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Chapitre (ALG) 4 Calculs de sommes et produits

1 Notations ∑ et ∏ . . . . . . . . . . . . .

2 Coefficients binomiaux et for-
mule du binôme . . . . . . . . . . . . . . . .

3 Sommes doubles . . . . . . . . . . . . . . .

4 Exercices . . . . . . . . . . . . . . . . . . . . . . .
4⁵ + 5⁵ + 6⁵ + 7⁵ + 9⁵ + 11⁵ =
12⁵

—Le saviez-vous?

Résumé & Plan
Vous avez peut-être déjà rencon-
tré la notation ∑ dans les classes
antérieures. Nous allons la revoir
dans ce chapitre, et en complément
voir son analogue pour les produits.
Enfin on termine avec les sommes
doubles ainsi qu’une généralisation
des identités remarquables : la for-
mule du binôme de NEWTON.

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

Pour commencer, nous allons introduire diverses notations et règles de calculs.

Cadre
Ô

Dans tout le chapitre, l’ensemble 𝕂 désignera ℝ ou ℂ. L’ensemble ℂ désigne
les «nombres complexes»,que nous étudierons dans unprochain chapitre.Les
exemples de ce cours resteront donc dans ℝ pour le moment.

On rappelle que pour tout couple d’entiers (𝑎,𝑏) ∈ ℤ2 tels que 𝑎 ⩽ 𝑏,
l’ensemble J𝑎 , 𝑏K = [𝑎,𝑏]∩ℤ contient 𝑏−𝑎+1 éléments.

Le triangle de PASCAL était
déjà connu en Orient et au
Moyen-Orient plusieurs
siècles avant la publication
de Blaise PASCAL.

—Le saviez-vous?

1 NOTATIONS ∑ ET ∏

1.1 Sommes

Au lycée, vous avez peut-être déjà rencontré des formules de ce type. « Pour 𝑞 ≠ 1,
on a :

𝑞0 +𝑞1 +𝑞2 +𝑞3 +⋯+𝑞𝑛 =
1−𝑞𝑛+1

1−𝑞
».

L’utilisation des points de suspension pour écrire cette somme rend l’écriture assez
lourde et potentiellement compliquée à manipuler. Ce chapitre introduit une nota-
tion plus concise. En lieu et place de la formule précédente, nous noterons plutôt :

𝑛
∑
𝑘=0

𝑞𝑘 = 𝑞0 +𝑞1 +𝑞2 +𝑞3 +⋯+𝑞𝑛.
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Il faut la comprendre ainsi : on additionne tous les 𝑞𝑘 avec 𝑘 parcourant tout l’inter-
valle entier J0 , 𝑛K.

Notation Symbole ∑
Σ

• Soit (𝑛,𝑚) ∈ ℤ2 avec 𝑛 ⩽ 𝑚 et (𝑎𝑛,…,𝑎𝑚) ∈ 𝕂𝑚−𝑛+1. On appelle somme des

𝑎𝑘,𝑛 ⩽ 𝑘 ⩽ 𝑚, la quantité notée
𝑚
∑
𝑘=𝑛

𝑎𝑘 ou encore ∑
𝑛⩽𝑘⩽𝑚

𝑎𝑘, ∑
𝑘∈J𝑛,𝑚K

𝑎𝑘 et dé-

finie par :
𝑚
∑
𝑘=𝑛

𝑎𝑘 = 𝑎𝑛 +⋯+𝑎𝑚.

L’écriture avec « … » est généralement appelée l’écriture en extension de la
somme.

• On appelle bornes de la somme les entiers relatifs 𝑛,𝑚, indice de la somme la
variable 𝑘 et 𝑎𝑘,𝑛 ⩽ 𝑘 ⩽ 𝑚 le terme général d’ordre 𝑘.

• [Convention]¹ Soit (𝑛,𝑚) ∈ ℤ2 tel que 𝑛 > 𝑚, alors on pose :
𝑚
∑
𝑘=𝑛

𝑎𝑘 = 0.

Ainsi, lorsque les bornes ne sont pas dans le bon ordre, la somme est décrétée être
égale à zéro : cette convention sera justifiée plus tard.

Attention L’ indice d’une somme est «muet »
,

En effet, il n’apparaît que dans la notation ∑ et non dans ce qu’elle représente.
On peut donc écrire :

𝑚
∑
𝑘=𝑛

𝑎𝑘 =
𝑚
∑
𝑖=𝑛

𝑎𝑖 =
𝑚
∑
𝑗=𝑛

𝑎𝑗.

L’indice n’a de sens qu’à l’intérieur de la somme; en dehors, il n’est plus défini.
S’il vous reste un indice dans l’expression après le calcul de la somme, c’est que
vous vous êtes trompé!²

Remarque 1 (Définition plus rigoureuse : par récurrence) L’usage des points
de suspension pour définir la notation somme n’est pas parfaitement satisfai-
sante. D’un point de vue purement formel, on préfèrerait donc une définition
qui s’appuie sur le caractère récursif de la somme. En effet, si on sait définir une
somme jusqu’au rang 𝑛, alors il suffit de rajouter un seul élément pour avoir
une somme jusqu’au rang 𝑛+1. Ainsi, on peut formuler une définition équiva-
lente de la somme à l’aide du principe de récurrence : avec les mêmes notations

1. Pour des bornes mal ordonnées
2. Ce n’est pas le cas en Python où on peut récupérer la valeur du dernier indice d’une boucle for

après la fin de la boucle, nous le verrons en Informatique.

qu’avant, on définit
𝑚
∑
𝑘=𝑛

𝑎𝑘 = 𝑢𝑚 où (𝑢𝑘)𝑘⩾𝑚 est la suite vérifiant la relation de

récurrence :
∀𝑘 < 𝑚, 𝑢𝑘 = 0, ∀𝑘 ⩾ 𝑚, 𝑢𝑘+1 = 𝑢𝑘 +𝑎𝑘+1.

Exemple 1 Écrire en extension les sommes ci-après. Préciser à chaque fois le
nombre de termes, et devinez une relation en fonction des bornes lorsqu’il est
non nul.

Somme Nombre de termes
5
∑
𝑘=3

𝑎𝑘 =

103
∑

𝑘=103
𝑎𝑘 =

10
∑
𝑘=0

𝑘 =

𝑛
∑
𝑘=1

1 =

𝑛−1
∑

𝑘=𝑛+1
ln (1+(cos𝑘− sin𝑘)2) =

Propriétés et techniques de calcul. Les propriétés ci-après découlent di-
rectement de la définition de la somme, on peut les établir sans difficulté par récur-
rence.

Exemple 2 Calculer
• ∑5

𝑘=2𝑘
2,

PEN-FANCY

• ∑4
𝑘=1 ln(𝑘).

PEN-FANCY

2
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Proposition 1 | Propriétés des sommes
Soient (𝑛,𝑝) ∈ ℕ2, 𝑛 ⩾ 𝑝, 𝑐,λ,μ ∈ 𝕂 et (𝑎𝑝,…,𝑎𝑛) ∈ 𝕂𝑛−𝑝+1, (𝑏𝑝,…,𝑏𝑛) ∈
𝕂𝑛−𝑝+1.
• [Nombre de termes dans une somme] Une somme dont les bornes sont

𝑝 et 𝑛 contient 𝑛 − 𝑝 + 1 termes. En particulier une somme allant de 1 à 𝑛
contient 𝑛 termes, et une somme allant de 0 à 𝑛 en contient 𝑛+1.

• [Somme d’une constante]
𝑛
∑
𝑘=𝑝

𝑐 = 𝑐×(𝑛−𝑝+1).

• [Linéarité] Soit (𝑏𝑝,…,𝑏𝑛) ∈ 𝕂𝑛−𝑝+1. Alors :
𝑛
∑
𝑘=𝑝

(λ𝑎𝑘 +μ𝑏𝑘) = λ
𝑛
∑
𝑘=𝑝

𝑎𝑘 +μ
𝑛
∑
𝑘=𝑝

𝑏𝑘.

• [Relation de CHASLES] Soit de plus 𝑟 ∈ ℕ, 𝑝 ⩽ 𝑟 ⩽ 𝑛. Alors :
𝑛
∑
𝑘=𝑝

𝑎𝑘 =
𝑟
∑
𝑘=𝑝

𝑎𝑘 +
𝑛
∑

𝑘=𝑟+1
𝑎𝑘.

Attention
,

Dans la relation de CHASLES, attention à bien recommencer à l’indice 𝑝+1, et
non à l’indice 𝑝 pour ne compter qu’une seule fois le terme d’indice 𝑝.

Remarque 2 (Utilité de la convention) Que donne la relation de CHASLES
lorsque par exemple 𝑟 = 𝑛?
PEN-FANCY

Exemple 3 Soit 𝑛 ∈ ℕ.
1. Calculer

𝑛
∑
𝑘=0

(3𝑘 −2𝑘).

PEN-FANCY

2. Calculons la somme 1+3+5+7+⋯+99 des entiers impairs entre 1 à 99, en
commençant par la réecrire avec un symbole somme.
PEN-FANCY

3. Calculer ∑10
𝑘=0min(𝑘,7).

PEN-FANCY

Passons maintenant à une technique très importante pour calculer une somme :
celle du changement d’indice. Commençons par un exemple :

𝑛
∑
𝑘=0

(𝑘+1)2 = 12 +22 +⋯+𝑛2 +(𝑛+1)2 =
𝑛+1
∑
ℓ=1

ℓ2.

On a constaté que lorsque 𝑘 ∈ J0 , 𝑛K, (𝑘 + 1)2 décrit ℰ = {12,…,(𝑛+1)2}. Mais
lorsque ℓ ∈ J1 , 𝑛+1K, ℓ2 décrit ce même ensemble ℰ. En résumé :

𝑘 ∈ J0,𝑛K
ℓ=𝑘+1
⟺ ℓ ∈ J1,𝑛+1K.

3
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Méthode (ALG) 4.1 (Changementd’indicede translation «ℓ = 𝑘+1,ℓ = 𝑘+?»)
• [Décalage d’un rang]

𝑛
∑
𝑘=𝑝

𝑎𝑘 =
𝑛+1
∑

ℓ=𝑝+1
𝑎ℓ−1 { (→) en posant ℓ = 𝑘+1

(←) en posant 𝑘 = ℓ−1.
• [Décalage de plusieurs rangs] Soit N un entier. Alors :

𝑛
∑
𝑘=𝑝

𝑎𝑘 =
𝑛+N
∑

ℓ=𝑝+N
𝑎ℓ−N { (→) en posant ℓ = 𝑘+N

(←) en posant 𝑘 = ℓ−N.

Pour justifier la formule de changement d’indice, simplement écrire la définition
d’une somme. Nous verrons parfois des changements d’indice plus compliqués. Ce
qu’il faut toujours garantir, c’est qu’on n’a ni supprimé ni ajouté aucun terme à la
somme initiale, mais qu’on a juste changé le nom de l’indice.

Attention On ne peut pas « poser n’ importe quoi » !
,

Dans
𝑛
∑
𝑘=𝑝

𝑎𝑘, on ne peut pas poser :

• «𝑘 = ℓ2 » (dans ce cas on oublierait les indices qui ne sont pas des carrés),
• ou encore «𝑘 = 2ℓ+1 » (dans ce cas on oublierait les indices qui ne sont pas

des pairs) etc..
Seuls les changements d’indices mentionnés dans ce cours sont autorisés.

Lors d’un changement d’indice, ce qu’il faut toujours garantir, c’est
qu’on n’a ni supprimé ni ajouté aucun terme à la somme initiale.

Exemple 4 Compléter les pointillés (où 𝑛 ∈ ℕ).
3
∑
𝑘=0

𝑎𝑘 =
…
∑
ℓ=1

𝑎…
𝑛
∑
𝑘=0

𝑎𝑘+1 =
…
∑
ℓ=…

𝑎ℓ
𝑛+1
∑
𝑘=6

𝑎𝑘−3 =
…
∑
ℓ=…

𝑎ℓ.

Exemple 5 Déterminer une expression de G𝑛 =
𝑛
∑
𝑘=0

𝑞𝑘 avec 𝑞 ≠ 1 pour 𝑛 ⩾ 0

sans symbole somme, en commençant par effectuer le changement ℓ = 𝑘+1.
• Montrons que : G𝑛 = 1

𝑞 (G𝑛 +𝑞𝑛+1 −1).

PEN-FANCY

• Déduisons la valeur de G𝑛.
PEN-FANCY

Méthode (ALG) 4.2 (Changement d’indice de renversement «ℓ = 𝑛−𝑘 »)
𝑛
∑
𝑘=0

𝑎𝑘 =
𝑛
∑
ℓ=0

𝑎𝑛−ℓ { (→) en posant ℓ = 𝑛−𝑘
(←) en posant 𝑘 = 𝑛−ℓ.

À droite, on doit conserver une borne de début de somme qui est inférieure à la
borne de fin de somme pour ne pas avoir une somme vide (gardez à l’esprit la
convention d’ordre des bornes).

Exemple 6 Déterminer une expression de S𝑛 =
𝑛
∑
𝑘=0

𝑘 pour 𝑛 ⩾ 0 sans symbole

somme, en commençant par effectuer le changement ℓ = 𝑛−𝑘.
PEN-FANCY

4
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Passons maintenant à un type de somme particulier qui se calculent par simplifica-
tions successives des termes : les sommes téléscopiques.

Proposition 2 | Somme téléscopique décalée de 1 ♥

Soit (𝑛,𝑝) ∈ ℕ2, 𝑛 ⩾ 𝑝 et (𝑎𝑝,…,𝑎𝑛) ∈ 𝕂𝑛−𝑝+1. Alors :
𝑛
∑
𝑘=𝑝

(𝑎𝑘+1 −𝑎𝑘) = 𝑎𝑛+1 −𝑎𝑝.

Une somme de la forme précédente est appelée somme téléscopique.

Preuve
• Une première preuve peut utiliser directement la définition d’une somme.

𝑛
∑
𝑘=𝑝

(𝑎𝑘+1−𝑎𝑘) = 𝑎𝑛+1−��𝑎𝑛+��𝑎𝑛−��𝑎𝑛−1+⋯+��𝑎𝑝+1−𝑎𝑝 = 𝑎𝑛+1−𝑎𝑝.

• Une seconde preuve consiste à utiliser un changement d’indice.
PEN-FANCY

Exemple 7
1. Soit 𝑘 ⩾ 1. Réduire au même dénominateur 1

𝑘 − 1
𝑘+1 .

PEN-FANCY

2. Établir une expression de S𝑛 =
𝑛
∑
𝑘=1

1
𝑘(𝑘+1)

pour 𝑛 ⩾ 1.

PEN-FANCY

Exemple 8 Déterminer S𝑛 = ∑𝑛
𝑘=1 ln (1+ 1

𝑘 ), pour 𝑛 ⩾ 1.
PEN-FANCY

Exemple 9 (Téléscopage généralisé)
1. Avec les mêmes notations que dans la proposition précédente, proposer une

expression simplifiée de
𝑛
∑
𝑘=𝑝

(𝑎𝑘+2 −𝑎𝑘).

5
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[1ère Méthode : en se ramenant à un téléscopage classique]
PEN-FANCY

•

[2èmeMéthode : en utilisant un changement d’indice]
PEN-FANCY

•

2. De la même manière, on établirait que :
𝑛
∑
𝑘=𝑝

(𝑎𝑘+3 −𝑎𝑘) = 𝑎𝑛+3 +𝑎𝑛+2 +𝑎𝑛+1 −𝑎𝑝+2 −𝑎𝑝+1 −𝑎𝑝.

Méthode (ALG) 4.3 (Séparation de somme en indices pairs/impairs) Lorsque
le signe change en fonction de la parité de l’indice, il est parfois intéressant
de séparer la somme des indices pairs de celle des indices impairs. En d’autres
termes :

2𝑛
∑
𝑘=0

𝑎𝑘 = 𝑎0 +𝑎1 +⋯+𝑎2𝑛−1 +𝑎2𝑛

= (𝑎0 +𝑎2 +⋯+𝑎2𝑛)+ (𝑎1 +𝑎3 +⋯+𝑎2𝑛−1)

=
𝑛
∑
𝑘=0

𝑎2𝑘 +
𝑛−1
∑
𝑘=0

𝑎2𝑘+1.

Exemple 10 (Somme alternée) Établir une expression de
2𝑛
∑
𝑘=0

(−1)𝑘𝑘 pour 𝑛 ∈

ℕ.
PEN-FANCY

Sommes usuelles. Vous devez connaître certaines sommes usuelles qui fi-
gurent dans le programme, les voici.

Proposition 3 | Sommes usuelles ♥

Soient 𝑛,𝑛0 ∈ ℕ et 𝑞 ∈ 𝕂. Alors :
𝑛
∑
𝑘=0

𝑘 =
𝑛(𝑛+1)

2
,

𝑛
∑
𝑘=0

𝑘2 =
𝑛(𝑛+1)(2𝑛+1)

6
,

𝑛
∑
𝑘=0

𝑘3 = (
𝑛(𝑛+1)

2
)
2

.

𝑛
∑
𝑘=0

𝑞𝑘 =
⎧
⎨
⎩

1−𝑞𝑛+1

1−𝑞 si 𝑞 ≠ 1,
𝑛+1 sinon.

La première et la troisième formule seront généralisées dans le Chapitre (AN) 4, car
elles sont des cas particuliers des formules de sommation de termes de suites arith-
métiques et géométriques.

6
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Preuve
• Soit 𝑛 ∈ℕ, notons S𝑛 =

𝑛
∑
𝑘=0

𝑘. Montrons le résultat par récurrence sur 𝑛 ∈ℕ.

PEN-FANCY

• Soit 𝑛 ∈ℕ, notons T𝑛 =
𝑛
∑
𝑘=0

𝑘2. Montrons le résultat par récurrence sur 𝑛 ∈ℕ.

PEN-FANCY

• Soit 𝑛 ∈ ℕ, notons U𝑛 =
𝑛
∑
𝑘=0

𝑘3. Montrons le résultat en deux étapes. (Une récurrence

serait là encore possible !)
⋄ Justifier que : ∀𝑘 ∈ℕ, (𝑘+1)4−𝑘4 = 4𝑘3+6𝑘2+4𝑘+1.

PEN-FANCY

⋄ Conclure.
PEN-FANCY

• Soit 𝑛 ∈ ℕ, notons G𝑛 =
𝑛
∑
𝑘=0

𝑞𝑘. On calcule (1 −𝑞)G𝑛. (Une récurrence serait là encore

possible !)
PEN-FANCY

Plus généralement, les sommes 1 et 4 précédentes peuvent être généralisées à une
borne du bas non nulle. Formules que l’on peut établir de nouveau par récurrence,
ou bien exploitant la relation de CHASLES.

Proposition 4 | Sommes usuelles
Soient 𝑛,𝑛0 ∈ ℕ, 𝑛 ⩾ 𝑛0 et 𝑞 ∈ 𝕂. Alors :

𝑛
∑
𝑘=𝑛0

𝑘 =
(𝑛0 +𝑛)(𝑛−𝑛0 +1)

2
,

𝑛
∑
𝑘=𝑛0

𝑞𝑘 =
⎧
⎨
⎩

𝑞𝑛0 1−𝑞
𝑛−𝑛0+1

1−𝑞 si 𝑞 ≠ 1,
𝑛−𝑛0 +1 sinon.

7
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Preuve
• Si 𝑛0 = 0, la formule a déjà été établie. Supposons 𝑛0 ∈ ℕ⋆, alors :

𝑛
∑
𝑘=𝑛0

𝑘=
𝑛
∑
𝑘=0

𝑘−
𝑛0−1
∑
𝑘=0

𝑘

=
𝑛(𝑛+1)

2
−
(𝑛0−1)(𝑛0−1+1)

2
=
𝑛(𝑛+1)−𝑛0(𝑛0−1)

2
.

formules précédentes

Or, 𝑛(𝑛+1)−𝑛0(𝑛0−1) = 𝑛2−𝑛2
0+𝑛+𝑛0 = (𝑛−𝑛0)(𝑛+𝑛0)+𝑛+𝑛0 = (𝑛0+𝑛)(𝑛−𝑛0+1),

on déduit alors la formule.
• Si 𝑛0 = 0, la formule a déjà été établie. Supposons 𝑛0 ∈ ℕ⋆. La formule est évidente si

𝑞 = 1, on suppose donc que 𝑞 ≠ 1. Alors :
𝑛
∑
𝑘=𝑛0

𝑞𝑘 =
𝑛
∑
𝑘=0

𝑞𝑘−
𝑛0−1
∑
𝑘=0

𝑞𝑘

=
1−𝑞𝑛+1

1−𝑞
−
1−𝑞𝑛0

1−𝑞
=
𝑞𝑛0 −𝑞𝑛+1

1−𝑞

= 𝑞𝑛0
1−𝑞𝑛−𝑛0+1

1−𝑞
.

formules précédentes

L’énoncé précédent peut être retenu plutôt sous la forme ci-après, puisque𝑛−𝑛0+1
correspond au nombre de termes des sommes, et pour la seconde 𝑞𝑛0 au premier
terme.

Résumé Sommes de termes arithmétiques et géométriques
♥

Nous pouvons retenir ces formules de la manière suivante :

∑suite arithmétique = nb termes×
premier terme+dernier terme

2⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
moyenne des termes extrêmes

,

∑suite géométrique = premier terme×
1− raisonnb termes

1− raison
,

la suite (𝑘)𝑘∈ℕ étant arithmétique de raison 1, tandis que (𝑞𝑘)𝑘∈ℕ est géomé-
trique de raison 𝑞.

Exemple 11
1. Calculer 1+2+4+8+⋯+1024, en commençant par l’écrire sous forme d’une

somme.
PEN-FANCY

2. Calculer ∑10
𝑘=5𝑘

2 et ∑10
𝑘=7𝑘

3.
PEN-FANCY

Codage informatique d’une somme. Passons maintenant à l’aspect infor-
matique du symbole somme.

TERMINALPython (Calcul de
𝑛
∑
𝑘=𝑝

𝑎𝑘)

def somme_a(p, n):

    S = 0

    for k in range(p, n+1):

        S += 𝑎𝑘 # le terme a_k est à taper à la main en \

↪ fonction de la somme

    return S

Par exemple, la fonction ci-après réalise le calcul de
𝑛
∑
𝑘=𝑝

cos(𝑘𝑥), avec 𝑥 ∈ ℝ.

def somme_cos(p, n, x):

    S = 0

    for k in range(p, n+1):

        S += ma.cos(k*x)

    return S

>>> somme_cos(0, 10, 1)

8
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-0.4174477464559059

>>> somme_cos(0, 10, 0) # résultat attendu car on somme 1, onze \

↪ fois

11.0

Remarque 3 Vous noterez qu’ils n’est pas utile de préciser la convention 𝑛 < 𝑝
(somme nulle) : en effet, si n < p, le range sera vide et on retournera bien la
variable S restée à 0.

Exemple 12 Écrire une fonction d’argument somme_ent(n) prenant en argu-
ment un entier n, et retournant la valeur de ∑𝑛

𝑘=0𝑘.
PEN-FANCY

1.2 Produits

Notation Notation ∏
Σ

• Soit (𝑛,𝑚) ∈ ℤ2 avec 𝑛 ⩽ 𝑚 et (𝑎𝑛,…,𝑎𝑚) ∈ 𝕂𝑚−𝑛+1. On appelle produit des

𝑎𝑘,𝑛 ⩽ 𝑘 ⩽ 𝑚, la quantité notée
𝑚
∏
𝑘=𝑛

𝑎𝑘 ou encore ∏
𝑚⩽𝑘⩽𝑛

𝑎𝑘, ∏
𝑘∈J𝑚,𝑛K

𝑎𝑘 et dé-

finie par :
𝑚
∏
𝑘=𝑛

𝑎𝑘 = 𝑎𝑛 ×⋯×𝑎𝑚.

L’écriture avec «… » est généralement appelée l’écriture en extension du pro-
duit.

• On appelle bornes du produit les entiers relatifs 𝑛,𝑚, indice de la somme la
variable 𝑘 et 𝑎𝑘,𝑛 ⩽ 𝑘 ⩽ 𝑚 le terme général d’ordre 𝑘.

Σ
• [Convention]³ Soit (𝑛,𝑚) ∈ ℤ2 tel que 𝑛 > 𝑚, alors on pose :

𝑚
∏
𝑘=𝑛

𝑎𝑘 = 1.

Remarque 4 (Définition plus rigoureuse : par récurrence) Comme pour les
sommes, une définition équivalente plus rigoureuse du produit serait : avec les

mêmes notations qu’avant, on définit
𝑚
∏
𝑘=𝑛

𝑎𝑘 = 𝑢𝑚 où (𝑢𝑘)𝑘∈ℤ est la suite véri-

fiant la relation de récurrence :
∀𝑘 < 𝑚, 𝑢𝑘 = 1, ∀𝑘 ⩾ 𝑚, 𝑢𝑘+1 = 𝑢𝑘 ×𝑎𝑘+1.

Remarque 5 (Àproposdes conventions) Lorsqu’une sommeest vide, elle vaut
0, cela correspond à l’élément neutre pour le +. En effet, additionner 0 ne change
pas la valeurd’unnombre.Demême, lorsqu’unproduit est vide, il vaut l’élément
neutre de ×, c’est-à-dire 1 car si on multiplie un nombre par 1, il est inchangé.
Parfois, l’utilisation d’une somme ou d’un produit vide peut simplifier l’expres-
sion de certaines propriétés en évitant de traiter des cas particuliers à part.

Exemple 13 Calculer
8
∏
𝑘=5

𝑘.

PEN-FANCY

Attention L’ indice d’un produit est «muet »
,

Comme pour les sommes, il n’apparaît que dans la notation ∏ et non dans ce
qu’elle représente. On peut donc écrire :

𝑚
∏
𝑘=𝑛

𝑎𝑘 =
𝑚
∏
𝑖=𝑛

𝑎𝑖 =
𝑚
∏
𝑗=𝑛

𝑎𝑗.

Proposition 5 | Propriété des produits
Soient (𝑛,𝑝) ∈ ℕ2, 𝑛 ⩾ 𝑝, 𝑐 ∈ 𝕂 et (𝑎𝑝,…,𝑎𝑛) ∈ 𝕂𝑛−𝑝+1, (𝑏𝑝,…,𝑏𝑛) ∈ 𝕂𝑛−𝑝+1.

𝑛
∏
𝑘=𝑝

(𝑎𝑘 ×𝑏𝑘) =
𝑛
∏
𝑘=𝑝

𝑎𝑘 ×
𝑛
∏
𝑘=𝑝

𝑏𝑘,
𝑛
∏
𝑘=𝑝

𝑎𝑘
𝑏𝑘

=

𝑛
∏
𝑘=𝑝

𝑎𝑘
𝑛
∏
𝑘=𝑝

𝑏𝑘
.•

3. Pour des bornes mal ordonnées

9
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𝑛
∏
𝑘=𝑝

𝑐 = 𝑐𝑛−𝑝+1•
𝑛
∏
𝑘=𝑝

(𝑐×𝑎𝑘) = 𝑐𝑛−𝑝+1 𝑛
∏
𝑘=𝑝

𝑎𝑘.•

∀α ∈ ℝ, (tel que toutes les puissances soient définies)
𝑛
∏
𝑘=𝑝

(𝑎α
𝑘) = (

𝑛
∏
𝑘=𝑝

𝑎𝑘)
α

.•

[Relation de CHASLES] Soit de plus 𝑟 ∈ ℕ, 𝑝 ⩽ 𝑟 ⩽ 𝑛. Alors :
𝑛
∏
𝑘=𝑝

𝑎𝑘 =
𝑟
∏
𝑘=𝑝

𝑎𝑘 ×
𝑛
∏

𝑘=𝑟+1
𝑎𝑘.

•

Remarque 6 Les changements d’indice se réalisent de la même façon qu’avec
les sommes, nous ne revenons pas dessus.

Proposition 6 | Compatibilité avec exp/ ln
Soient (𝑛,𝑝) ∈ ℕ2, 𝑛 ⩾ 𝑝, (𝑎𝑝,…,𝑎𝑛) ∈ ℝ𝑛−𝑝+1. Alors :
• ∑𝑛

𝑘=𝑝 ln(𝑎𝑘) = ln (∏𝑛
𝑘=𝑝𝑎𝑘) si 𝑎𝑘 > 0 pour tout 𝑘 ∈ J𝑝 , 𝑛K.

• ∏𝑛
𝑘=𝑝 e

𝑎𝑘 = e∑
𝑛
𝑘=𝑝𝑎𝑘 .

Preuve Conséquence directe des propriétés sur l’exponentielle et le logarithme.

Exemple 14 Calculer
𝑛
∏
𝑘=1

e2
𝑘
.

PEN-FANCY

Proposition 7 | Produits téléscopiques
Soit (𝑛,𝑝) ∈ ℕ2, 𝑛 ⩾ 𝑝 et (𝑎𝑝,…,𝑎𝑛) ∈ 𝕂𝑛−𝑝+1 non nuls. Alors :

𝑛
∏
𝑘=𝑝

𝑎𝑘+1
𝑎𝑘

=
𝑎𝑛+1
𝑎𝑝

.

Un produit de la forme précédente est appelé produit téléscopique.

Preuve

• Une première preuve peut utiliser directement la définition d’un produit.
𝑛
∏
𝑘=𝑝

𝑎𝑘+1
𝑎𝑘

=
𝑎𝑛+1
��𝑎𝑛

× ��𝑎𝑛
��𝑎𝑛−1

×⋯×��𝑎𝑝+1
𝑎𝑝

=
𝑎𝑛+1
𝑎𝑝

.

• Une seconde preuve consiste à utiliser un changement d’indice.
PEN-FANCY

Exemple 15 Soit 𝑛 ∈ ℕ⋆. Calculer
𝑛
∏
𝑘=1

𝑘+3
𝑘

.

[1ère Méthode : en se ramenant à un téléscopage classique]
PEN-FANCY

•

10
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[2èmeMéthode : en utilisant un changement d’indice]
PEN-FANCY

•

Remarque 7 Les téléscopages plus généraux se traitent comme ceux des
sommes, nous n’y revenons pas ici.

Attention Il n’existe pas de formule pour ....
,

∏
𝑘
(𝑎𝑘 +𝑏𝑘) = ?, ∑(𝑎𝑘 ×𝑏𝑘) = ?, ∑(𝑎2

𝑘) = ?.

Autrement dit :
• on sépare facilement une somme en deux s’il y a une somme ou une sous-

traction entre les termes.
• On sépare facilement un produit en deux s’il y a un produit ou une division

entre les termes.

On termine par une grandeur qui va nous intéresser dans la suite.

Définition 1 | Factorielle d’un entier positif
Soit 𝑛 ⩾ 0. Alors on appelle factorielle de 𝑛, notée 𝑛!, la quantité suivante :

𝑛! =
⎧⎪
⎨⎪
⎩

𝑛
∏
𝑘=1

𝑘 si 𝑛 ⩾ 1,

1 si 𝑛 = 0.

Note
Vous pouvez noter que le cas 𝑛 = 0 est inclus dans le 1er puisque

0
∏
𝑘=1

𝑘 = 1

par convention.

Exemple 16 Calculer 𝑛! pour 𝑛 ∈ J0 , 6K.
PEN-FANCY

Proposition 8 | Par récurrence
La suite (𝑛!)𝑛∈ℕ est l’unique suite (𝑎𝑛)𝑛∈ℕ vérifiant :

𝑎0 = 1, ∀𝑛 ∈ ℕ, 𝑎𝑛+1 = (𝑛+1) ⋅𝑎𝑛.

Preuve
PEN-FANCY

Exemple 17 Simplifier les expressions suivantes.

1.
8!
6!
PEN-FANCY

2.
11!
9!2!

,

PEN-FANCY

3.
13!−12!

12!
,

PEN-FANCY

4.
4
12!

−
4
11!

+
4
10!

.

PEN-FANCY

11
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Exemple 18 Calculer
𝑛
∏
𝑘=1

5√𝑘(𝑘+3) pour 𝑛 ⩾ 1, exprimer le résultat à l’aide de

factorielles.
PEN-FANCY

Méthode (ALG) 4.4 (Séparation de produit en indices pairs/impairs) Il est
parfois intéressant aussi de séparer les produits selon leurs termes impairs et
pairs. En d’autres termes, on a :

2𝑛
∏
𝑘=0

𝑎𝑘 =
𝑛
∏
𝑘=0

𝑎2𝑘 ×
𝑛−1
∏
𝑘=0

𝑎2𝑘+1

= (𝑎0 ×𝑎2 ×⋯×𝑎2𝑛)× (𝑎1 ×𝑎3 ×… ×𝑎2𝑛−1) .

Exemple 19 (Produit des pairs et impairs avec la factorielle) Exprimer en
fonction de factorielles les produits ci-dessous, soit 𝑛 ∈ ℕ⋆.
1. ∏𝑛

𝑘=1(2𝑘).
PEN-FANCY

2. ∏𝑛
𝑘=0(2𝑘+1).

PEN-FANCY

Exemple 20 (Produit des négatifs) Exprimer en fonction de factorielles les
produits ci-dessous.
1. ∏𝑛

𝑘=1(−𝑘).
PEN-FANCY

2. ∏𝑛
𝑘=1(−2𝑘).

PEN-FANCY

12
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Remarque 8 La factorielle est une suite qui grandit très vite, plus que les suites
exponentielles ! Pour l’exemple, le nombre d’arbres phylogénétiques théorique-
ment possibles grandit en fonction du nombre d’espèces considérées comme
une factorielle.

Codage informatique d’un produit. Passons maintenant à l’aspect infor-
matique du symbole produit.

TERMINALPython (Calcul de
𝑛
∏
𝑘=𝑝

𝑎𝑘)

def produit(p, n):

    P = 1

    for k in range(p, n+1):

        P *= 𝑎𝑘 # à adapter en fonction de la somme

    return P

Par exemple, la fonction ci-après réalise le calcul de
𝑛
∏
𝑘=𝑝

e𝑘𝑥, avec 𝑥 ∈ ℝ.

def produit(p, n, x):

    P = 1

    for k in range(p, n+1):

        P *= ma.exp(k*x)

    return P

>>> produit(0, 10, 1)

7.694785265142015e+23

>>> produit(0, 10, 0) # résultat attendu

1.0

Remarque 9
• Vous noterez qu’ils n’est pas utile de préciser la convention 𝑛 < 𝑝 (produit

valant 1) : en effet, sin < p, lerange sera vide et on retournerabien la variable
P restée à 1.

• Lorsque 𝑛 ⩾ 𝑝, calculer le produit :
𝑛
∏
𝑘=𝑝

e𝑘𝑥.

PEN-FANCY

Exemple 21 Écrire une fonction d’argument produit_cos(n) prenant en argu-
ment un entier n, et retournant la valeur de ∏𝑛

𝑘=1 cos(𝑘).
PEN-FANCY

2 COEFFICIENTS BINOMIAUX ET FORMULE DU BINÔME

2.1 Coefficients binomiaux

Les coefficients binomiaux seront revus dans le Chapitre (ALG) 8 dans un contexte
dedénombrement. Pour lemoment, nousnous intéressonsqu’à l’aspect calculatoire
et analytique.

Définition 2 | Coefficients binomiaux
Soit 𝑛 ∈ ℕ et 𝑘 ∈ ℤ. On définit alors :

(
𝑛
𝑘
) =

⎧
⎨
⎩

𝑛!
𝑘!(𝑛−𝑘)! si 0 ⩽ 𝑘 ⩽ 𝑛,
0 sinon.

Exemple 22 (Quelques coefficients binomiaux) Soit 𝑛 ∈ ℕ.
• (𝑛0) = 1, (𝑛1) = 𝑛, ( 𝑛−1) = 0. En effet,

PEN-FANCY

13
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• (𝑛2) =
𝑛(𝑛−1)

2 . En effet,
⋄ [Cas 𝑛 ⩾ 2 : expression factorielle]

PEN-FANCY

⋄ [Cas 𝑛 ∈ {0,1} : vérification « à la main »]
PEN-FANCY

• (𝑛3) =
𝑛(𝑛−1)(𝑛−2)

6 . En effet,
⋄ [Cas 𝑛 ⩾ 3 : expression factorielle]

PEN-FANCY

⋄ [Cas 𝑛 ∈ {0,1,2} : vérification « à la main »]
PEN-FANCY

Proposition 9 | Propriété des coefficients binomiaux ♥

Soit 𝑛 ∈ ℕ et 𝑘 ∈ ℤ.

♥

[Forme simplifiée] Si 0 ⩽ 𝑘 ⩽ 𝑛,

(
𝑛
𝑘
) =

𝑛(𝑛−1)…(𝑛−𝑘+1)
𝑘!

=
𝑘
∏
𝑖=1

𝑛−𝑘+𝑖
𝑖

.

•

[Valeurs remarquables]

(
𝑛
𝑛
) = (

𝑛
0
) = 1, (

𝑛
𝑛−1

) = (
𝑛
1
) = 𝑛.

•

[Symétrie]

(
𝑛

𝑛−𝑘
) = (

𝑛
𝑘
).

• [Formule d’absorption]

𝑘(
𝑛
𝑘
) = 𝑛(

𝑛−1
𝑘−1

).

•

[Formule de PASCAL]

(
𝑛
𝑘
)+(

𝑛
𝑘+1

) = (
𝑛+1
𝑘+1

).

•

Preuve Pour simplifier, nous faisons les preuves uniquement dans le cas où l’expression
factorielle est en vigueur. Les autres cas se traitent à part sans difficulté.
• L’idée à retenir c’est qu’on peut simplifier 𝑛! avec (𝑛−𝑘)!. On a plus formellement :

(
𝑛
𝑘
) =

𝑛!
𝑘!(𝑛−𝑘)!

=
∏𝑛

𝑖=1 𝑖
𝑘!×∏𝑛−𝑘

𝑖=1 𝑖
=���∏𝑛−𝑘

𝑖=1 𝑖×∏
𝑛
𝑖=𝑛−𝑘+1 𝑖

𝑘!×���∏𝑛−𝑘
𝑖=1 𝑖

=
∏𝑛

𝑖=𝑛−𝑘+1 𝑖
𝑘!

=
∏𝑛

𝑖=𝑛−𝑘+1 𝑖
𝑘!

.

On obtient alors la première forme. On a par ailleurs, en faisant un changement d’indice
au numérateur :
∏𝑛

𝑖=𝑛−𝑘+1 𝑖
𝑘!

=
∏𝑛

𝑖=𝑛−𝑘+1 𝑖
∏𝑛

𝑖=1 𝑖

=
∏𝑘

𝑗=1(𝑛−𝑘+𝑗)
∏𝑛

𝑖=1 𝑖

=
∏𝑘

𝑖=1(𝑛−𝑘+𝑖)
∏𝑛

𝑖=1 𝑖
=

𝑘
∏
𝑖=1

𝑛−𝑘+𝑖
𝑖

.

𝑖 = 𝑛−𝑘+𝑗 ⟺ 𝑗 = 𝑖−𝑛+𝑘

• Valeurs remarquables déjà vues partiellement, les valeurs (𝑛𝑛) et ( 𝑛
𝑛−1) sont une consé-

quence de la symétrie que nous allons justifier plus tard.
• Supposons que 0 ⩽ 𝑘 ⩽𝑛. Alors on a 0 ⩽ 𝑛−𝑘 ⩽𝑛 à l’aide d’opérations élémentaires sur

l’encadrement. On a alors :

(
𝑛

𝑛−𝑘
) =

𝑛!
(𝑛−𝑘)!(𝑛−(𝑛−𝑘))!

=
𝑛!

(𝑛−𝑘)!𝑘!
= (

𝑛
𝑘
).

• Nous faisons uniquement la preuve dans le cas 0 < 𝑘 ⩽𝑛, les autres se vérifient à part. On
a alors 1 ⩽ 𝑘 ⩽𝑛 donc en particulier 0 ⩽ 𝑘 ⩽𝑛 et 0 ⩽ 𝑘−1 ⩽ 𝑛−1, l’expression factorielle

14
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est en vigueur.
PEN-FANCY

• Nous faisons uniquement la preuve dans le cas 0 ⩽ 𝑘 <𝑛, les autres cas se vérifient à part.

(
𝑛
𝑘
)+(

𝑛
𝑘+1

) =
𝑛!

𝑘!(𝑛−𝑘)!
+

𝑛!
(𝑘+1)!(𝑛−𝑘−1)!

=
𝑛!

𝑘!(𝑛−𝑘−1)!
(

1
𝑛−𝑘

+
1

𝑘+1
)

=
𝑛!

𝑘!(𝑛−𝑘−1)!
(
𝑘+1+(𝑛−𝑘)
(𝑛−𝑘)(𝑘+1)

)

=
𝑛!

𝑘!(𝑛−𝑘−1)!
𝑛+1

(𝑛−𝑘)(𝑘+1)

=
(𝑛+1)!

(𝑘+1)!((𝑛+1)−(𝑘+1))!

= (
𝑛+1
𝑘+1

).

Visualisation à l’aide du triangle de Pascal. La formule de PASCAL per-
met aussi de calculer la valeur des premiers coefficients binomiaux, de manière « ré-
cursive » (i.e. en utilisant les valeurs calculées précédemment).

𝑛↓ 𝑘→ 0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Dans le tableau ci-contre, les cases
contiennent les valeurs de (𝑛𝑘). D’après
la formule ci-dessus, chaque case est la
somme de celle directement au-dessus,
et de celle au-dessus à gauche puisque la
formule de PASCAL est :

∀𝑘,𝑛 ∈ ℕ2, (
𝑛+1
𝑘+1

) = (
𝑛

𝑘+1
)+(

𝑛
𝑘
).

Par exemple :

(
4
3
) = (

3
3
)+(

2
2
)

4 = 1+3.

♥ Exemple 23 Dans cet exemple, deux exercices classiques (indépendants)
sur les coefficients binomiaux. Soit (𝑝,𝑛) ∈ ℕ2.
1. Justifier que : 1

𝑝+1 (
𝑛
𝑝) =

1
𝑛+1 (

𝑛+1
𝑝+1).

PEN-FANCY

2. 2.1) Montrer, en utilisant la formule de PASCAL, que : ∑𝑛
𝑘=𝑝 (𝑘𝑝) = (𝑛+1𝑝+1).

PEN-FANCY

2.2) Interpréter (à l’aide d’un dessin sur le triangle de PASCAL) la formule
précédente.
PEN-FANCY

La formule de PASCAL permet aussi de démontrer un fait qui pour l’instant n’était
pas évident : les coefficients binomiaux sont des entiers.

Corollaire 1
Les coefficients binomiaux sont des entiers positifs.

Preuve Montrons la propriété 𝒫(𝑛) «∀𝑘 ⩽ 𝑛, (𝑛𝑘) ∈ ℕ » pour 𝑛 ∈ ℕ, par récurrence
simple sur 𝑛. (notez que la propriété ne dépend que de 𝑛, l’indice 𝑘 étant muet à cause du
symbole ∀)
Initialisation. Montrons que : ∀𝑘 ⩽ 0, (𝑛𝑘) ∈ ℕ.

Si 𝑘 < 0, alors (𝑛𝑘) = 0 ∈ ℕ.• Si 𝑘 = 0, alors (𝑛0) = 1 ∈ ℕ.•

15
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Hérédité. Soit 𝑛 ∈ℕ. Supposons que : ∀𝑘 ⩽𝑛, (𝑛𝑘) ∈ ℕ. Montrons que :

∀𝑘 ⩽𝑛+1, (
𝑛+1
𝑘

) ∈ ℕ.

Soit donc 𝑘 ⩽𝑛+1.
• Si 𝑘 =𝑛+1, alors (𝑛+1𝑘 ) = (𝑛+1𝑛+1) = 1 ∈ ℕ.
• Si 𝑘 ⩽𝑛. Alors d’après la formule de PASCAL :

(
𝑛+1
𝑘

) = (
𝑛
𝑘
)

⏟
∈ℕ (H.R.)

+(
𝑛

𝑘−1
)

⏟⏟⏟⏟⏟⏟⏟
∈ℕ (H.R.)

∈ ℕ.

Le corollaire est donc établi par principe de récurrence.

Théorème 1 | Formule du binôme de NEWTON ♥

Soient (𝑎,𝑏) ∈ 𝕂2 et 𝑛 ∈ ℕ. On a :

(𝑎 +𝑏)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
version en général utilisée

pour citer la formule

(=
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑛−𝑘𝑏𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
version en général utilisée

pour développer

.

Preuve Constatons d’abord que :
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘 =

𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑛−𝑘𝑏𝑘.

PEN-FANCY

Soit (𝑎,𝑏) ∈ 𝕂2. Montrons par récurrence que :

∀𝑛 ∈ℕ, (𝑎 +𝑏)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘.

Initialisation. On a (𝑎 +𝑏)0 = 1 et
0
∑
𝑘=0

(
0
𝑘
)𝑎𝑘𝑏0−𝑘 = (

0
0
)𝑎0𝑏0 = 1.

Hérédité. Soit 𝑛 ∈ℕ, on suppose que (𝑎 +𝑏)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘. Alors :

(𝑎 +𝑏)𝑛+1 = (𝑎+𝑏)
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘

=
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘+1𝑏𝑛−𝑘+

𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛+1−𝑘

=
𝑛+1
∑
𝑖=1

(
𝑛

𝑖−1
)𝑎𝑖𝑏𝑛−𝑖+1+

𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛+1−𝑘

= (
𝑛
𝑛
)𝑎𝑛+1𝑏0+

𝑛
∑
𝑖=1

(
𝑛

𝑖−1
)𝑎𝑖𝑏𝑛−𝑖+1+

𝑛
∑
𝑘=1

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛+1−𝑘+(

𝑛
0
)𝑎0𝑏𝑛+1−0

= 𝑎𝑛+1+
𝑛
∑
𝑘=1

((
𝑛

𝑘−1
)+(

𝑛
𝑘
))𝑎𝑘𝑏𝑛+1−𝑘+𝑏𝑛+1

= 𝑎𝑛+1+
𝑛
∑
𝑘=1

(
𝑛+1
𝑘

)𝑎𝑘𝑏𝑛+1−𝑘+𝑏𝑛+1

=
𝑛+1
∑
𝑘=0

(
𝑛+1
𝑘

)𝑎𝑘𝑏𝑛+1−𝑘.

linéarité de la somme

en posant 𝑖 = 𝑘+1

formule de PASCAL

D’où le résultat par principe de récurrence.

Remarque 10 Dans la formuledubinômedeNEWTON,quenousutiliseronspour
l’instant seulement dans des cas où 𝑛 a une valeur précise (et petite) :
1. tous les termes sont des produits d’une puissance de 𝑎 et d’une puissance de

𝑏, de telle sorte que la somme de ces puissances monrougeonne 𝑛. Et toutes
les possibilités apparaissent.

2. Le coefficient binomial devant le terme 𝑎𝑘𝑏𝑛−𝑘 est (𝑛𝑘) ou (c’est pareil) ( 𝑛
𝑛−𝑘),

autrement dit c’est la puissance de 𝑎 ou de 𝑏 parmi la puissance totale 𝑛.
3. En particulier les coefficients devant 𝑎𝑘𝑏𝑛−𝑘 et devant 𝑎𝑛−𝑘𝑏𝑘 sont les

mêmes. La formule est donc symétrique par rapport au « milieu » de la
somme.

4. Quand𝑛 est petit, il suffit donc souvent de calculer jusqu’à (𝑛2), au pire des cas
jusqu’à (𝑛3) et ceci peut se faire facilement avec la formule avec la factorielle
ou le triangle de PASCAL.

5. Traditionnellement, lorsqu’on applique la formule, on commence par les
grandes puissances de 𝑎 (forme entre parenthèses de la formule).

Exemple 24 Développer, pour 𝑎 et 𝑏 deux éléments de 𝕂, (𝑎+𝑏)2, (𝑎+𝑏)3, (𝑎+
𝑏)4, (𝑎 +𝑏)5. Complétez en même temps le triangle de PASCAL dans la colonne
de droite.
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(𝑎 +𝑏)2 =

(𝑎+𝑏)3 =

(𝑎+𝑏)4 =

(𝑎+𝑏)5 =

Exemple 25 Écrire une formule pour (𝑎 −𝑏)𝑛.
PEN-FANCY

Le résultat qui suit n’est à apprendre par coeur, mais est très classique.

Corollaire 2 | Deux cas particuliers
Soit 𝑛 ∈ ℕ.

𝑛
∑
𝑘=0

(
𝑛
𝑘
) = 2𝑛,

𝑛
∑
𝑘=0

(
𝑛
𝑘
)(−1)𝑘 =

⎧
⎨
⎩

0 si 𝑛 ⩾ 1,
1 sinon.

Preuve
PEN-FANCY

Exemple 26 Simplifier pour 𝑛 ∈ ℕ et 𝑝 ∈]0,1[ :

L =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑝𝑘(1−𝑝)𝑛−𝑘, E =

𝑛
∑
𝑘=0

𝑘(
𝑛
𝑘
)𝑝𝑘(1−𝑝)𝑛−𝑘.

Note
Toute l’assemblée aura bien sûr reconnu l’espérance d’une loi binomiale
dans E

PEN-FANCY

3 SOMMES DOUBLES

Dans cette dernière section, on s’in-
téresse à la notion de somme double,
i.e. de termes possédant deux indices
et notés 𝑎𝑖,𝑗,1 ⩽ 𝑖 ⩽ 𝑛,1 ⩽ 𝑗 ⩽ 𝑝 avec
𝑛,𝑝 ⩾ 0. Afin d’alléger la présenta-
tion, on suppose donc que les indices
𝑖, 𝑗 sont définis à partir de 1, mais na-
turellement ces notions peuvent être
étendues à des sommes doubles plus
générales, comme pour les sommes
simples.

𝑖
𝑗 1 2 3 … 𝑝

1 𝑎1,1 𝑎1,2 𝑎1,3 … 𝑎1,𝑝
2 𝑎2,1 𝑎2,2 𝑎2,3 … 𝑎2,𝑝
3 𝑎3,1 𝑎3,2 𝑎3,3 … 𝑎3,𝑝
⋮ ⋮ …
𝑛 𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 … 𝑎𝑛,𝑝

On peut alors imaginer que les termes sont regroupés dans un tableau à deux en-
trées. La zone sur fond rouge correspond alors ce que nous appellerons dans la suite

17
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la surdiagonale du tableau.

3.1 Sommes doubles libres

Commençons par une propriété qui nous servira dans la suite : on peut toujours
permuter deux sommes simples.

Proposition 10 | Permuation de sommes simples
Soient (𝑛,𝑝) ∈ (ℕ∗)2 et (𝑎𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈ 𝕂𝑛𝑝, alors :

𝑛
∑
𝑖=1

𝑝
∑
𝑗=1

𝑎𝑖,𝑗 =
𝑝
∑
𝑗=1

𝑛
∑
𝑖=1

𝑎𝑖,𝑗.

La formule se justifie sans trop de difficultés en revenant à la définition de somme
simple. Mais de manière plus visuelle, constatons qu’elle signifie qu’il revient au-
même de sommer tous les termes du tableau en le parcourant ligne après ligne ou
colonne après colonne. Logique! Plus précisément,

• pour 𝑖 fixé,
𝑝
∑
𝑗=1

𝑎𝑖,𝑗 correspond à la somme des coefficients sur la ligne 𝑖,

• pour 𝑗 fixé,
𝑛
∑
𝑖=1

𝑎𝑖,𝑗 correspond à la somme des coefficients sur la colonne 𝑗.

L’ordre de sommation n’a pas d’importance et on peut adopter la notation com-
pacte :

Notation Somme double libre
Σ

Soient (𝑛,𝑝) ∈ (ℕ∗)2 et (𝑎𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

∈ 𝕂𝑛𝑝.

• On appelle somme double des 𝑎𝑖,𝑗,1 ⩽ 𝑖 ⩽ 𝑛,1 ⩽ 𝑗 ⩽ 𝑝, la quantité notée
∑

1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

𝑎𝑖,𝑗 ou encore ∑
(𝑖,𝑗)∈J1,𝑛K×J1,𝑝K

𝑎𝑖,𝑗, définie par :

∑
1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

𝑎𝑖,𝑗 =
𝑛
∑
𝑖=1

𝑝
∑
𝑗=1

𝑎𝑖,𝑗 =
𝑝
∑
𝑗=1

𝑛
∑
𝑖=1

𝑎𝑖,𝑗.

• Et lorsqu’on somme sur la même plage d’indices, c’est-à-dire 𝑛 = 𝑝, on note :

∑
1⩽𝑖,𝑗⩽𝑛

𝑎𝑖,𝑗 = ∑
(𝑖,𝑗)∈J1,𝑛K2

𝑎𝑖,𝑗 =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖,𝑗 =
𝑛
∑
𝑗=1

𝑛
∑
𝑖=1

𝑎𝑖,𝑗.

Remarque 11 Même si ci-dessus il n’y a qu’un symbole somme, on a bien deux
sommes simples cachées derrière.

Exemple 27 Calculer ∑
1⩽𝑖,𝑗⩽𝑛

(𝑗 − 𝑖).

PEN-FANCY

Cas particulier : sommes doubles à indices séparables. Onprécise ici
le cas de sommes doubles libres s’écrivant sous une forme particulière. Commen-
çons par un premier exemple.

Exemple 28 Calculer ∑
1⩽𝑖,𝑗⩽𝑛

1
2𝑖+𝑗

pour 𝑛 ⩾ 1.

PEN-FANCY

De manière générale, on a la formule suivante.

18
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Proposition 11 | Somme double à « variables séparables »
Soient (𝑛,𝑝) ∈ (ℕ∗)2 et (𝑎𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈ 𝕂𝑛𝑝, alors :

𝑛
∑
𝑖=1

𝑝
∑
𝑗=1

𝑎𝑖𝑏𝑗 = (
𝑛
∑
𝑖=1

𝑎𝑖)×(
𝑝
∑
𝑗=1

𝑏𝑗) .

Preuve On a : ∀𝑖 ∈ J1,𝑛K,
𝑝
∑
𝑗=1

𝑎𝑖𝑏𝑗 = 𝑎𝑖 (
𝑝
∑
𝑗=1

𝑏𝑗) par linéarité de la somme (𝑎𝑖 est une

constante par rapport à la somme en 𝑗).

Or, B=
𝑝
∑
𝑗=1

𝑏𝑗 est une constante par rapport à 𝑖, donc :

 
𝑛
∑
𝑖=1

𝑝
∑
𝑗=1

𝑎𝑖𝑏𝑗 =
𝑛
∑
𝑖=1

𝑎𝑖 (
𝑝
∑
𝑗=1

𝑏𝑗) =
𝑛
∑
𝑖=1

𝑎𝑖B= (
𝑛
∑
𝑖=1

𝑎𝑖)B = (
𝑛
∑
𝑖=1

𝑎𝑖)(
𝑝
∑
𝑗=1

𝑏𝑗) .

3.2 Sommes doubles sous contrainte

L’idée est ici de définir la somme sur le triangle supérieur du tableau (en rouge clair).
Cela consiste à instaurer une contrainte entre les deux indices. Regardons la seconde
ligne du tableau, pour 𝑖 = 2, alors 𝑗 parcourt 2 = 2,3,…,𝑝, plus généralement on a
ligne par ligne la relation 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑝 .

Proposition 12 | Permuation de sommes triangulaires
Soient (𝑛,𝑝) ∈ (ℕ∗)2 et (𝑎𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈ 𝕂𝑛𝑝 avec 𝑛 = 𝑝, alors :

𝑛
∑
𝑖=1

𝑛
∑
𝑗=i

𝑎𝑖,𝑗 =
𝑛
∑
𝑗=1

j
∑
𝑖=1

𝑎𝑖,𝑗.

Attention
,

Contrairement à la somme sur un rectangle, les bornes de la somme intérieure
dépendent de l’indice de la somme extérieure.

Méthode (ALG) 4.5 (Permuter des sommes simples à indices liés) Pour retenir
𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑎𝑖,𝑗 =
𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

𝑎𝑖,𝑗,

toujours garder à l’esprit l’encadrement entre les indices : 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑝. Ainsi,

pour
𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

𝑎𝑖,𝑗 :

• si 𝑖 n’existe pas, 𝑗 se balade entre 1 et 𝑝, ce qui explique la somme extérieure
en 𝑗.

• Si 𝑗 est fixé entre 1 et𝑛, alors 𝑖 se balade entre 1 et 𝑗, ce qui explique la somme

intérieure en 𝑖.

Notation Somme double sous contrainte
Σ

Soient (𝑛,𝑝) ∈ (ℕ∗)2 et (𝑎𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

∈ 𝕂𝑛𝑝 avec 𝑛 = 𝑝. On appelle alors :

• somme double sur le triangle supérieur la somme

∑
1⩽𝑖⩽𝑗⩽𝑝

𝑎𝑖,𝑗 =
𝑝
∑
𝑖=1

𝑝
∑
𝑗=𝑖

𝑎𝑖,𝑗 =
𝑝
∑
𝑗=1

𝑗
∑
𝑖=1

𝑎𝑖,𝑗,

• somme double sur le triangle supérieur strict la somme

∑
1⩽𝑖<𝑗⩽𝑝

𝑎𝑖,𝑗 =
𝑝−1
∑
𝑖=1

𝑝
∑

𝑗=𝑖+1
𝑎𝑖,𝑗 =

𝑝
∑
𝑗=2

𝑗−1
∑
𝑖=1

𝑎𝑖,𝑗.

Exemple 29
1. Soit 𝑛 ∈ ℕ. Calculer ∑

0⩽𝑖⩽𝑗⩽𝑛
(𝑗 − 𝑖).

PEN-FANCY

2. Soit 𝑛 ∈ ℕ⋆. Calculer
𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑖
𝑗
.

PEN-FANCY
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Codage informatique d’une somme double. Passons maintenant à l’as-
pect informatique du symbole somme double.

TERMINALPython (Calcul de
𝑛
∑
𝑖=1

𝑝
∑
𝑗=1

𝑎𝑖,𝑗)

def somme(p, n):

    S = 0

    for i in range(1, n+1):

        for j in range(1, p+1):

            S += 𝑎𝑖,𝑗 # à adapter en fonction de la somme

    return S

On adapte aussi facilement aux sommes doubles à indices liés.

TERMINALPython (Calcul de ∑
1⩽𝑖⩽𝑗⩽𝑝

𝑎𝑖,𝑗)

def somme(p):

    S = 0

    for i in range(1, p+1):

        for j in range(i, p+1):

            S += 𝑎𝑖,𝑗 # à adapter en fonction de la somme

    return S

Exemple 30 Écrire deux fonctions d’en-têtes sommedouble1(n, p) et
sommedouble2(n, p) prenant en argument deux entiers n et p, et retour-
nant les valeurs des sommes ci-dessous.
• ∑

𝑝⩽𝑖,𝑗⩽𝑛
(𝑗 − 𝑖)2

PEN-FANCY

• ∑
𝑝⩽𝑖⩽𝑗⩽𝑛

2
𝑖
𝑗 .

PEN-FANCY
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FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (ALG) 4.1 (Changementd’indicede translation «ℓ = 𝑘+1,ℓ = 𝑘+?»)
• [Décalage d’un rang]

𝑛
∑
𝑘=𝑝

𝑎𝑘 =
𝑛+1
∑

ℓ=𝑝+1
𝑎ℓ−1 { (→) en posant ℓ = 𝑘+1

(←) en posant 𝑘 = ℓ−1.
• [Décalage de plusieurs rangs] Soit N un entier. Alors :

𝑛
∑
𝑘=𝑝

𝑎𝑘 =
𝑛+N
∑

ℓ=𝑝+N
𝑎ℓ−N { (→) en posant ℓ = 𝑘+N

(←) en posant 𝑘 = ℓ−N.

Méthode (ALG) 4.2 (Changement d’indice de renversement «ℓ = 𝑛−𝑘 »)
𝑛
∑
𝑘=0

𝑎𝑘 =
𝑛
∑
ℓ=0

𝑎𝑛−ℓ { (→) en posant ℓ = 𝑛−𝑘
(←) en posant 𝑘 = 𝑛−ℓ.

À droite, on doit conserver une borne de début de somme qui est inférieure à la
borne de fin de somme pour ne pas avoir une somme vide (gardez à l’esprit la
convention d’ordre des bornes).

Méthode (ALG) 4.3 (Séparation de somme en indices pairs/impairs) Lorsque
le signe change en fonction de la parité de l’indice, il est parfois intéressant
de séparer la somme des indices pairs de celle des indices impairs. En d’autres
termes :

2𝑛
∑
𝑘=0

𝑎𝑘 = 𝑎0 +𝑎1 +⋯+𝑎2𝑛−1 +𝑎2𝑛

= (𝑎0 +𝑎2 +⋯+𝑎2𝑛)+ (𝑎1 +𝑎3 +⋯+𝑎2𝑛−1)

=
𝑛
∑
𝑘=0

𝑎2𝑘 +
𝑛−1
∑
𝑘=0

𝑎2𝑘+1.

Méthode (ALG) 4.4 (Séparation de produit en indices pairs/impairs) Il est
parfois intéressant aussi de séparer les produits selon leurs termes impairs et
pairs. En d’autres termes, on a :

2𝑛
∏
𝑘=0

𝑎𝑘 =
𝑛
∏
𝑘=0

𝑎2𝑘 ×
𝑛−1
∏
𝑘=0

𝑎2𝑘+1

= (𝑎0 ×𝑎2 ×⋯×𝑎2𝑛)× (𝑎1 ×𝑎3 ×… ×𝑎2𝑛−1) .

Méthode (ALG) 4.5 (Permuter des sommes simples à indices liés) Pour retenir
𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑎𝑖,𝑗 =
𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

𝑎𝑖,𝑗,

toujours garder à l’esprit l’encadrement entre les indices : 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑝. Ainsi,

pour
𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

𝑎𝑖,𝑗 :

• si 𝑖 n’existe pas, 𝑗 se balade entre 1 et 𝑝, ce qui explique la somme extérieure
en 𝑗.

• Si 𝑗 est fixé entre 1 et𝑛, alors 𝑖 se balade entre 1 et 𝑗, ce qui explique la somme
intérieure en 𝑖.
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QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Question Réponse Commentaire

Pour 𝑛 un entier naturel,
rappeler les valeurs des
sommes ∑𝑛

𝑘=0𝑘 et ∑𝑛
𝑘=0𝑘

2

∑𝑛
𝑘=0𝑘 =

𝑛(𝑛+1)
2 et

∑𝑛
𝑘=0𝑘

2 = 𝑛(𝑛+1)(2𝑛+1)
6

Pour 𝑛 et 𝑘 entiers naturels,
donner l’expression du
coefficient binomial (𝑛𝑘)

(𝑛𝑘) =
⎧
⎨
⎩

𝑛!
𝑘!(𝑛−𝑘)! si 0 ⩽ 𝑘 ⩽𝑛,
0 sinon.

Ne pas oublier les
conventions.

Formule de PASCAL sur les
coefficients binomiaux

(𝑛−1𝑘−1)+ (
𝑛−1
𝑘 ) = (𝑛𝑘).

4 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Connaître les manipulations sur les sommes et produits :

• connaître la définition de la somme et sa convention . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir passer d’une notation en extension à une notation avec le symbole ∑,∏⬜
• connaître la définition de produit et sa convention . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• connaître les sommes usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir utiliser la linéarité, la relation de CHASLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• connaître les différentes propriétés des sommes et produits . . . . . . . . . . . . . . . . . .⬜

2. Savoir utiliser les méthodes de calcul de sommes et produits :
• le changement de variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• les sommes et produits télescopiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

3. Concernant les notions de factorielle et coefficients binomiaux :
• connaître les définitions et propriétés de la factorielle . . . . . . . . . . . . . . . . . . . . . . . .⬜
• connaître les définitions et propriétés des coefficients binomiaux . . . . . . . . . . . . ⬜
• savoir utiliser la formule du binôme de NEWTON . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

4. Concernant les sommes doubles :
• connaître la définition d’une somme double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir effectuer une permutation de sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

Cahier de calculs
Fiche(s) à travailler : 19

4.1 Factorielles

Exercice 1 ∣ Soit 𝑛 ∈ ℕ, 𝑛 ⩾ 3. Simplifier les nombres suivants :

A =
7!
6!

, B =
3×4!
(3!)2

, C =
𝑛!

(𝑛−1)!
, D =

(𝑛+1)!
(𝑛−3)!

, E =
(𝑛+1)!
(𝑛−2)!

+
𝑛!

(𝑛−1)!
.
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Solution (exercice 1)
• A = 7!

6! =
7×6!
6! = 7

• B = 3×4!
(3!)2 = 3×4×3!

3!×3×2 = 2.
• C = 𝑛!

(𝑛−1)! =
𝑛×(𝑛−1)!
(𝑛−1)! = 𝑛.

• D = (𝑛+1)!
(𝑛−3)! =

(𝑛+1)×𝑛×(𝑛−1)×(𝑛−2)×(𝑛−3)!
(𝑛−3)! = (𝑛+1)𝑛(𝑛−1)(𝑛−2).

• E = (𝑛+1)!
(𝑛−2)! +

𝑛!
(𝑛−1)! = (𝑛+1)𝑛(𝑛−1)+𝑛 = 𝑛(𝑛2 −1+1) = 𝑛3.

4.2 Sommes

Exercice 2 ∣ Des points de suspension au symbole ∑ Écrire les sommes sui-
vantes en utilisant le symbole ∑ :

ln2+ ln3+ ln4+⋯+ ln10,1. 34 +35 +36 +…+315,2.

2+4+6+8+⋯+1024,3. 1+ 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 ,4.

1
2 + 2

4 + 3
8 + 4

16 +…+ 10
1024 ,5. 2−4+6−8+…+50.6.

Exercice 3 ∣ Soit 𝑛 ∈ ℕ∗. Remplacer le symbole ∗ dans les égalités suivantes :
𝑛
∑
𝑘=1

(𝑘+1)𝑎𝑘 =
∗
∑
𝑗=∗

𝑗𝑎∗,1.
𝑛+3
∑
𝑘=2

𝑎𝑘−1 =
∗
∑
𝑗=∗

𝑎𝑗,2.

𝑛+1
∑
𝑘=1

𝑎𝑛−𝑘 =
∗
∑
𝑗=∗

𝑎𝑗,3.
𝑛
∑
𝑘=1

𝑎2𝑘 +
𝑛
∑
𝑘=1

𝑎2𝑘+1 =
∗
∑
𝑗=∗

𝑎𝑗.4.

Solution (exercice 3)
1.

𝑛
∑
𝑘=1

(𝑘+1)𝑎𝑘 =
𝑛+1
∑
𝑗=2

𝑗𝑎𝑗−1,

2.
𝑛+3
∑
𝑘=2

𝑎𝑘−1 =
𝑛+2
∑
𝑗=1

𝑎𝑗,

3.
𝑛+1
∑
𝑘=1

𝑎𝑛−𝑘 =
𝑛−1
∑
𝑗=−1

𝑎𝑗,

4.
𝑛
∑
𝑘=1

𝑎2𝑘 +
𝑛
∑
𝑘=1

𝑎2𝑘+1 = 𝑎2 +𝑎4 +⋯+𝑎2𝑛 +𝑎3 +𝑎5 +⋯+𝑎2𝑛+1 =
2𝑛+1
∑
𝑗=2

𝑎𝑗.

Exercice 4 ∣ Calculs de sommes (hors téléscopage) Calculer les sommes sui-
vantes (où 𝑛 désigne un entier naturel non nul) :

10
∑
𝑘=1

𝑘,1.
2022
∑

ℓ=2000
π,2.

6
∑
𝑖=0

𝑖2,3.

𝑛
∑
𝑘=0

2−𝑘,4.
𝑛
∑
𝑘=1

(2𝑘+1),5.
𝑛
∑
𝑘=0

52𝑘,6.

𝑛
∑
𝑘=1

3𝑘

4𝑘+1
,7.

𝑛
∑
𝑘=0

(2𝑘 +𝑘2 +2),8.
𝑛
∑
𝑘=1

𝑘2 −1
𝑘+1

.9.

𝑛
∑
𝑘=0

22𝑘,
𝑛
∑
𝑘=0

22𝑘+1,10.
𝑛
∑
𝑘=0

23𝑘𝑥−𝑘 avec 𝑥 ≠ 0,11.
𝑛
∑
𝑖=1

(2𝑖−1)3,12.

𝑛
∑
𝑘=1

(3×2𝑘 +1),13. 1
𝑛

𝑛−1
∑
𝑘=0

exp(
𝑘
𝑛

).14.

Solution (exercice 4)
1.

10
∑
𝑘=1

𝑘 =
10(10+1)

2
= 55 .

2.
2022
∑

ℓ=2000
π = (2022−2000+1)×π = 23π .

3.
6
∑
𝑖=0

𝑖2 = �6×(6+1)×(2×6+1)
�6

= 7×13 = 91 .

4. On a :
𝑛
∑
𝑘=0

2−𝑘 =
𝑛
∑
𝑘=0

1
2𝑘

=
𝑛
∑
𝑘=0

1𝑘

2𝑘
=

𝑛
∑
𝑘=0

(
1
2
)
𝑘
. Puisque 1

2 ≠ 1, on a :

𝑛
∑
𝑘=0

(
1
2
)
𝑘
=

1−( 12 )
𝑛+1

1− 1
2

= 2(1−(
1
2
)
𝑛+1

) .

5.
𝑛
∑
𝑘=1

(2𝑘+1) = 2
𝑛
∑
𝑘=1

𝑘+
𝑛
∑
𝑘=1

1 = �2×
𝑛(𝑛+1)

�2
+𝑛 = 𝑛(𝑛+1)+𝑛 = 𝑛(𝑛+2) .

6. On a :
𝑛
∑
𝑘=0

52𝑘 =
𝑛
∑
𝑘=0

(52)𝑘 =
𝑛
∑
𝑘=0

25𝑘. Puisque 25 ≠ 1, on a :
𝑛
∑
𝑘=0

25𝑘 =

1−25𝑛+1

1−25
=

1
24

(25𝑛+1 −1) .

7.
𝑛
∑
𝑘=1

3𝑘

4𝑘+1
=

1
4

𝑛
∑
𝑘=1

(
3
4
)
𝑘
. Puisque 3

4 ≠ 1, on a :

𝑛
∑
𝑘=1

(
3
4
)
𝑘
= (

3
4
)
1
×

1−( 34 )
𝑛+1−1

1− 3
4

=
3
4

×
1−( 34 )

𝑛

1
4

.

D’où :
𝑛
∑
𝑘=1

3𝑘

4𝑘+1
=

�
��
1
4

×
3
4

×
1−( 34 )

𝑛

�
�14

=
3
4
(1−(

3
4
)
𝑛
) .
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8. Puisque 2 ≠ 1 (pour la calcul de la somme géométrique), on a :
𝑛
∑
𝑘=0

(2𝑘 +𝑘2 +2) =
𝑛
∑
𝑘=0

2𝑘+
𝑛
∑
𝑘=0

𝑘2+
𝑛
∑
𝑘=0

2 =
1−2𝑛+1

1−2
+

𝑛(𝑛+1)(2𝑛+1)
6

+2(𝑛+1),

donc :
𝑛
∑
𝑘=0

(2𝑘 +𝑘2 +2) = 2𝑛+1 −1+
𝑛(𝑛+1)(2𝑛+1)

6
+2(𝑛+1) .

9.
𝑛
∑
𝑘=1

𝑘2 −1
𝑘+1

=
𝑛
∑
𝑘=1

(𝑘−1)����(𝑘+1)
���𝑘+1

=
𝑛
∑
𝑘=1

(𝑘−1) =
𝑛−1
∑
ℓ=0

ℓ =
(𝑛−1)𝑛

2
.

10. On reconnaît la somme des termes d’une suite géométrique et on ob-

tient donc en utilisant le fait que 𝑥2𝑘 = (𝑥2)𝑘 :
𝑛
∑
𝑘=0

𝑥2𝑘 =
𝑛
∑
𝑘=0

(𝑥2)𝑘 =

{ 1−𝑥2𝑛+2
1−𝑥2 si𝑥 ≠ 1 et 𝑥 ≠ −1𝑛+1 si𝑥 = 1ou𝑥 = −1. .

On reconnaît pour la deuxième la somme des termes d’une suite géomé-
trique et on obtient donc en utilisant le fait que 𝑥2𝑘+1 = (𝑥2)𝑘 ×𝑥 :

𝑛
∑
𝑘=0

𝑥2𝑘+1 = 𝑥
𝑛
∑
𝑘=0

(𝑥2)𝑘

=
⎧⎪⎪
⎨⎪⎪
⎩

𝑥× 1−𝑥2𝑛+2
1−𝑥2 si𝑥 ≠ 1,𝑥 ≠ −1,

𝑛+1 si𝑥 = 1,
−(𝑛+1) si𝑥 = −1.

11. On reconnaît la somme des termes d’une suite géométrique et on obtient
donc en utilisant le fait que𝑎𝑘23𝑘𝑥−𝑘 = 𝑎𝑘(23)𝑘× 1

𝑥𝑘 = 𝑎𝑘×8𝑘×( 1𝑥 )
𝑘 = ( 8𝑎𝑥 )𝑘 :

𝑛
∑
𝑘=0

𝑎𝑘23𝑘𝑥−𝑘 =
𝑛
∑
𝑘=0

(
8𝑎
𝑥

)
𝑘
=

⎧⎪⎪
⎨⎪⎪
⎩

1−( 8𝑎𝑥 )
𝑛+1

1−( 8𝑎𝑥 )
si𝑥 ≠ 8𝑎,

𝑛+1 si𝑥 = 8𝑎.
.

12. On commence par développer la puissance cube à l’intérieur de la somme

puis on utilise la linéarité de la somme. On obtient donc :
𝑛
∑
𝑖=1

(2𝑖 − 1)3 =
𝑛
∑
𝑖=1

(8𝑖3 −12𝑖2 +6𝑖−1) = 8
𝑛
∑
𝑖=1

𝑖3−12
𝑛
∑
𝑖=1

𝑖2+6
𝑛
∑
𝑖=1

𝑖−
𝑛
∑
𝑖=1

1. On utilise ensuite le

formulaire sur les sommes et on obtient alors :
𝑛
∑
𝑖=1

(2𝑖−1)3 = 8(
𝑛(𝑛+1)

2
)
2

−

12
𝑛(𝑛+1)(2𝑛+1)

6
+6

𝑛(𝑛+1)
2

−𝑛 = 𝑛2(4𝑛2 +4𝑛+1).

13.
𝑛
∑
𝑘=1

(3×2𝑘+1) = 3
𝑛
∑
𝑘=1

2𝑘+
𝑛
∑
𝑘=1

1 = 3×2×
1−2𝑛

1−2
+𝑛 par linéarité et car 2 ≠ 1.

Donc
𝑛
∑
𝑘=1

(3×2𝑘 +1) = 6(2𝑛 −1)+𝑛.

14. 1
𝑛

𝑛−1
∑
𝑘=0

exp(
𝑘
𝑛

) =
1
𝑛

𝑛−1
∑
𝑘=0

(e
1
𝑛 )

𝑘
=

1
𝑛

1−(e
1
𝑛 )

𝑛

1−e 1
𝑛

car e
1
𝑛 ≠ 1. Ainsi

1
𝑛

𝑛−1
∑
𝑘=0

exp(
𝑘
𝑛

) =
1
𝑛

1−e
1−e 1

𝑛
.

Exercice 5 ∣ Calculs de sommes avec formule du binôme Soit 𝑛 ∈ ℕ⋆. Calculer
les expressions suivantes :

𝑛
∑
𝑗=0

(
𝑛
𝑗
)𝑎𝑗,

𝑛+1
∑
𝑗=1

(
𝑛
𝑗
)𝑎𝑗 avec 𝑎 ∈ ℝ,1.

𝑛
∑
𝑖=0

(
𝑛
𝑖
)(−1)𝑖,

𝑛
∑
𝑖=1

(
𝑛+1

𝑖
)(−1)𝑖,2.

𝑛
∑
𝑗=0

(
𝑛
𝑗
)
(−1)𝑗−1

2𝑗+1
,3.

𝑛−1
∑
𝑘=0

1
3𝑘

(
𝑛
𝑘
).4.

S1 =
𝑛
∑
𝑗=0

𝑗(
𝑛
𝑗
)5. T =

𝑛
∑
𝑘=1

𝑘(𝑘−1)(
𝑛
𝑘
),6.

puis S2 =
𝑛
∑
𝑘=1

𝑘2(
𝑛
𝑘
),7.

𝑛
∑
𝑖=0

1
𝑖+1

(
𝑛
𝑖
).8.

Solution (exercice 5)

1.
𝑛
∑
𝑗=0

(
𝑛
𝑗
)𝑎𝑗 = (1+𝑎)𝑛 en reconnaissant unbinômedeNEWTONcar

𝑛
∑
𝑗=0

(
𝑛
𝑗
)𝑎𝑗 =

𝑛
∑
𝑗=0

(
𝑛
𝑗
)𝑎𝑗1𝑛−𝑗. Pour la seconde, on se ramène à la formule du binôme de

NEWTON en utilisant la relation de CHASLES :
𝑛+1
∑
𝑗=1

(
𝑛
𝑗
)𝑎𝑗 =

𝑛
∑
𝑗=0

(
𝑛
𝑗
)𝑎𝑗−(

𝑛
0
)𝑎0+

(
𝑛

𝑛+1
)𝑎𝑛+1. Par convention, on a : ( 𝑛

𝑛+1) = 0 et ainsi on obtient en utilisant le

binôme de NEWTON :
𝑛+1
∑
𝑗=1

(
𝑛
𝑗
)𝑎𝑗 = (1+𝑎)𝑛 −1.

2.
𝑛
∑
𝑗=0

(
𝑛
𝑗
)(−1)𝑗 = 0 grâce au binôme de NEWTON car

𝑛
∑
𝑗=0

(
𝑛
𝑗
)(−1)𝑗 =

𝑛
∑
𝑗=0

(
𝑛
𝑗
)(−1)𝑗1𝑛−𝑗 = (1 − 1)𝑛. Pour la seconde, on se ramène à la for-

mule du binôme de NEWTON en utilisant la relation de CHASLES :
𝑛
∑
𝑖=1

(
𝑛+1

𝑖
)(−1)𝑖 =

𝑛+1
∑
𝑖=0

(
𝑛+1

𝑖
)(−1)𝑖 − (

𝑛+1
0

)(−1)0 − (
𝑛+1
𝑛+1

)(−1)𝑛+1 =
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(1−1)𝑛+1 −1−(−1)𝑛+1 = −1+(−1)𝑛+2 = −1+(−1)𝑛 = (−1)𝑛 −1.

Ainsi on obtient que :
𝑛
∑
𝑖=1

(
𝑛+1

𝑖
)(−1)𝑖 = (−1)𝑛 −1.

3. On se ramène à la formule du binôme de NEWTON en utilisant les pro-

priétés sur les puissances. On obtient :
𝑛
∑
𝑗=0

(
𝑛
𝑗
)
(−1)𝑗−1

2𝑗+1
=

−1
2

𝑛
∑
𝑗=0

(
𝑛
𝑗
)(

−1
2

)
𝑗
=

−1
2

(1−
1
2
)
𝑛
=

−1
2𝑛+1

.

4.
𝑛−1
∑
𝑘=0

1
3𝑘

(
𝑛
𝑘
) =

𝑛−1
∑
𝑘=0

(
𝑛
𝑘
)(

1
3
)
𝑘
1𝑛−𝑘. Afin de pouvoir utiliser la formule du binôme

de NEWTON, on utilise la relation de CHASLES pour obtenir :
𝑛−1
∑
𝑘=0

1
3𝑘

(
𝑛
𝑘
) =

𝑛
∑
𝑘=0

(
𝑛
𝑘
)(

1
3
)
𝑘
1𝑛−𝑘 −(

𝑛
𝑛
)(

1
3
)
𝑛
= (1+

1
3
)
𝑛
−

1
3𝑛

= (
4
3
)
𝑛
−

1
3𝑛

=
4𝑛 −1
3𝑛

.

5. On peut déjà remarquer que : S1 =
𝑛
∑
𝑗=0

𝑗(
𝑛
𝑗
) = 0×(

𝑛
0
)+

𝑛
∑
𝑗=1

𝑗(
𝑛
𝑗
) =

𝑛
∑
𝑗=1

𝑗(
𝑛
𝑗
). Ici

on ne sait pas calculer la somme sans transformation car il y a le 𝑗. On utilise
d’abord une propriété des coefficients binomiaux, et on obtient :

S1 =
𝑛
∑
𝑗=0

𝑗(
𝑛
𝑗
) =

𝑛
∑
𝑗=1

𝑛(
𝑛−1
𝑗 −1

) = 𝑛
𝑛
∑
𝑗=1

(
𝑛−1
𝑗 −1

)

car 𝑛 est alors indépendant de l’indice de sommation donc on peut le sor-
tir de la somme. Pour se ramener à du binôme de NEWTON, on commence

par poser le changement d’indice : 𝑖 = 𝑗 − 1 et on obtient S1 =
𝑛
∑
𝑗=0

𝑗(
𝑛
𝑗
) =

𝑛
𝑛−1
∑
𝑖=0

(
𝑛−1

𝑖
) (c’est ici qu’il est mieux d’être passé au début d’une somme al-

lant de 0 à 𝑛 à une somme allant de 1 à 𝑛 car sinon on aurait un indice com-
mencant à -1. Si on n’a pas changé la somme au début, une autre méthode
est alors de faire ici une relation de CHASLES afin d’isoler l’indice -1). On re-

connaît alors un binôme de NEWTON et on obtient S1 =
𝑛
∑
𝑗=0

𝑗(
𝑛
𝑗
) = 𝑛2𝑛−1.

6. Il s’agit ici d’appliquer deux fois de suite la propriété sur les coefficients bi-

nomiaux : T = 𝑛
𝑛
∑
𝑘=2

(𝑘−1)(
𝑛−1
𝑘−1

) en reprenant les calculs faits au-dessus. On

pourra aussi remarquer que la somme T peut être commencée à 2. Puis en
réappliquant la propriété sur les coefficients binomiaux : (𝑘−1)(𝑛−1𝑘−1) = (𝑛−

1)(𝑛−2𝑘−2), on obtient que : T = 𝑛(𝑛−1)
𝑛
∑
𝑘=2

(
𝑛−2
𝑘−2

). On effectue alors le change-

ment d’indice 𝑗 = 𝑘−2 et onobtientT = 𝑛(𝑛−1)
𝑛−2
∑
𝑗=0

(
𝑛−2

𝑗
). Donc enutilisant

le binôme de NEWTON, on a : T = 𝑛(𝑛−1)2𝑛−2. Calcul de S2 =
n
∑
k=1

k2(
n
k
) :

Comme 𝑘2 = 𝑘(𝑘 − 1) + 𝑘 et par linéarité de la somme, on obtient que :

S2 =
𝑛
∑
𝑘=1

𝑘2(
𝑛
𝑘
) =

𝑛
∑
𝑘=1

𝑘(𝑘 − 1)(
𝑛
𝑘
)+

𝑛
∑
𝑘=1

𝑘(
𝑛
𝑘
) =

𝑛
∑
𝑘=2

𝑘(𝑘 − 1)(
𝑛
𝑘
)+

𝑛
∑
𝑘=1

𝑘(
𝑛
𝑘
) =

T+S1 = 𝑛(𝑛+1)2𝑛−2.
7. Là encore, il faut commencer par utiliser la propriété sur les coefficients

binomiaux. Comme (𝑖 + 1)(𝑛+1𝑖+1) = (𝑛 + 1)(𝑛𝑖), on obtient que : 1
𝑖+1 (

𝑛
𝑖) =

1
𝑛+1 (

𝑛+1
𝑖+1). Ainsi, la somme devient : S3 =

𝑛
∑
𝑖=0

1
𝑖+1

(
𝑛
𝑖
) =

𝑛
∑
𝑖=0

1
𝑛+1

(
𝑛+1
𝑖+1

) =

1
𝑛+1

𝑛
∑
𝑖=0

(
𝑛+1
𝑖+1

) car 1
𝑛+1 ne dépend pas de l’indice de sommation 𝑖. On

fait le changement d’indice 𝑗 = 𝑖 + 1 et on utilise aussi la relation de
CHASLES pour faire apparaître le binôme de NEWTON. On obtient S3 =
𝑛
∑
𝑖=0

1
𝑖+1

(
𝑛
𝑖
) =

1
𝑛+1

𝑛+1
∑
𝑗=1

(
𝑛+1

𝑗
) =

1
𝑛+1

[
𝑛+1
∑
𝑗=0

(
𝑛+1

𝑗
)−(

𝑛+1
0

)]. Ainsi, on ob-

tient S3 =
𝑛
∑
𝑖=0

1
𝑖+1

(
𝑛
𝑖
) =

1
𝑛+1

[2𝑛+1 −1].

Exercice 6 ∣ Téléscopage simple Soit 𝑛 ⩾ 2.

1. Justifier que : 1
𝑘2−𝑘 = 1

𝑘−1 − 1
𝑘 , pour tout entier 𝑘 ⩾ 2.

2. Calculer :
𝑛
∑
𝑘=2

1
𝑘2 −𝑘

.

Solution (exercice 6) Soit 𝑘 ⩾ 2, on a : 1
𝑘−1 − 1

𝑘 = �𝑘−(�𝑘−1)
𝑘(𝑘−1) = 1

𝑘2−𝑘 . Ainsi, on
a :

𝑛
∑
𝑘=2

1
𝑘2 −𝑘

=
𝑛
∑
𝑘=2

(
1

𝑘−1
−

1
𝑘
)

= (1−
�
��
1
2
)+(

�
��
1
2

−
�
��
1
3
)+…+(

�
�
�1

𝑛−2
−
�

�
�1

𝑛−1
)+(

�
�
�1

𝑛−1
−

1
𝑛

)

= 1−
1
𝑛

.

Exercice 7 ∣ Téléscopagemultiple
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1. Déterminer trois réels 𝑎, 𝑏 et 𝑐 tels que :

∀𝑘 ∈ ℕ⋆,
1

𝑘(𝑘+1)(𝑘+2)
=

𝑎
𝑘

+
𝑏

𝑘+1
+

𝑐
𝑘+2

.

En déduire la valeur de
𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

.

2. Retrouver ce dernier résultat par récurrence : montrer que pour tout 𝑛 ⩾ 1,
𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
𝑛(𝑛+3)

4(𝑛+1)(𝑛+2)
.

Solution (exercice 7)
1. • On commence par montrer qu’il existe trois réels 𝑎,𝑏 et 𝑐 tels que pour

tout 𝑘 ∈ ℕ⋆ : 1
𝑘(𝑘+1)(𝑘+2) = 𝑎

𝑘 + 𝑏
𝑘+1 + 𝑐

𝑘+2 . En mettant au même dénomina-

teur, on obtient que : ∀𝑘 ∈ ℕ⋆, 1
𝑘(𝑘+1)(𝑘+2) = (𝑎+𝑏+𝑐)𝑘2+(3𝑎+2𝑏+𝑐)𝑘+2𝑎

𝑘(𝑘+1)(𝑘+2) .
Cette relation doit être vraie pour tout 𝑘 ∈ ℕ⋆ donc, par identification,

on obtient que :
⎧⎪
⎨⎪
⎩

𝑎+𝑏+𝑐 = 0,
3𝑎 +2𝑏+𝑐 = 0,

2𝑎 = 1
donc 𝑎 = 𝑐 = 1

2 et 𝑏 = −1. Ainsi,

on obtient, par linéarité, que :
𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
1
2

𝑛
∑
𝑘=1

1
𝑘

−
𝑛
∑
𝑘=1

1
𝑘+1

+

1
2

𝑛
∑
𝑘=1

1
𝑘+2

.

• Il s’agit alors bien d’une somme télescopique. On pose le changement
d’indice : 𝑗 = 𝑘+1 dans la deuxième somme et le changement d’indice :
𝑖 = 𝑘+2 dans la troisième somme et on obtient :

𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
1
2

𝑛
∑
𝑘=1

1
𝑘

−
𝑛+1
∑
𝑗=2

1
𝑗
+

1
2

𝑛+2
∑
𝑖=3

1
𝑖

=
1
2

𝑛
∑
𝑘=1

1
𝑘

−
𝑛+1
∑
𝑘=2

1
𝑘

+
1
2

𝑛+2
∑
𝑘=3

1
𝑘

=
1
2
(1+

1
2
)−(1+

1
𝑛+1

)+
1
2
(

1
𝑛+1

+
1

𝑛+2
)

=
𝑛(𝑛+3)

4(𝑛+1)(𝑛+2)
en utilisation le fait que l’indice de sommation est muet, la relation de
CHASLES et en mettant tout au même dénominateur.

2. Onétabliemaintenant le résultat précédent par récurrence sur𝑛 ∈ ℕ⋆ la pro-
priété :

𝒫(𝑛) ∶
𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
𝑛(𝑛+3)

4(𝑛+1)(𝑛+2)
.

Initialisation. D’un côté, on a :
1
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
1

1(1+1)(1+2)
=

1
6
. De

l’autre côté, on a : 𝑛(𝑛+3)
4(𝑛+1)(𝑛+2) = 1(1+3)

4(1+1)(1+2) = 4
4×6 = 1

6 . Donc 𝒫(1) est vraie.

Hérédité. Soit 𝑛 ∈ ℕ⋆ fixé. On suppose la propriété vraie au rang

𝑛, montrons qu’elle est vraie au rang 𝑛 + 1.
𝑛+1
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

+
1

(𝑛+1)(𝑛+2)(𝑛+3)
d’après la relation de CHASLES.

Puis par hypothèse de récurrence, on obtient que :
𝑛+1
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
𝑛(𝑛+3)

4(𝑛+1)(𝑛+2)
+

1
(𝑛+1)(𝑛+2)(𝑛+3)

=
𝑛3 +6𝑛2 +9𝑛+4

4(𝑛+1)(𝑛+2)(𝑛+3)
enmettant aumême dénominateur. Pour le numérateur on remarque que -1
est racine évidente et ainsi en factorisant par 𝑛+1 on obtient par identifica-
tion des coefficients que :𝑛3+6𝑛2+9𝑛+4 = (𝑛+1)(𝑛2+5𝑛+4). Puis le calcul
dudiscriminant donneque𝑛3+6𝑛2+9𝑛+4 = (𝑛+1)(𝑛2+5𝑛+4) = (𝑛+1)(𝑛+

1)(𝑛+4). Ainsi on obtient que :
𝑛+1
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
(𝑛+1)(𝑛+4)
4(𝑛+2)(𝑛+3)

. Donc

𝒫(𝑛+1) est vraie.
Conclusion : il résulte du principe de récurrence que pour tout 𝑛 ∈ ℕ⋆ :

𝑛
∑
𝑘=1

1
𝑘(𝑘+1)(𝑘+2)

=
𝑛(𝑛+3)

4(𝑛+1)(𝑛+2)
.

Exercice 8 ∣ BOMB Une récurrence

1. Montrer, par récurrence, que pour tout 𝑛 ∈ ℕ,
𝑛
∑
𝑘=0

𝑘×𝑘! = (𝑛+1)!−1.

2. Retrouver le résultat précédent en faisant apparaître une somme téléscopique.

Solution (exercice 8)
1. Montrons par récurrence sur 𝑛 ∈ ℕ la propriété 𝒫(𝑛) ∶

𝑛
∑
𝑘=0

𝑘𝑘! = (𝑛+1)!−1.

Initialisation. pour 𝑛 = 0 : on a
0
∑
𝑘=0

𝑘𝑘! = 0 et 1!−1 = 0. Ainsi, 𝒫(0) est vraie.

Hérédité. Soit 𝑛 ∈ ℕ. On suppose la propriété vraie à l’ordre 𝑛, vérifions que
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𝒫(𝑛+1) est vraie. On a, en mettant à part le dernier terme de la somme :
𝑛+1
∑
𝑘=0

𝑘𝑘! =
𝑛
∑
𝑘=0

𝑘𝑘!+(𝑛+1)(𝑛+1)!.

Par hypothèse de récurrence, on a
𝑛+1
∑
𝑘=0

𝑘𝑘! = (𝑛+1)!−1+(𝑛+1)(𝑛+1)! = (𝑛+1)!(𝑛+2)−1 = (𝑛+2)!−1.

Ainsi, 𝒫(𝑛 + 1) est démontrée. Il résulte du principe de récurrence que :

∀𝑛 ∈ ℕ,
𝑛
∑
𝑘=0

𝑘𝑘! = (𝑛+1)!−1 .

2. On peut aussi calculer directement :
𝑛
∑
𝑘=0

𝑘×𝑘! =
𝑛
∑
𝑘=0

(𝑘+1−1)×𝑘!

=
𝑛
∑
𝑘=0

((𝑘+1)𝑘!−𝑘!) =
𝑛
∑
𝑘=0

((𝑘+1)!−𝑘!)

= (𝑛+1)!−1 .
téléscopage

Exercice 9 ∣ BOMB Sommes et dérivation Soit 𝑛 ∈ ℕ⋆. Pour tout 𝑥 ∈ ℝ∖{1}, on pose

𝑓(𝑥) =
𝑛
∑
𝑘=0

𝑥𝑘.

1. Calculer 𝑓(𝑥).

2. En dérivant, calculer
𝑛
∑
𝑘=1

𝑘𝑥𝑘−1, et en déduire
𝑛
∑
𝑘=1

𝑘𝑥𝑘.

3. Calculer de la même façon :
𝑛
∑
𝑘=2

𝑘(𝑘−1)𝑥𝑘−2.

Solution (exercice 9) Il s’agit ici du même type de méthode que pour
l’exercice précédent sauf que cette fois ci, on l’applique à la somme des termes
d’une suite géométrique et plus au binôme de NEWTON.
1. On reconnaît la somme des termes d’une suite géométrique et ainsi, on ob-

tient, comme 𝑥 ≠ 1 : ∀𝑥 ∈ ℝ∖{1}, 𝑓(𝑥) = 1−𝑥𝑛+1
1−𝑥 .

2. La fonction 𝑓 est dérivable sur ℝ ∖ {1} comme produit, somme et quotient
dont le dénominateur ne s’annule pas de fonctions dérivables.
• D’un côté, la fonction 𝑓 vaut : 𝑓(𝑥) = 1−𝑥𝑛+1

1−𝑥 . Ainsi, en dérivant, on obtient
que :

∀𝑥 ∈ ℝ∖{1}, 𝑓′(𝑥) =
1+𝑛𝑥𝑛+1 −(𝑛+1)𝑥𝑛

(1−𝑥)2
.

• De l’autre côté, la fonction 𝑓 vaut 𝑓(𝑥) =
𝑛
∑
𝑘=0

𝑥𝑘 = 1+
𝑛
∑
𝑘=1

𝑥𝑘. La dérivée

d’une somme étant égale à la somme des dérivées, on obtient que :

∀𝑥 ∈ ℝ∖{1}, 𝑓′(𝑥) =
𝑛
∑
𝑘=1

𝑘𝑥𝑘−1.

La somme commence bien à 𝑘 = 1 car le terme pour 𝑘 = 0 dans 𝑓(𝑥) est
le terme constant 1 qui est nul lorsqu’on dérive.

On obtient donc que : ∀𝑥 ∈ ℝ∖{1},
𝑛
∑
𝑘=1

𝑘𝑥𝑘−1 =
1+𝑛𝑥𝑛+1 −(𝑛+1)𝑥𝑛

(1−𝑥)2
.

On a :
𝑛
∑
𝑘=1

𝑘𝑥𝑘 =
𝑛
∑
𝑘=1

𝑘𝑥×𝑥𝑘−1 = 𝑥
𝑛
∑
𝑘=1

𝑘𝑥𝑘−1. D’après la question précédente,

on obtient donc : ∀𝑥 ∈ ℝ∖{1},
𝑛
∑
𝑘=1

𝑘𝑥𝑘 = 𝑥×
1+𝑛𝑥𝑛+1 −(𝑛+1)𝑥𝑛

(1−𝑥)2
.

3. Il faut ici remarquer que la somme correspond à dériver deux fois la somme

𝑓(𝑥) =
𝑛
∑
𝑘=0

𝑥𝑘 = 1 + 𝑥 +
𝑛
∑
𝑘=2

𝑥𝑘. La fonction 𝑓 est bien deux fois dérivables

comme fonction polynomiale.

Et en dérivant deux fois, on obtient bien : ∀𝑥 ∈ ℝ∖ {1}, 𝑓′′(𝑥) =
𝑛
∑
𝑘=2

𝑘(𝑘−

1)𝑥𝑘−2. Cette somme commence bien à 𝑘 = 2 car quand on dérive deux fois
les termes 1 et 𝑥, ils deviennent nuls. En dérivant deux fois l’autre expression
de 𝑓, on obtient la valeur de la somme :

∀𝑥 ∈ ℝ∖{1},
𝑛
∑
𝑘=2

𝑘(𝑘−1)𝑥𝑘−2 =
2−𝑛(𝑛+1)𝑥𝑛−1 +2(𝑛2 −1)𝑥𝑛 −𝑛(𝑛−1)𝑥𝑛+1

(1−𝑥)3
.

Exercice 10 ∣ BOMB Sommes d’indices pairs et impairs Soit 𝑛 un entier naturel
non nul. On définit les sommes suivantes :

S𝑛 =
𝑛
∑
𝑘=0

(
2𝑛
2𝑘

), T𝑛 =
𝑛−1
∑
𝑘=0

(
2𝑛

2𝑘+1
).

1. Montrer que S𝑛 +T𝑛 = 22𝑛 et S𝑛 −T𝑛 = 0.
2. En déduire une expression de S𝑛 et de T𝑛 en fonction de 𝑛.

Solution (exercice 10)
1. • Si on ne voit pas comment débuter, on commence par écrire la somme

S𝑛 +T𝑛 sous forme développée. On obtient alors que : S𝑛 +T𝑛 =
2𝑛
∑
𝑘=0

(
2𝑛
𝑘

)

car on se rend compte en écrivant les sommes sous forme développées
que l’on obtient au final la somme de tous les coefficients binomiaux : S𝑛
correspond en effet à la sommedes coefficients binomiaux (2𝑛𝑘 ) avec𝑘pair

27



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

28
BC
PS
T1

Creative-Commons
20
25
-2
02
6

etT𝑛 correspondà la sommedes coefficients binomiaux (2𝑛𝑘 ) avec𝑘 impair
donc en sommant les deux on a bien la somme de tous les coefficients
binomiaux pour 𝑘 allant de 0 à 2𝑛. Ainsi, d’après le binôme de NEWTON,
on obtient que : S𝑛 +T𝑛 = 22𝑛 = 4𝑛.

• De même, on peut commencer par écrire la somme S𝑛 −T𝑛 sous forme

développée. On obtient alors que : S𝑛−T𝑛 =
2𝑛
∑
𝑘=0

(
2𝑛
𝑘

)(−1)𝑘 car on se rend

compte en écrivant les sommes sous forme développées que l’on obtient
au final la somme de tous les coefficients binomiaux coefficientés par 1
ou par -1 : les coefficients binomiaux (2𝑛𝑘 ) avec 𝑘 pair sont coefficienté par
1 et les coefficients binomiaux (2𝑛𝑘 ) avec 𝑘 impair sont coefficienté par -
1. Ainsi cela revient bien à sommer tous les nombres (2𝑛𝑘 )(−1)𝑘 pour 𝑘
allant de 0 à 2𝑛. Ainsi, d’après le binôme de NEWTON, on obtient que :
S𝑛 +T𝑛 = (1−1)𝑛 = 0.

2. Il s’agit alors juste de résoudre le système { S𝑛 +T𝑛 = 22𝑛,
S𝑛 −T𝑛 = 0.

On obtient alors : 2S𝑛 = 22𝑛, donc : S𝑛 = 22𝑛−1 et T𝑛 = S𝑛 = 22𝑛−1 .

Exercice 11 ∣ BOMB Inégalité de CAUCHY-SCHWARZ Soient 𝑛 ⩾ 1 un entier, et
(𝑥1,…,𝑥𝑛), (𝑦1,…,𝑦𝑛) deux éléments de ℝ𝑛.

1. Pour tout λ ∈ ℝ, on définit : P(λ) =
𝑛
∑
𝑖=1

(𝑦𝑖 +λ𝑥𝑖)2.

1.1) Justifier que P est une fonction trinôme ou affine, dont on précisera les co-
efficients.

1.2) Quel est le signe de P?
1.3) En déduire l’inégalité de CAUCHY-SCHWARZ :

|
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖| ⩽ √
𝑛
∑
𝑖=1

𝑥2
𝑖 ×√

𝑛
∑
𝑖=1

𝑦2𝑖 .

Indication : On commencera par étudier le cas où : ∀𝑖 ∈ J1 , 𝑛K, 𝑥𝑖 = 0

2. [Application] En déduire que : (
𝑛
∑
𝑖=1

𝑥𝑖
2𝑖

)
2

⩽ 1
3

𝑛
∑
𝑖=1

𝑥2
𝑖 .

Solution (exercice 11)

1. 1.1) Soit λ ∈ ℝ. Alors en développant le carré :

P(λ) =
𝑛
∑
𝑖=1

(𝑦𝑖 +λ𝑥𝑖)2

=
𝑛
∑
𝑖=1

(𝑦2𝑖 +2λ𝑥𝑖𝑦𝑖 +λ2𝑥2
𝑖 )

=
𝑛
∑
𝑖=1

𝑦2𝑖 +2λ
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 +λ2
𝑛
∑
𝑖=1

𝑥2
𝑖 .

linéarité de la somme

Il s’agit donc :

• d’une fonction affine si
𝑛
∑
𝑖=1

𝑥2
𝑖 = 0. Alors dans ce cas le coefficient

directeur est 𝑎 = 2
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖, et l’ordonnée à l’origine 𝑏 =
𝑛
∑
𝑖=1

𝑦2𝑖 .

• D’un trinôme sinon : avec 𝑎 =
𝑛
∑
𝑖=1

𝑥2
𝑖 > 0, 𝑏 = 2

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 et 𝑐 =
𝑛
∑
𝑖=1

𝑦2𝑖 .

1.2) Puisque P est une somme de carrés, on a : ∀λ ∈ ℝ, P(λ) ⩾ 0 .

1.3) • Cas ∀𝑖 ∈ J1 , 𝑛K, 𝑥𝑖 = 0, c’est-à-dire
𝑛
∑
𝑖=1

𝑥2
𝑖 = 0. L’inégalité est simple-

ment 0 ⩽ 0, qui est bien sûr vérifiée.

• Cas
𝑛
∑
𝑖=1

𝑥2
𝑖 ≠ 0. Dans ce cas, la fonction P est un trinôme de signe

(positif) constant, donc son discriminant est négatif. Or,

Δ = 𝑏2 −4𝑎𝑐 = (2
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖)
2

−4
𝑛
∑
𝑖=1

𝑥2
𝑖 ×

𝑛
∑
𝑖=1

𝑦2𝑖 ⩽ 0.

Ainsi, (2
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖)
2

⩽ 4
𝑛
∑
𝑖=1

𝑥2
𝑖 ×

𝑛
∑
𝑖=1

𝑦2𝑖 . D’où l’on tire en passant à la

racine (qui est une fonction croissante) et en simplifiant par 4 :

|
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖| ⩽ √
𝑛
∑
𝑖=1

𝑥2
𝑖 ×√

𝑛
∑
𝑖=1

𝑦2𝑖 .

2. [Application] Il suffit de choisir : ∀𝑖 ∈ J1 , 𝑛K, 𝑦𝑖 = 1
2𝑖 .

L’inégalité de CAUCHY-SCHWARZ (élevée au carré) donne alors :
𝑛
∑
𝑖=1

𝑥𝑖
2𝑖

⩽
𝑛
∑
𝑖=1

𝑥2
𝑖 ×

𝑛
∑
𝑖=1

1
4𝑖

,

apparait alors dans le majorant une somme géométrique de raison 1
4 :

𝑛
∑
𝑖=1

1
4𝑖

=
1
4
1−( 14 )

𝑛

1− 1
4

⩽
1
4

1
3
4

=
1
3
.

On a donc établi que : (
𝑛
∑
𝑖=1

𝑥𝑖
2𝑖

)
2

⩽ 1
3

𝑛
∑
𝑖=1

𝑥2
𝑖 .
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Exercice 12 ∣ BOMB Transformation d’ABEL Soient 𝑛 ⩾ 1 un entier, et
(𝑥1,…,𝑥𝑛), (𝑦1,…,𝑦𝑛) deux éléments de ℝ𝑛. On définit de plus :

X𝑛 =
𝑛
∑
𝑘=1

𝑥𝑘, Y𝑛 =
𝑛
∑
𝑘=1

𝑦𝑘.

1. Justifier que 𝑦𝑘 = Y𝑘 −Y𝑘−1 pour tout 𝑘 ⩾ 2.

2. Montrer l’égalité :
𝑛
∑
𝑘=1

𝑥𝑘𝑦𝑘 =
𝑛−1
∑
𝑘=1

(𝑥𝑘 −𝑥𝑘+1)Y𝑘+𝑥𝑛Y𝑛. Ce type de transforma-

tion sert pour l’étude de la convergence de certaines suites numériques.

Solution (exercice 12)
1. La formule 𝑦𝑘 = Y𝑘 −Y𝑘−1 pour tout 𝑘 ⩾ 2 découle d’un simple téléscopage.

2. Montrons l’égalité :
𝑛
∑
𝑘=1

𝑥𝑘𝑦𝑘 =
𝑛−1
∑
𝑘=1

(𝑥𝑘 −𝑥𝑘+1)Y𝑘 +𝑥𝑛Y𝑛.

Commençons par traiter le cas 𝑛 ⩾ 2. D’après la question précédente, nous
avons :
𝑛
∑
𝑘=1

𝑥𝑘𝑦𝑘 = 𝑥1𝑦1 +
𝑛
∑
𝑘=2

𝑥𝑘 (Y𝑘 −Y𝑘−1)

= 𝑥1𝑦1 +
𝑛
∑
𝑘=2

𝑥𝑘Y𝑘 −
𝑛
∑
𝑘=2

𝑥𝑘Y𝑘−1

= 𝑥1𝑦1 +
𝑛
∑
𝑘=2

𝑥𝑘Y𝑘 −
𝑛−1
∑
ℓ=1

𝑥ℓ+1Yℓ

= 𝑥1𝑦1 +
𝑛
∑
𝑘=2

𝑥𝑘Y𝑘 −
𝑛−1
∑
𝑘=1

𝑥𝑘+1Y𝑘

= 𝑥1𝑦1 +𝑥𝑛Y𝑛−𝑥2Y1 +
𝑛−1
∑
𝑘=2

(𝑥𝑘 −𝑥𝑘+1)Y𝑘

=
𝑛−1
∑
𝑘=1

(𝑥𝑘 −𝑥𝑘+1)Y𝑘 +𝑥𝑛Y𝑛.

linéarité de la somme

changement d’indice ℓ = 𝑘−1
dans la deuxième

indice muet

regroupement des sommes sur
les bornes communes

les termes surlignés
correspondent au terme 𝑘 = 1
de la somme

4.3 Produits

Exercice 13 ∣ Soit (𝑛,𝑝,𝑖) ∈ ℕ2 non nuls avec 𝑝 ⩽ 𝑛. Calculer les produits sui-
vants, en exprimant les résultats éventuellement en fonction de factorielles :

∏𝑛
𝑘=1𝑘 et ∏𝑖+𝑛

𝑘=𝑖 𝑘,1. ∏𝑛
𝑘=1 exp (𝑘𝑛 )2. ∏𝑛

𝑘=1
2𝑘

2𝑘+13.

∏𝑛
𝑘=1(4𝑘−2)4. ∏𝑛

𝑘=2 (1− 1
𝑘2 )5. ∏𝑝−1

𝑘=0
𝑛−𝑘
𝑝−𝑘 .6.

Solution (exercice 13)
1. ∏𝑛

𝑘=1𝑘 = 𝑛! par définition. Pour le second, il manque des entiers pour avoir
une factorielle, qu’il convient de rajouter.

𝑖+𝑛
∏
𝑘=𝑖

𝑘 = ����∏𝑖−1
𝑘=1𝑘×∏𝑖+𝑛

𝑘=𝑖 𝑘

��
��∏𝑖−1

𝑘=1𝑘
=

(𝑖+𝑛)!
(𝑖 −1)!

.

2. Par propriété de l’exponentielle :
𝑛
∏
𝑘=1

exp(
𝑘
𝑛

) = e
1
𝑛 ∑𝑛

𝑘=1𝑘 = e
𝑛+1
2 .

3. On utilise la même technique que dans le cours. Le produit des pairs se cal-
cule directement, mais pour les impairs on rajoute les pairs.

𝑛
∏
𝑘=1

2𝑘
2𝑘+1

=
2𝑛×(2𝑛−2)×…×4×2

(2𝑛+1)×(2𝑛−1)×…×3×1

=
(2𝑛×(2𝑛−2)×…×4×2)2

(2𝑛+1)×2𝑛×…×3×2×1

=
(2𝑛𝑛×(𝑛−1)×…×2×1))2

(2𝑛+1)!

=
22𝑛(𝑛!)2

(2𝑛+1)!
.

4. En sortant un 2, on retombe sur le produit des impairs. On utilise alors la
même technique que précédemment.

𝑛
∏
𝑘=1

(4𝑘−2) =
𝑛
∏
𝑘=1

2(2𝑘−1)

= 2𝑛 ×(2𝑛−1)×(2𝑛−3)×…×3×1

=
2𝑛 ×2𝑛×(2𝑛−1)×(2𝑛−2)×…×3×2×1

2𝑛×(2𝑛−2)×…×4×2

=
2𝑛 ×(2𝑛)!

2𝑛 ×𝑛×(𝑛−1)×…×2×1

=
(2𝑛)!
𝑛!

.
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5. Une fois le terme général simplifié, on tombe sur des produits téléscopiques.
𝑛
∏
𝑘=2

(1−
1
𝑘2 ) =

𝑛
∏
𝑘=2

(
𝑘2 −1
𝑘2 )

=
∏𝑛
𝑘=2(𝑘

2 −1)
∏𝑛
𝑘=2𝑘2 =

∏𝑛
𝑘=2(𝑘−1)
∏𝑛
𝑘=2𝑘

×
∏𝑛
𝑘=2(𝑘+1)
∏𝑛
𝑘=2𝑘

=
∏𝑛−1
𝑘=1 𝑘

∏𝑛
𝑘=2𝑘

×
∏𝑛+1
𝑘=3 𝑘

∏𝑛
𝑘=2𝑘

=
𝑛+1
2𝑛

.

changements
d’indice

6.
𝑝−1
∏
𝑘=0

𝑛−𝑘
𝑝−𝑘

=
∏𝑝−1
𝑘=0(𝑛−𝑘)

∏𝑝−1
𝑘=0(𝑝−𝑘)

=
∏𝑛
ℓ=𝑛−𝑝+1ℓ

∏𝑝
ℓ=1ℓ

=
∏𝑛−𝑝
ℓ=1 ℓ×∏𝑛

ℓ=𝑛−𝑝+1ℓ

∏𝑛−𝑝
ℓ=1 ℓ×∏𝑝

ℓ=1ℓ

=
𝑛!

(𝑛−𝑝)!×𝑝!
.

en posant ℓ = 𝑛−𝑘 en haut, ℓ = 𝑝−𝑘 en bas

Ainsi on obtient au final que :
𝑝−1
∏
𝑘=0

𝑛−𝑘
𝑝−𝑘

=
𝑛!

𝑝!(𝑛−𝑝)!
= (

𝑛
𝑝
).

Exercice 14 ∣ BOMB Soient 𝑛 ⩾ 1 et 𝑥0,…,𝑥𝑛−1 ∈ ℝ+⋆. Démontrer que :
𝑛−1
∏
𝑘=0

(1+𝑥𝑘) ⩾
𝑛−1
∑
𝑘=0

𝑥𝑘.

Solution (exercice 14) Faisons une récurrence sur 𝑛 ∈ ℕ⋆.
Initialisation. Pour 𝑛 = 1, on a bien 1+𝑥0 ⩾ 𝑥0.

Hérédité. Supposons la propriété vraie au rang 𝑛, alors :
𝑛
∏
𝑘=0

(1+𝑥𝑘)

=
𝑛−1
∏
𝑘=0

(1+𝑥𝑘)(1+𝑥𝑛)

=
𝑛−1
∏
𝑘=0

(1+𝑥𝑘)+𝑥𝑛 ⋅
𝑛−1
∏
𝑘=0

(1+𝑥𝑘)

⩾
𝑛−1
∑
𝑘=0

𝑥𝑘 +𝑥𝑛

=
𝑛
∑
𝑘=0

𝑥𝑘.

hypothèse de récurrence

HR + produit de réels ⩾ 1

La propriété est donc établie par récurrence. On a donc :
𝑛−1
∏
𝑘=0

(1+𝑥𝑘) ⩾
𝑛−1
∑
𝑘=0

𝑥𝑘

4.4 Sommes doubles

Exercice 15 ∣ Danscet exercice,𝑛,𝑚 sontdeuxentiersnaturelsnonnuls.Calculer
les sommes doubles suivantes :

∑𝑛
𝑝=0∑

𝑚
𝑞=0𝑝(𝑞2 +1)1. ∑𝑛

𝑖=1∑
𝑛
𝑗=1 1 et

∑1⩽𝑗⩽𝑖⩽𝑛 1,
2. ∑𝑛

𝑖=1∑
𝑛
𝑗=1 𝑖2

𝑗,3.

∑𝑛
𝑖=1∑

𝑛
𝑗=𝑖

𝑖2
𝑗 ,4. ∑1⩽𝑘⩽ℓ⩽𝑛

𝑘
ℓ+1 ,5. ∑1⩽𝑗⩽𝑖⩽𝑛𝑥𝑗, avec 𝑥 un

réel,
6.

∑𝑛2
𝑘=0∑

𝑘+2
𝑖=𝑘 𝑘𝑖2,7. ∑𝑛

𝑗=1∑
𝑗
𝑖=0

2𝑖
3𝑗 ,8. ∑𝑛

𝑖=1∑
𝑛
𝑗=𝑖 (

𝑗
𝑖).9.

Solution (exercice 15)
1.

𝑛
∑
𝑝=0

𝑚
∑
𝑞=0

𝑝(𝑞2 +1) =
𝑛
∑
𝑝=0

[𝑝
𝑚
∑
𝑞=0

𝑞2 +𝑝
𝑚
∑
𝑞=0

1]

=
𝑛
∑
𝑝=0

[𝑝
𝑚(𝑚+1)(2𝑚+1)

6
+𝑝(𝑚+1)]

=
𝑚(𝑚+1)(2𝑚+1)

6

𝑛
∑
𝑝=0

𝑝+(𝑚+1)
𝑛
∑
𝑝=0

𝑝
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=
𝑚(𝑚+1)(2𝑚+1)

6
𝑛(𝑛+1)

2
+(𝑚+1)

𝑛(𝑛+1)
2

=
1
12

(𝑚+1)(2𝑚2 +𝑚+6)𝑛(𝑛+1).

2.
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

1 =
𝑛
∑
𝑖=1

[
𝑛
∑
𝑗=1

1] =
𝑛
∑
𝑖=1

[𝑛] = 𝑛
𝑛
∑
𝑖=1

1 = 𝑛2.

𝑛
∑
𝑖=1

𝑖
∑
𝑗=1

1 =
𝑛
∑
𝑖=1

[
𝑖
∑
𝑗=1

1] =
𝑛
∑
𝑖=1

[𝑖] =
𝑛
∑
𝑖=1

𝑖 =
𝑛(𝑛+1)

2
.

3.
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑖2𝑗 =
𝑛
∑
𝑖=1

[
𝑛
∑
𝑗=1

𝑖2𝑗]

=
𝑛
∑
𝑖=1

[𝑖
𝑛
∑
𝑗=1

2𝑗]

=
𝑛
∑
𝑖=1

[𝑖×2
1−2𝑛

1−2
]

= 2(2𝑛 −1)
𝑛
∑
𝑖=1

𝑖

= (2𝑛 −1)𝑛(𝑛+1).
4.

𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑖2

𝑗
=

𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

𝑖2

𝑗

=
𝑛
∑
𝑗=1

1
𝑗

𝑗
∑
𝑖=1

𝑖2 =
𝑛
∑
𝑗=1

1

��𝑗
��𝑗(𝑗 +1)(2𝑗 +1)

6

=
1
6

𝑛
∑
𝑗=1

(𝑗2 +3𝑗 +1)

=
1
6
(
𝑛(𝑛+1)(2𝑛+1)

6
+

3𝑛(𝑛+1)
2

+𝑛)

=
1
18

𝑛(𝑛+4)(𝑛+2) .

5. On commence par essayer de calculer la somme la plus intérieure. On n’y ar-
rive pas car on ne connaît pas la somme des inverses. Ainsi on va donc com-
mencer par inverser le sens des symboles sommes. On a :

𝑛
∑
𝑘=0

𝑛
∑
ℓ=𝑘

𝑘
ℓ+1

= ∑
0⩽𝑘⩽ℓ⩽𝑛

𝑘
ℓ+1

=
𝑛
∑
ℓ=0

ℓ
∑
𝑘=0

𝑘
ℓ+1

.

Ainsi on obtient que :
𝑛
∑
ℓ=0

ℓ
∑
𝑘=0

𝑘
ℓ+1

=
𝑛
∑
ℓ=0

[
1

ℓ+1

ℓ
∑
𝑘=0

𝑘]

=
𝑛
∑
ℓ=0

[
1

ℓ+1
×

ℓ(ℓ+1)
2

] =
1
2

𝑛
∑
ℓ=0

ℓ =
𝑛(𝑛+1)

4
.

6. • Si 𝑥 = 1, on a : ∑𝑛
𝑖=1∑

𝑖
𝑗=1𝑥

𝑗 = ∑𝑛
𝑖=1∑

𝑖
𝑗=1 1 = ∑𝑛

𝑖=1 𝑖 =
𝑛(𝑛+1)

2
.

• Si 𝑥 ≠ 1 : ∑𝑛
𝑖=1∑

𝑖
𝑗=1𝑥

𝑗 = ∑𝑛
𝑖=1 [∑

𝑖
𝑗=1𝑥

𝑗] = ∑𝑛
𝑖=1 [𝑥

1−𝑥𝑖
1−𝑥 ] = 𝑥

1−𝑥 ∑𝑛
𝑖=1(1−𝑥𝑖) =

𝑥
1−𝑥 [∑𝑛

𝑖=1 1−∑𝑛
𝑖=1𝑥

𝑖].

Ainsi on obtient que : ∑𝑛
𝑖=1∑

𝑖
𝑗=1𝑥

𝑗 = 𝑥
1−𝑥 [𝑛−𝑥 1−𝑥𝑛

1−𝑥 ].
7.

𝑛2

∑
𝑘=0

𝑘+2
∑
𝑖=𝑘

𝑘𝑖2 =
𝑛2

∑
𝑘=0

[𝑘
𝑘+2
∑
𝑖=𝑘

𝑖2]

=
𝑛2

∑
𝑘=0

[𝑘(𝑘2 +(𝑘+1)2 +(𝑘+2)2)]

=
𝑛2

∑
𝑘=0

𝑘(3𝑘2 +6𝑘+5)

= 3
𝑛2

∑
𝑘=0

𝑘3 +6
𝑛2

∑
𝑘=0

𝑘2 +5
𝑛2

∑
𝑘=0

𝑘

= 3(
𝑛2(𝑛2 +1)

2
)
2

+𝑛2(𝑛2 +1)(2𝑛2 +1)+5
𝑛2(𝑛2 +1)

2
.

8.
𝑛
∑
𝑗=1

𝑗
∑
𝑖=0

2𝑖

3𝑗
=

𝑛
∑
𝑗=1

1
3𝑗

𝑗
∑
𝑖=0

2𝑖

=
𝑛
∑
𝑗=1

1
3𝑗

1−2𝑗+1

1−2

=
𝑛
∑
𝑗=1

1
3𝑗

(2𝑗+1 −1)

=
𝑛
∑
𝑗=1

(2×(
2
3
)
𝑗
−(

1
3
)
𝑗
)

= 2
𝑛
∑
𝑗=1

(
2
3
)
𝑗
−

𝑛
∑
𝑗=1

(
1
3
)
𝑗
= 2

2
3
1−( 23 )

𝑛

1− 2
3

−
1
3
1−( 13 )

𝑛

1− 1
3

= 4(1−(
2
3
)
𝑛
)−

1
2
(1−(

1
3
)
𝑛
) .

31



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

32
BC
PS
T1

Creative-Commons
20
25
-2
02
6

9. On commence par essayer de calculer la somme la plus intérieure. On n’y
arrive pas. Ainsi on va donc commencer par inverser le sens des symboles
sommes. On a :

𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

(
𝑗
𝑖
) = ∑

1⩽𝑖⩽𝑗⩽𝑛
(
𝑗
𝑖
) =

𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

(
𝑗
𝑖
).

Ainsi on obtient que :
𝑛
∑
𝑗=1

𝑗
∑
𝑖=1

(
𝑗
𝑖
) =

𝑛
∑
𝑗=1

[
𝑗
∑
𝑖=1

(
𝑗
𝑖
)] =

𝑛
∑
𝑗=1

[2𝑗 −1]

= 2(2𝑛 −1)−𝑛.

4.5 Devoir-maisonLaptop-House

Exercice 16 ∣ Dans tout l’exercice, 𝑛 désigne un entier naturel non nul.

1. Calculer la somme suivante : S𝑛 =
𝑛
∑
𝑘=1

(3×24𝑘+1 −2𝑘2 −3) .

2. Notons : R𝑛 =
𝑛
∑
𝑘=1

1
𝑘
(

𝑛
𝑘−1

).

2.1) Soit 𝑘 ∈ J1 , 𝑛K. Montrer (à l’aide de factorielles) que :
1
𝑘
(

𝑛
𝑘−1

) =
1

𝑛+1
(
𝑛+1

𝑘
).

2.2) En déduire que : R𝑛 = 2(2𝑛−1)
𝑛+1

Solution (exercice 16)
1. On commence par remarquer que pour tout 𝑘 ∈ J1;𝑛K,

24𝑘+1 = 2×(24)𝑘 = 2×16𝑘.
Ainsi, par linéarité de la somme,

S𝑛 =
𝑛
∑
𝑘=1

(3×24𝑘+1 −2𝑘2 −3)

=
𝑛
∑
𝑘=1

(6×16𝑘 −2𝑘2 −3)

=6×
𝑛
∑
𝑘=1

16𝑘
⏟⏟⏟⏟⏟⏟⏟

somme géométrique, car 16≠1

−2×
𝑛
∑
𝑘=1

𝑘2

⏟⏟⏟⏟⏟⏟⏟
somme usuelle

−3×
𝑛
∑
𝑘=1

1
⏟⏟⏟⏟⏟

somme de termes constants

=6×16×
1−16𝑛

1−16
−2×

𝑛(𝑛+1)(2𝑛+1)
6

−3×𝑛

=
6×16
15

(16𝑛 −1)−
𝑛(𝑛+1)(2𝑛+1)

3
−3×𝑛

=
32
5

(16𝑛 −1)−
𝑛(𝑛+1)(2𝑛+1)

3
−3𝑛 .

2. 2.1) Soit 𝑘 ∈ J1;𝑛K. Alors : 𝑘−1 ∈ J0;𝑛−1K.
Donc, par définition des coefficients binomiaux, on a :
1
𝑘
(

𝑛
𝑘−1

) =
1
𝑘

×
𝑛!

(𝑘−1)!(𝑛−(𝑘−1))!

=
𝑛!

𝑘!(𝑛+1−𝑘)!

=
1

𝑛+1
×

(𝑛+1)!
𝑘!(𝑛+1−𝑘)!

=
1

𝑛+1
(
𝑛+1

𝑘
)

2.2) Ainsi :

R𝑛 =
𝑛
∑
𝑘=1

1
𝑘
(

𝑛
𝑘−1

) =
𝑛
∑
𝑘=1

1
𝑛+1

(
𝑛+1

𝑘
) =

1
𝑛+1

[
𝑛+1
∑
𝑘=0

(
𝑛+1

𝑘
)−(

𝑛+1
0

)−(
𝑛+1
𝑛+1

)]

Par le binôme de Newton : R𝑛 = 1
𝑛+1 [(1+1)𝑛+1 −1−1].

Finalement : R𝑛 =
2(2𝑛 −1)

𝑛+1

Exercice 17 ∣ BOMB

1. Pour tout 𝑛 ∈ ℕ, on pose : 𝑢𝑛 = ∑𝑛
𝑗=0∑

𝑛
𝑘=𝑗 2

𝑘.
1.1) Soit (𝑝,𝑞) ∈ ℕ2 tel que 𝑝 ≤ 𝑞. Montrer que ∑𝑞

𝑘=𝑝 2𝑘 = 2𝑞+1 −2𝑝.
1.2) En déduire que pour tout 𝑛 ∈ ℕ, 𝑢𝑛 = 𝑛2𝑛+1 +1

2. 2.1) Montrer que pour tout 𝑛 ∈ ℕ, 𝑢𝑛 = ∑𝑛
𝑘=0(𝑘 + 1)2𝑘. On pourra permuter

les symboles sommes.
2.2) En déduire que, pour tout 𝑛 ∈ ℕ ∶ ∑𝑛

𝑘=0𝑘2𝑘−1 = (𝑛−1)2𝑛 +1.
3. 3.1) À l’aide de la question précédente, calculer : ∑𝑛

𝑖=0∑
𝑖
𝑘=0(𝑘+1)2𝑘.

3.2) En déduire la valeur de ∑𝑛
𝑘=0𝑘(𝑘+1)2𝑘.

3.3) Que vaut la somme ∑𝑛
𝑘=0𝑘

22𝑘 ?

Solution (exercice 17)
1. 1.1) On reconnaît une somme d’une suite géométrique de raison 2 ≠ 1 et
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ainsi on a :
𝑞
∑
𝑘=𝑝

2𝑘 = 2𝑝 ×
1−2𝑞−𝑝+1

1−2
= 2𝑝(2𝑞−𝑝+1 −1) = 2𝑞+1 −2𝑝.

1.2) Soit 𝑛 ∈ ℕ fixé. On a en appliquant la question précédente :

𝑢𝑛 =
𝑛
∑
𝑗=0

(2𝑛+1 −2𝑗) = 2𝑛+1
𝑛
∑
𝑗=0

1−
𝑛
∑
𝑗=0

2𝑗

par linéarité de la somme.Puis, en réappliquant la questionprécédente
à la deuxième somme, on obtient que :

𝑢𝑛 = (𝑛+1)2𝑛+1 −(2𝑛+1 −1) = 𝑛2𝑛+1 +1 .
2. 2.1) Par définition, on sait que 𝑢𝑛 = ∑𝑛

𝑗=0∑
𝑛
𝑘=𝑗 2

𝑘. Les indices de somma-
tion sont liés, on doit donc faire un peu attention en échangeant les
sommes.

𝑢𝑛 =
𝑛
∑
𝑘=0

𝑘
∑
𝑗=0

2𝑘 =
𝑛
∑
𝑘=0

2𝑘
𝑘
∑
𝑗=0

1 =
𝑛
∑
𝑘=0

(𝑘+1)2𝑘 .

2.2) D’après les deux questions précédentes, on sait donc que : ∑𝑛
𝑘=0(𝑘 +

1)2𝑘 = 𝑢𝑛 = 𝑛2𝑛+1 +1. On cherche alors à calculer ∑𝑛
𝑘=0𝑘2𝑘−1. On fait

un changement de variable dans cette somme en posant 𝑗 = 𝑘−1. On
commence alors par remarquer que : ∑𝑛

𝑘=0𝑘2𝑘−1 = ∑𝑛
𝑘=1𝑘2𝑘−1 + 0 =

∑𝑛
𝑘=1𝑘2𝑘−1. Puis en faisant le changement de variable, on obtient :

∑𝑛
𝑘=0𝑘2𝑘−1 = ∑𝑛

𝑘=1𝑘2𝑘−1 = ∑𝑛−1
𝑗=0 (𝑗 + 1)2𝑗 = ∑𝑛−1

𝑘=0(𝑘+1)2𝑘 car l’indice
de sommation est muet. Ainsi, on a : ∑𝑛−1

𝑘=0(𝑘 + 1)2𝑘 = 𝑢𝑛−1 d’après la
question précédente et donc

𝑛
∑
𝑘=0

𝑘2𝑘−1 = (𝑛−1)2𝑛 +1

en utilisant la question 1.2).
3. 3.1) En utilisant la question 2.1), on remarque que : ∑𝑛

𝑖=0∑
𝑖
𝑘=0(𝑘 + 1)2𝑘 =

∑𝑛
𝑖=0𝑢𝑖. Puis enutilisant la question1.2), on sait ainsi que :𝑢𝑖 = 𝑖2𝑖+1+1

pour tout 𝑖 ∈ J0 , 𝑛K. On obtient donc que :
𝑛
∑
𝑖=0

𝑖
∑
𝑘=0

(𝑘+1)2𝑘 =
𝑛
∑
𝑖=0

(𝑖2𝑖+1 +1).

Afin de faire apparaître la somme du 2.1), on utilise le fait que 2𝑖+1 =
4×2𝑖−1. Ainsi en utilisant la linéarité de la somme, on obtient que :

𝑛
∑
𝑖=0

𝑖
∑
𝑘=0

(𝑘+1)2𝑘 = 4
𝑛
∑
𝑖=0

𝑖2𝑖−1 +
𝑛
∑
𝑖=0

1.

Ainsi, en utilisant alors le résultat de la question 2.2), on a :
𝑛
∑
𝑖=0

𝑖
∑
𝑘=0

(𝑘+1)2𝑘 = 4((𝑛−1)2𝑛 +1)+𝑛+1 = (𝑛−1)2𝑛+2 +𝑛+5 .

3.2) On peut commencer par intervertir les deux sommes dans la somme

de la question précédente. On a,
𝑛
∑
𝑖=0

𝑖
∑
𝑘=0

(𝑘+1)2𝑘 =
𝑛
∑
𝑘=0

𝑛
∑
𝑖=𝑘

(𝑘+1)2𝑘

=
𝑛
∑
𝑘=0

(𝑘+1)2𝑘
𝑛
∑
𝑖=𝑘

1

=
𝑛
∑
𝑘=0

(𝑛−𝑘+1)(𝑘+1)2𝑘

= (𝑛+1)
𝑛
∑
𝑘=0

(𝑘+1)2𝑘 −
𝑛
∑
𝑘=0

𝑘(𝑘+1)2𝑘.

Ainsi, on a fait apparaître la somme que l’on veut calculer. En utili-
sant alors le résultat de la question précédente, on obtient : ∑𝑛

𝑘=0𝑘(𝑘+
1)2𝑘 = (𝑛+1)∑𝑛

𝑘=0(𝑘+1)2𝑘−[(𝑛−1)2𝑛+2 +𝑛+5]. Et en utilisant aussi
le résultat de la question 2.1), on reconnaît 𝑢𝑛. On obtient donc :

𝑛
∑
𝑘=0

𝑘(𝑘+1)2𝑘 = (𝑛+1)𝑢𝑛 −[(𝑛−1)2𝑛+2 +𝑛+5] .

Puis le résultat de la question 1.2) donne :

𝑛
∑
𝑘=0

𝑘(𝑘+1)2𝑘 = (𝑛+1)𝑛2𝑛+1+(𝑛+1)−(𝑛−1)2𝑛+2−𝑛−5 = (𝑛2 −𝑛+2)2𝑛+1 −4 .

3.3) En utilisant la linéarité de la somme, on obtient : ∑𝑛
𝑘=0𝑘(𝑘 + 1)2𝑘 =

∑𝑛
𝑘=0𝑘

22𝑘 +∑𝑛
𝑘=0𝑘2𝑘. Ainsi, on a

𝑛
∑
𝑘=0

𝑘22𝑘 =
𝑛
∑
𝑘=0

𝑘(𝑘+1)2𝑘 −
𝑛
∑
𝑘=0

𝑘2𝑘 =
𝑛
∑
𝑘=0

𝑘(𝑘+1)2𝑘 −2
𝑛
∑
𝑘=0

𝑘2𝑘−1.

On utilise alors la question 3.2) pour le calcul de ∑𝑛
𝑘=0𝑘(𝑘+1)2𝑘 et la

question 2.2) pour le calcul de ∑𝑛
𝑘=0𝑘2𝑘−1. On obtient donc :

𝑛
∑
𝑘=0

𝑘22𝑘 = (𝑛2−𝑛+2)2𝑛+1−4−2((𝑛−1)2𝑛+1) = (𝑛2 −2𝑛+3)2𝑛+1 −6 .
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