n—1].
Donc, par définition des coefficients binomiaux, on a :
1 n 1 n!
p— = — X
k\k-1/ k (k-1D!(n-(k-1))
n!
Ckl(n+1-k)
1 (n+1)!
= X
n+l kl(n+1-k)
|1 [n+1
ln+1| k
2.2) Ainsi:
"1 n "1 [n+1 1 [ n+1 n+1 n+1
Ru= 2 2lko1]= & - 3 - -
k=1 k=1n+l k n+1 k=0 k 0 n+1
Par le bindme de Newton : R, = == [(1+1)"*' -1 -1].
, 2(2"-1)
Finalement: |R,, =——
n+1

Exercice17 | &

1. Pourtoutn €N, onpose: u, =Y, ZZ:].ZIC.

11)  Soit (p, q) € N? tel que p < q. Montrer que ZZ:,, ok —2q+1 _op.
u, = n2n+l +1
Uy = Yok + 1)2’“. On pourra permuter

1.2) Endéduire que pour tout n € N,
Montrer que pour tout 7 € N,
les symboles sommes.

2.2) Endéduire que, pourtoutn e N: Y7 k2kl=(n-1)2"+1.
Alaide de la question précédente, calculer: Y7 >4 _ (k +1)2F,
3.2) Endéduirelavaleurde }}_, k(k + 1)2k.

33) Quevautlasomme Y} _, k*2*?

Solution (exercice 17)
1. 11) On reconnait une somme d’'une suite géométrique de raison 2 # 1 et
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ainsiona:
q 1 —24-r+l
Y 2k =2Fx — = 2P (2971 —1) =[29*1 — 2P,

1.2) Soit n € N fixé. On a en appliquant la question précédente :
n . n n
— Z(2n+1 _2]) — 2n+1 Z 1-— sz
j=0 j=0  j=0

par linéarité de la somme. Puis, en réappliquant la question précédente
ala deuxieme somme, on obtient que :

u, = (n+1)2"1 - (2" 1) =[n2" 1 4 1]

2. 21) Par définition, on sait que u, = ¥ o ¥}_; 2% Les indices de somma-
tion sont liés, on doit donc faire un peu attention en échangeant les
sommes.

k

un=ii2k=i2k21= i(k+1)2k.

k=0j=0 k=0  j=0 k=0

22) D’apres les deux questions précédentes, on sait donc que : Y7 _,(k +
1)2F = u,, = n2"*! + 1. On cherche alors a calculer Yo k2*=1, On fait
un changement de variable dans cette somme en posant j = k — 1. On
commence alors par remarquer que : Y.}'_, k2k-1 = P k2140 =
pI k251, Puis en faisant le changement de variable, on obtient :
Yiok2t Tt =2 k2R = Yl +1)2) = TR20(k + 1)2F car Iindice
de sommation est muet. Ainsi, ona: Y72 (k + 1)2F = u,_, d’apresla
question précédente et donc

n
Y k2l =(n-1)2"+1
k=0
en utilisant la question 1.2).
3. 31) En utilisant la question 2.1), on remarque que : Z;’:OZ;;zo(k +1)2F =
i o U;. Puisen utilisantla question 1.2), on sait ainsi que: u; = 2141
pour tout i € [0, n]. On obtient donc que :
n 1 n
Y Y (k+1)2F =) (i2"*! +1).
i=0 k=0 i=0
Afin de faire apparaitre la somme du 2.1), on utilise le fait que 2/*! =
4 x 211, Ainsi en utilisant la linéarité de la somme, on obtient que :

ZZ(k+1)2k—4Zzzl 1+Zl

i=0k=0
Ainsi, en utilisant alors le resultat de la question 2.2),on a:

n 1
Y Y (k+1)2F=4((n-1)2"+1)+n+1=|(n—-1)2""2+ n+5)
i=0 k=0

3.2) On peut commencer par intervertir les deux sommes dans la somme

de la question précédente On a,

iZ(k+1)2k ZZ(k+l)2"
i=0 k=0 k=0i=
= Z(k+1)2k21
k=0 i=k

Z n—k+1)(k+1)2*

n n
=(n+1) Y (k+1)25 =Y k(k+1)2*,
k=0 k=0

Ainsi, on a fait apparaitre la somme que I'on veut calculer. En utili-
sant alors le résultat de la question précédente, on obtient: }_;_, k(k +
1)2F = (n+1)¥7_,(k+1)2F = [(n-1)2"*? + n + 5]. Eten utilisant aussi
le résultat de la question 2.1), on reconnait «,,. On obtient donc :

n

Y k(k+1)2F=(n+Du, - [(n-1)2"*?+n+5].

k=0
Puis le résultat de la question 1.2) donne :

n
Y k(k+1)2F = (n+1)n2" 4 (n+1)=(n-1)2"*2—n-5 = |(n® — n +2)2"*1 — 4],
k=0

3.3) En utilisant la linéarité de la somme, on obtient : ;' k(k + 1)2F =
YR kP2k e yn - k2*. Ainsi, on a
n n n
Z k*2k = Z k(k+1)25 =Y k28 =Y k(k+1)2k-2Y k2k!.
k=0 k=0 k=0 k=0
On utlllse alors la question 3.2) pour le calcul de Y} _, k(k + 1)2F etla
question 2.2) pour le calcul de 7 _ k2*=1. On obtient donc :

n
3 k22K = (n?—n+2)2" —4-2((n-1)2"+1) =|(n® — 2n + 3)2"*! — 6|
k=0




