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Chapitre (ALG) 5 Nombres Complexes
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brique . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Forme exponentielle . . . . . . . . . . . .

3 Application des nombres
complexes en trigonométrie . . . .

4 Exercices . . . . . . . . . . . . . . . . . . . . . . .

Résumé & Plan
L’objectif de ce chapitre est de défi-
nir un nouvel ensemble ℂ permet-
tant de faciliter les calculs de trigo-
nométrie par exemple.

L’histoire des nombres complexes commence vers le milieu
du XV ieme siècle avec une première apparition en 1545,
dans l’œuvre de CARDAN, d’une expression contenant la
racine carrée d’un nombre négatif, nombre qu’il appelle
« sophistiqué ». C’est Raphaël BOMBELLI qui met en place
les règles de calcul sur ces quantités que l’on appelle alors
« impossibles » avant de leur donner le nom d’imaginaires.

—Le saviez-vous?

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

1 DÉFINITION DE ℂ ET FORME ALGÉBRIQUE

Les nombres réels, comme leur nom l’indique, sont issus du « monde réel ». Par
exemple les entiers servent à compter des unités, les nombres décimaux et fraction-
naires généralisent ce principe. Pour les irrationnels : par exemple√2 correspond à
la longueur de la diagonale d’un carré de longueur de côté 1, π à l’aire du disque de
rayon 1... bref, toutes ces quantités ont une interprétation.

L’introduction de nombres dits « complexes » comme dans la prochaine définition a
été motivée par plusieurs problèmes.

• La résolution de certaines équations n’admettant pas, a priori, de solutions
réelles, comme par exemple

𝑥2+1 = 0. (Eq Defi i)
En effet, 𝑥2 ne peut jamais être égal à −1. Même si elle n’admet pas de solution
réelle, on peut en fait définir un ensemble contenant ℝ, et noté ℂ, dans lequel
cette équation admet deux solutions notées i et −i . Cet ensemble sera construit
exprès pour cela.

• Engéométrieduplan.Si les réels représentent l’ensemblede ladroite réelle, alors
les nombres complexes définis plus bas correspondent au plan. On peut considé-
rer les nombres complexes comme une façon synthétique d’écrire l’abscisse et
l’ordonnée de chaque point du plan. Au lieu de travailler avec un couple de réels
(𝑥,𝑦), on utilise la notation 𝑥+ i𝑦. Le nombre imaginaire i sert à identifier l’or-
donnée. L’avantage d’une telle notation est qu’elle va simplifier lesmanipulations
géométriques car elle combine deux informations (abscisse et ordonnée) en un
seul nombre.

• En trigonométrie, au travers de l’exponentielle complexe eiθ,  θ ∈ ℝ, quenousdé-
finirons enfindechapitre. Lesnombres complexes s’invitèrent alors dansd’autres
sciences, notamment en Physique où les physiciens trouvèrent là encore les com-
plexes commecommodespourmanipuler des signauxpériodiques (en électricité
notamment).
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1.1 Généralités

Définition/Proposition 1 | Définition d’un nombre complexe
Il existe unensembleℂ contenantℝ (ℝ⊂ ℂ) dont les les éléments sont appelés les
nombres complexes, etmunidedeuxopérationsd’addition+ et demultiplication
×, qui satisfont les propriétés suivantes :
• ℂ contient un élément i pour lequel : i 2 =−1 .
• [Formealgébrique] Si𝑧 ∈ ℂ, alors𝑧peut être écrit demanièreunique sous

une forme dite algébrique : 𝑧 = 𝑥+ i𝑦, 𝑥 ∈ ℝ, 𝑦 ∈ ℝ .
On appellera :
⋄ partie réelle de 𝑧 le réel 𝑥 noté Re(𝑧),
⋄ partie imaginaire de 𝑧 le réel 𝑦 noté Im(𝑧).
⋄ Si 𝑥 = 0, on dit que 𝑧 est imaginaire pur (ensemble noté iℝ).
⋄ Si 𝑦 = 0, 𝑧 = 𝑥 ∈ ℝ.

• Les opérations+ et×deℂ sont soumises auxmêmes règles de calcul que leurs
analogues dans ℝ : pour tous 𝑧,𝑧′,𝑧″ ∈ ℂ,
⋄ [Associativité de +] (𝑧+𝑧′)+𝑧′′ = 𝑧+(𝑧′+𝑧′′).
⋄ [Associativité de ×] (𝑧𝑧′)𝑧′′ = 𝑧(𝑧′𝑧′′).
⋄ [Commutativité] 𝑧+𝑧′ = 𝑧′+𝑧, 𝑧×𝑧′ = 𝑧′×𝑧.
⋄ [Distributivité] 𝑧(𝑧′+𝑧′′) = (𝑧𝑧′)+ (𝑧𝑧′′).
⋄ [Neutres] 𝑧+0 = 0+𝑧 = 𝑧, 𝑧.1 = 1.𝑧 = 𝑧.

L’existence de ℂ est admise, des éléments de réponses sont néanmoins donnés ci-
après. Même si nous n’insisterons pas trop là-dessus : il ne suffit pas de prétendre
son existence pour qu’il existe, i.e. la phrase « soit ℂ un ensemble contenant ℝ et
possédant un élément i tel que i 2 = −1 » n’a aucune légitimité mathématique. Pour
définir proprement ℂ, on part d’un ensemble déjà connu, ℝ en l’occurence (mais
attention, cet ensemble aussi on ne vous l’a jamais construit !) et on en définit un
autre possédant les propriétés souhaitées, c’est le propos de la prochaine preuve.

Preuve (Éléments sur la construction de ℂ [H.P] ) Rappelons que ℝ2 = {(𝑥,𝑦) |𝑥 ∈ ℝ,𝑦 ∈ ℝ},
c’est un ensemble bien défini que nous pouvons utiliser pour construire ℂ. Alors on note ℂ
l’ensemble ℝ2 muni des opérations + et × suivantes :
1. [Sommede nombres complexes] ∀(𝑥,𝑦,𝑥′,𝑦′) ∈ ℝ4, (𝑥,𝑦)+(𝑥′,𝑦′) = (𝑥+𝑥′,𝑦+𝑦′),
2. [Produit denombres complexes] ∀(𝑥,𝑦,𝑥′,𝑦′) ∈ ℝ4, (𝑥,𝑦).(𝑥′,𝑦′) = (𝑥𝑥′−𝑦𝑦′,𝑥𝑦′+

𝑥′𝑦).a
Les éléments de ℂ sont plutôt représentés de la manière suivante : l’élément (𝑥,𝑦) est noté
𝑥+ i .𝑦, et les propriétés précédentes deviennent :
1. [Somme de nombres complexes] ∀(𝑥,𝑦,𝑥′,𝑦′) ∈ ℝ4, (𝑥+ i𝑦)+(𝑥′+ i𝑦′) = (𝑥+𝑥′)+

i (𝑦+𝑦′),
2. [Produit de nombres complexes] ∀(𝑥,𝑦,𝑥′,𝑦′) ∈ ℝ4, (𝑥+ i𝑦).(𝑥′+ i𝑦′) = 𝑥𝑥′−𝑦𝑦′+

i (𝑥𝑦′+𝑥′𝑦),
impliquant en particulier que i 2 = (0,1).(0,1) = (−1,0) en faisant 𝑦 = 1, 𝑦′ = 1, 𝑥 = 0 et

𝑥′ = 0, c’est-à-dire en notation complexe i 2 = −1. On a donc construit un élément noté i et
un ensembleℂ, où cet élément i est une solution dansℂ de 𝑥2+1 = 0. C’est ce qu’on voulait.

Reformulons l’unicité de l’écriture algébrique (très importante en pratique) sous
forme d’une proposition indépendante.

Proposition 1 | Unicité de la forme algébrique
Soient 𝑧 = 𝑥+ i𝑦,𝑧′ = 𝑥′+ i𝑦′ ∈ ℂ. Alors :

𝑥+ i𝑦 = 𝑥′+ i𝑦′ ⟺ 𝑥=𝑥′ et 𝑦 = 𝑦′.

On dit que l’on peut identifier partie réelle et partie imaginaire dans l’écriture algé-
brique. Les propriétés de la Définition/Proposition 1 permettent de faire toute sorte
de calculs, qui sont donc identiques à ceux menés dans ℝmais en tenant compte de
la relation i 2 =−1. Voici quelques exemples.

Exemple 1 Déterminer la forme algébrique des complexes ci-dessous.
1. 𝑧1 = 3−2i +2+5i ,

PEN-FANCY

2. 𝑧2 = (3−2i )(2+5i ),
PEN-FANCY

3. 𝑧3 = (√3− i )
2
,

PEN-FANCY

4. 𝑧4 = (1− i )2.
PEN-FANCY

Nous définissions aussi un complexe particulier qui apparaît souvent, et dont il faut
connaître l’expression.

a. Les coordonnées du couple correspondent aux parties réelles et imaginaires de (𝑥+ i𝑦)(𝑥′+ i𝑦′)
avec la règle de calcul i 2 =−1

2
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Notation Complexe j
Σ

On note généralement j =− 1
2 +

√3
2 i .

Commenous l’avons déjà dit en introduction, les complexes permettent de résoudre
certaines équations dans un ensemble que nous avons crée de toute pièce pour l’oc-
casion. Ils permettent aussi de factoriser comme nous allons le constater avec une
nouvelle identité remarquable.

Proposition 2 | Identités «𝑎2±𝑏2 »
Soient 𝑎,𝑏 ∈ ℂ. Alors :

𝑎2−𝑏2 = (𝑎−𝑏)(𝑎 +𝑏), 𝑎2+𝑏2 = (𝑎− i𝑏)(𝑎 + i𝑏).

Preuve La première a déjà été prouvée, passons à la seconde.
PEN-FANCY

Affixe et interprétation géométrique d’un complexe. Rappelons
que

ℝ2 = {(𝑥,𝑦), 𝑥 ∈ ℝ,𝑦 ∈ ℝ}
est l’ensemble des points géométriques du plan : ils possèdent une abscisse et une
ordonnée. Un complexe a quant à lui également deux paramètres : sa partie réelle et
sa partie imaginaire. Cela nous mène tout droit à la définition suivante.

Définition 1 | Affixe
SoitM= (𝑥,𝑦) ∈ ℝ2, le complexe 𝑧 = 𝑥+ i𝑦 ∈ ℂ est appelé affixe associé àM. De
manière analogue, si 𝑢 = (𝑥,𝑦) est un vecteur de ℝ2, l’élément 𝑧 = 𝑥+ i𝑦 ∈ ℂ est
appelé affixe de 𝑢.

La notion d’affixe permet donc de relier la géométrie du plan dans ℝ2 aux com-
plexes.

Exemple 2 Soient 𝑧 = 2+i et 𝑧′ = 1−2i. Représenter sur la figure ci-contreM(𝑧),
M′(𝑧′),N(𝑧+𝑧′),M1(𝑧),M2(−𝑧).

Re𝑧

−3 −2 −1 0 1 2 3

Im𝑧

−3

−2

−1

0

1

2

3

1.2 Conjugué & Module

Le complexe conjugué est un complexe qui interviendra souvent, nous le formali-
sons donc dans une notation.

Définition 2 | Conjugué
Si 𝑧 ∈ ℂ, on appelle conjugué de 𝑧 = 𝑥+ i𝑦 le complexe 𝑧 = 𝑥− i𝑦.

Exemple 3 Calculer les conjugués de 𝑧1,𝑧2,𝑧3,𝑧4.
PEN-FANCY

Exemple 4 Sur la figure précédente, ajouter le pointM1(𝑧).

Exemple 5 Calculer j 2 et l’exprimer en fonction de j .
PEN-FANCY

3
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Remarque 1 (Interprétation géométrique du conjugué) Le conjugué de 𝑧 est
𝑥− i𝑦, il correspond au symétrique deM par rapport à l’axe (O𝑥).

Re(𝑧)

Im(𝑧)

𝑥

𝑦

•
M(𝑧)

•
M(𝑧)

Pour terminer cette section de généralités, on introduit la notion de module, ana-
logue de la valeur absolue pour les réels. Nous l’interprèterons géométriquement
un peu plus tard.

Définition 3 | Module
Si 𝑧 ∈ ℂ, on appelle module de 𝑧 le réel positif noté |𝑧|, et défini par :

|𝑧| =√Re(𝑧)2+ Im(𝑧)2.

Pour 𝑧 ∈ ℝ, on retrouve la valeur absolue : si 𝑧 = 𝑥 ∈ ℝ, alors |𝑧| =√𝑥2 = |𝑥|.

Remarque 2 (Interprétation géométrique du module) Le module de 𝑧 =
𝑥 + i 𝑦 ∈ ℂ est, rappelons-le, défini par |𝑧| = √𝑥2+𝑦2. Il correspond, d’après
le théorème de PYTHAGORE, à la distance entreO etM(𝑧) notée d(O,M(𝑧)).

Re(𝑧)

Im(𝑧)

𝑥

𝑦

•
M(𝑧)

|𝑧|

Exemple 6 Calculer les modules de 𝑧1,𝑧2,𝑧3,𝑧4.
PEN-FANCY

Exemple 7 (Lieuxgéométriques) Soit𝑧0 ∈ ℂ,M0(𝑧0) etρ ∈ ℝ+. Pour chaqueen-
semble ci-dessous, interpréter géométriquement et le représenter surundessin.
• B1 = {M(𝑧) ∈ ℂ | |𝑧−𝑧0| = ρ}.

PEN-FANCY

4
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• B2 = {M(𝑧) ∈ ℂ | |𝑧−𝑧0| ⩽ ρ}.
PEN-FANCY

• B3 = {M(𝑧) ∈ ℂ | |𝑧−𝑧0| < ρ}.
PEN-FANCY

Lien module/conjugué. Le problème de la définition précédente est qu’elle
nécessite de connaitre la forme algébrique du complexe afin de pouvoir calculer
son module. Une autre expression est celle présentée ci-après, elle fait intervenir le
conjugué qui possède tout un tas de propriétés permettant de gagner en rapidité
dans les calculs. Nous profiterons également dans la suite de cette propriété pour
déduire despropriétés sur lemodule à l’aidede celles déjà établies sur le conjugué.

Proposition 3 | Lienmodule/conjugué ♥

Si 𝑧 ∈ ℂ, alors 𝑧𝑧 est un réel positif, et on a : |𝑧| =√𝑧𝑧.

Preuve Notons 𝑥 = Re(𝑧) et 𝑦 = Im(𝑧). Alors : 𝑧𝑧 = (𝑥+ i𝑦)(𝑥− i𝑦) = 𝑥2+𝑦2 = |𝑧|2 ⩾ 0. En
passant à la racine, on déduit la formule |𝑧| =√𝑧𝑧.

Attention Des complexes ne se comparent pas
,

Nous savons toujours comparer deux réels, en revanche, il n’existe pas demoyen
simple de comparer deux complexes ! On n’écrira donc jamais des choses du
type « 𝑧 ⩽ 𝑧′ » avec 𝑧,𝑧′ deux complexes.
Plus précisément, on ne peut pas définir sur ℂ de relation d’ordre qui prolonge la relation d’ordre de ℝ. En effet,
supposons qu’une telle relation d’ordre existe. Alors le complexe i est soit positif, soit négatif.
• Si on suppose i ⩾ 0 alors i × i ⩾ 0, donc −1 ⩾ 0, ce qui est absurde.

, • Si on suppose i ⩽ 0 alors i × i ⩾ 0 également (en multipliant par un nombre négatif, on modifie le sens de
l’inégalité), donc −1 ⩾ 0, ce qui est également absurde.

1.3 Propriétés

Exemple 8 (Technique de l’expression conjuguée (motivation))
• Soit 𝑧 = 𝑥+ i𝑦 ∈ ℂ tel que 𝑧 ≠ 0. On souhaite définir le complexe 𝑧′ = 1

𝑧 , c’est-
à-dire définir la forme algébrique de 𝑧′ vérifiant𝑧𝑧′ = 𝑧′𝑧 = 1.

• Pour deviner ladite forme algébrique, on utilise la technique de l’« expres-
sion conjuguée », c’est-à-dire on multiplie la fraction 1

𝑧 =
1

𝑥+i𝑦 par 𝑧 = 𝑥− i𝑦.
On constate que cette technique fait alors apparaître un nombre réel au
dénominateur.
PEN-FANCY

Proposition 4 | Parties réelles, imaginaires, conjugué
Soient 𝑧,𝑧′ ∈ ℂ, et 𝑛 ∈ ℤ un entier relatif.
• [Existence d’un élément inverse] Si 𝑧 ≠ 0, alors 𝑧 est inversible dans ℂ

c’est-à-dire : ∃𝑧′ ∈ ℂ, 𝑧𝑧′ = 𝑧′𝑧 = 1.
Plus précisément, 𝑧′ est donné par : 𝑧′ = 𝑧

|𝑧|2 . On le note en général 1
𝑧 ou

encore𝑧−1. (vousnedevezpasapprendrepar coeur la formule𝑧′ = 1
𝑧 =

𝑧
|𝑧|2 ,mais la retrouver

au cas par cas à l’aide de la technique de l’expression conjuguée)
• [ℝ -linéarité de la partie réelle/imaginaire]

∀λ,μ ∈ ℝ , Re(λ𝑧+μ𝑧′) = λRe𝑧+μRe𝑧′,
Im(λ𝑧+μ𝑧′) = λ Im𝑧+μ Im𝑧′.

• [Conjugué et somme/produit/quotient]
𝑧+𝑧′ = 𝑧+𝑧′, 𝑧×𝑧′ = 𝑧×𝑧′, 𝑧𝑛 = 𝑧𝑛.

∀λ ∈ ℝ, λ𝑧 = λ𝑧. Si de plus 𝑧′ ≠ 0, (
𝑧
𝑧′
) =

𝑧
𝑧′
.

• [Involutivité] 𝑧 = 𝑧.

5
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Attention
,

Il est faux de dire que pour tout λ ∈ ℂ :
Re(λ𝑧) = λRe(𝑧) , Im(λ𝑧) = λ Im(𝑧) .

Pour une raison très pragmatique déjà : une telle formule ne peut être vraie car
une partie réelle ou imaginaire est un nombre réel.

Preuve On notera 𝑧 = 𝑥+ i𝑦,𝑧′ = 𝑥′+ i𝑦′ dans toute cette preuve.
• On vérifie simplement que l’expression de 1

𝑧 = 𝑧
|𝑧|2 trouvée dans l’exemple précédent

convient :
PEN-FANCY

• Soient λ,μ ∈ ℝ. Alors :
λ𝑧+μ𝑧′ = λ(𝑥+ i𝑦)+μ(𝑥′+ i𝑦′) = (λ𝑥+μ𝑥′)+ i (λ𝑦+μ𝑦′) .

On tire alors directement les formules :
Re(λ𝑧+μ𝑧′) = λRe𝑧+μRe𝑧′, Im(λ𝑧+μ𝑧′) = λ Im𝑧+μ Im𝑧′.

• On a :
𝑧+𝑧′ = 𝑥+𝑥′+ i (𝑦+𝑦′), 𝑧×𝑧′ = 𝑥𝑥′−𝑦𝑦′+ i (𝑥𝑦′+𝑥′𝑦).

Donc :
𝑧+𝑧′ = 𝑥+𝑥′− i (𝑦+𝑦′), 𝑧×𝑧′ = 𝑥𝑥′−𝑦𝑦′+ i (𝑥𝑦′+𝑥′𝑦).

On vérifie alors sans difficulté que :
𝑧+𝑧′ = 𝑥− i𝑦+𝑥′− i𝑦′ = 𝑧+𝑧′, 𝑧×𝑧′ = (𝑥− i𝑦)(𝑥′− i𝑦′) = 𝑧×𝑧′.

La formule de conjugaison de 𝑧𝑛 s’en déduit alors par récurrence évidente. Pour λ𝑧, on
écrit simplement λ𝑧 = λ𝑥+ i (λ𝑦), donc λ𝑧 = λ𝑥− i (λ𝑦) = λ𝑥+ i (−λ𝑦), d’où l’on tire la
formule. Enfin, reste à calculer le conjugué d’un quotient, pour cela il suffit d’établir que
( 1𝑧 ) =

1
𝑧 , il suffira ensuite d’utiliser le conjugué d’un produit pour conclure.

Rappelons que 1
𝑧 =

𝑥
𝑥2+𝑦2 − i

𝑦
𝑥2+𝑦2 , donc ( 1𝑧 ) =

𝑥
𝑥2+𝑦2 + i

𝑦
𝑥2+𝑦2 .D’autre part, on vérifie sans

peine que 1
𝑧 =

1
𝑥−i𝑦 =

𝑥
𝑥2+𝑦2 + i

𝑦
𝑥2+𝑦2 en utilisant la technique de l’expression conjuguée.

• 𝑧 = 𝑥− i𝑦 = 𝑥+ i𝑦 = 𝑧.

Dans la preuve précédente on a utilisé une technique classique pour obtenir l’in-
verse d’un nombre complexe écrit sous forme algébrique. On peut la résumer
comme suit.

Méthode (ALG) 5.1 (Quotient sous forme algébrique : expression conju-
guée) Pour deux réels 𝑥,𝑦 ∈ ℝ, et 𝑧 = 𝑥+ i𝑦 ∈ ℂ,

1
𝑥+ i𝑦

=
𝑥− i𝑦

(𝑥+ i𝑦)(𝑥− i𝑦)
=
𝑥− i𝑦
|𝑧|2

=
𝑥
|𝑧|2

+ i (
−𝑦
|𝑧|2

) .

Il faut parfaitement savoir appliquer cette méthode sur des exemples.

Exemple 9 (Forme algébrique d’un quotient) Calculer la forme algébrique
des complexes ci-après. On note 𝑧 = 𝑥+ i𝑦 ∈ ℂ un complexe quelconque.

𝑧5 = 1−i
2+3i ,

PEN-FANCY

1.

𝑧6 = 1
(4−i )(3+2i ) ,

PEN-FANCY

2.

𝑧7 = 𝑧2
𝑧+i ,

PEN-FANCY

3.

Proposition 5 | Caractérisation des réels/imaginaires purs
Soient 𝑧,𝑧′ ∈ ℂ deux nombres complexes.

• Re(𝑧) =
1
2
(𝑧+𝑧), Im(𝑧) =

1
2i
(𝑧−𝑧).

• 𝑧 ∈ ℝ ⟺ 𝑧= 𝑧, 𝑧 ∈ iℝ ⟺ 𝑧=−𝑧.

Remarque 3 (Interprétation géométrique) Interprétons géométriquement
les formules de la proposition précédente.

6
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Re(𝑧)

Im(𝑧)

Preuve
• PEN-FANCY

• PEN-FANCY

Les propriétés du module sont similaires à celles déjà établies dans le Cha-
pitre (ALG) 2 concernant la valeur absolue, à l’exception des propriétés concernant
les majorations. Car rappelons le, on ne peut comparer deux nombres complexes.

Proposition 6 | Module
Soient 𝑧,𝑧′ ∈ ℂ.
• [Séparation] |𝑧| = 0 ⟺ 𝑧= 0.
• [Symétrie] |−𝑧| = |𝑧|, |𝑧| = |𝑧|.

• [Produit/quotient] |𝑧×𝑧′| = |𝑧|× |𝑧′|. De plus si 𝑧′ ≠ 0, alors :

|
𝑧
𝑧′
| =

|𝑧|
|𝑧′|

.

• [Développement dumodule au carré]
|𝑧+𝑧′|2 = |𝑧|2+2Re (𝑧𝑧′)+ |𝑧′|2 .

• [Majoration partie réelle / imaginaire]
|Re𝑧| ⩽ |𝑧| , |Im𝑧| ⩽ |𝑧| .

Preuve
• PEN-FANCY

• PEN-FANCY

• PEN-FANCY

• PEN-FANCY

• PEN-FANCY

7
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La formule de développement du carré dumodule d’une somme est très importante
en pratique.

Méthode (ALG) 5.2 (Développement d’une norme de somme au carré) Soit
|𝑧+𝑧′|2 avec 𝑧,𝑧′ ∈ ℂ.
1. Écrire la quantité en fonction du conjugué : |𝑧+𝑧′|2 = (𝑧+𝑧′)(𝑧+𝑧′).
2. Développer.

Attention
,

On oublie la formule archi-fausse suivante :
|𝑧+𝑧′|2 ≠ |𝑧|2+|𝑧′|2+2|𝑧| |𝑧′| .

Exemple 10 (Identité du parallélogramme) Soient 𝑧,𝑧′ ∈ ℂ, alors :
|𝑧+𝑧′|2+|𝑧−𝑧′|2 = 2(|𝑧|2+|𝑧′|2) .

PEN-FANCY

Remarque 4 (Interprétation géométrique) L’interprétation géométrique est
la suivante : la somme des carrés des longueurs des diagonales d’un parallélo-
gramme est la somme des carrés des longueurs des côtés. Ce résultat peut se
retrouver avec le théorème de PYTHAGORE dans le cas d’un rectangle.

Re(𝑧)

Im(𝑧)

Théorème 1 | Inégalité triangulaire ♥

Soient 𝑧,𝑧′ ∈ ℂ. Alors : ||𝑧|− |𝑧′|| ⩽ |𝑧+𝑧′| ⩽ |𝑧|+ |𝑧′| .

Remarque 5 (Interprétation géométrique) Interprétons géométriquement
l’inégalité triangulaire.

Re(𝑧)

Im(𝑧)

Comme dans le cas de la valeur absolue, la majoration de droite sert beaucoup plus
souvent que la minoration de gauche, mais les deux sont bien à connaître.

Preuve
1. Commençons par montrer que |𝑧+𝑧′| ⩽ |𝑧| + |𝑧′|. Nous allons montrer que l’inégalité

élevée au carré est vraie.
PEN-FANCY

8
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2. De manière analogue, on montre ensuite ||𝑧|− |𝑧′|| ⩽ |𝑧+𝑧′|.
On admet que le cas d’égalité.

Complexes de module 1. Les complexes de module 1, c’est-à-dire situés à dis-
tance 1 deO, jouissent de propriétés intéressantes, les voici.

Définition 4 | Complexes demodule 1
On appelle ensemble des complexes de module 1 l’ensemble 𝕌 défini par :

𝕌= {𝑧 ∈ ℂ | |𝑧| = 1}.

Proposition 7 | Propriétés des complexes demodule 1
Soient 𝑧,𝑧′ ∈ 𝕌. Alors :
• [Stabilité] 𝑧𝑧′ ∈ 𝕌, 1

𝑧 ∈ 𝕌,
• [Inverse] 1

𝑧 = 𝑧.

Preuve
• PEN-FANCY

• PEN-FANCY

2 FORME EXPONENTIELLE

Nous avons vu que ℂ et ℝ2 très proches et s’identifient. De la même manière qu’un
point de ℝ2 peut être repéré par ses coordonnées cartésiennes et polaires, un com-
plexe peut être écrit en forme algébrique ou comme nous allons le voir de suite sous
forme trigonométrique.

2.1 Exponentielle imaginaire

Avant de discuter de la forme trigonométrique des
complexes, nous allons avoir besoin de présen-
ter un complexe particulier : l’exponentielle ima-
ginaire.

Définition 5 | Nombre complexe eiθ
Pour tout θ ∈ ℝ, on appelle exponentielle ima-
ginaire de θ ∈ ℝ, notée eiθ, le nombre com-
plexe de forme algébrique :

eiθ = cosθ+ i sinθ.

θ
O ⃗𝑖

⃗𝑗

M(eiθ)•

Exemple 11
1. On a : j =− 1

2 + i
√3
2 = e

2iπ
3 .

PEN-FANCY

2. Calculer la forme algébrique de 𝑧9 = ei
π
3 .

PEN-FANCY

9
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Exemple 12 Placer sur le cercle trigonométrique les points d’affixes suivantes :
𝑧1 = ei0, 𝑧2 = ei

π
2 , 𝑧3 = e

2iπ
3 , 𝑧4 = e

7iπ
4 .

O ⃗𝑖

⃗𝑗

Proposition 8 | Lien avec le cercle trigonométrique
Notons𝒞⊂ℝ2 le cercle trigonométrique. Alors :

𝒞= {M(𝑧) ∈ ℝ2 | 𝑧 ∈ 𝕌} = {M(eiθ) | θ ∈ [0,2π[}.

Preuve (Point clef —Définition de sin,cos)
Soit 𝑧 = 𝑥+ i𝑦 ∈ ℂ. Alors |𝑧| = 1 donc |𝑧|2 = 𝑥2 +𝑦2 = 1, c’est-à-direM(𝑥,𝑦) est un point du
cercle trigonométrique. Il existe donc θ ∈ ℝ de sorte que

𝑥 = cosθ, 𝑦 = sinθ.
Du côté de 𝑧, nous avons alors : 𝑧 = cosθ+ i sinθ = eiθ.

Pour l’instant, eiθ n’est donc qu’une notation! Les propriétés de cette notation, qui
permettront d’effectuer des calculs, sont données dans la proposition suivante.Mais
si l’on utilise une notation exponentielle c’est qu’elle va sûrement hériter desmêmes
propriétés que l’exponentielle réelle connue depuis le lycée. Les voici.

Proposition 9 | Propriétés de l’exponentielle imaginaire
Soient θ,θ′ ∈ ℝ deux réels. Alors :
• |eiθ| = 1, eiθ = e−iθ =

1
eiθ

.

• eiπ/2 = i , eiπ =−1.
• ∀(θ,θ′) ∈ ℝ2, ei (θ+θ

′) = eiθeiθ
′
, ei (θ−θ

′) = eiθ

eiθ′
.

• ⋄ eiθ = 1 ⟺ ∃𝑘 ∈ℤ, θ = 2𝑘π.

⋄ Plus généralement : eiθ = eiθ
′
⟺ ∃𝑘∈ℤ, θ = θ′+2𝑘π.

• [Formule deMOIVRE] ∀θ ∈ ℝ, ∀𝑛 ∈ ℤ, e𝑛iθ = (eiθ)𝑛 .

Remarque 6 La formule de MOIVRE signifie en d’autres termes que :
(cosθ+ i sinθ)𝑛 = cos(𝑛θ)+ i sin(𝑛θ).

Elle aura de précieuses applications en trigonométrie.

Remarque 7 (Et pour l’exponentielle réelle?) Vous saviez déjà que pour tous
𝑎,𝑏 ∈ ℝ, e𝑎+𝑏 = e𝑎.e𝑏, e𝑎−𝑏 = e𝑎

e𝑏 .
Les propriétés du-dessus sont donc parfaitement analogues. De plus,

e𝑎 = e𝑏 ⟺ 𝑎=𝑏
dans le monde réel. En revanche, pour des complexes, il ne faut pas oublier
d’ajouter +2𝑘π,𝑘 ∈ ℤ après 𝑏.

Preuve
• PEN-FANCY

• Conséquence directe des valeurs : cos ( π2 ) = 0, sin ( π2 ) = 1, cos(π) = −1, sin(π) = 0.
• PEN-FANCY

• ⋄ PEN-FANCY

10
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⋄ PEN-FANCY

• Montrons le cas 𝑛 ∈ℕ par récurrence.
PEN-FANCY

Soit 𝑛 < 0 désormais. C’est dans ce cas un simple jeu d’écriture en cherchant à utiliser
les propriétés précédentes :

ei𝑛θ = ei (−𝑛)(−θ) =⏟
car −𝑛>0

[ei (−θ)]−𝑛 = (
1
eiθ

)
−𝑛

=⏟
car −𝑛>0

1
e−𝑛iθ

= e𝑛iθ.

Exemple 13 Calculer j 3 et 1+ j + j 2.
PEN-FANCY

Les formules ci-après paraissent anecdotiques au premier abord, mais elles seront
d’intérêt capital pour toutes les applications des nombres complexes en trigonomé-
trie.

Proposition 10 | Formules d’EULER ♥

Soit θ ∈ ℝ. Alors :

cosθ =
eiθ+e−iθ

2
= Re (eiθ) , sinθ =

eiθ−e−iθ

2i
= Im (eiθ) .

Preuve Nous avons déjà établi que :

∀𝑧 ∈ ℂ, Re(𝑧) =
1
2
(𝑧+𝑧), Im(𝑧) =

1
2i
(𝑧−𝑧).

Soit θ ∈ ℝ. En prenant 𝑧 = eiθ = cosθ+ i sinθ, on obtient les formules d’EULER.

Exemple 14 Retrouver les formules de linéarisation du Chapitre (ALG) 3 sur
cos2 θ et sin2 θ.
• PEN-FANCY

• PEN-FANCY

11
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2.2 Forme exponentielle

Nous avons déjà rencontré un complexe j , qui s’écrivait sous deux formes.

• En effet, nous avons établi que j =− 1
2 + i

√3
2 = e

2iπ
3 . On a vu également que l’écri-

ture exponentielle avait été bien pratique dans certains calculs (celui de j 3 no-
tamment, bien plus que la forme algébrique).

• On peut donc se demander à présent : « est-ce que tout complexe peut s’écrire
sous la forme eiθ avec θ ∈ ℝ? ». La réponse est :
PEN-FANCY

• En revanche, si 𝑧 ≠ 0, le complexe 𝑧
|𝑧| est bien de module 1 :

PEN-FANCY

Ces constats nous mènent tout droit à la définition suivante.

Définition/Proposition 2 | Argument d’un nombre complexe (non nul) ♥

• Soit 𝑧 un nombre complexe non nul. Alors :
𝑧
|𝑧|

∈ 𝕌, donc : ∃θ ∈ ℝ,
𝑧
|𝑧|

= eiθ.

• Un tel réel θ est appelé un argument de 𝑧. L’ensemble des autres arguments
de 𝑧 est alors : {θ+2𝑘π |𝑘 ∈ ℤ}.

• Il existe un unique argument dans [0,2π[, on l’appelle en général l’argument
principal de 𝑧.

Note
Parfois certaines références considèrent ]−π,π] comme intervalle pour
l’argument principal

Notation
Σ

Pour dire que θ est un argument de 𝑧, on note : arg𝑧 = θ [2π] . Lire « un argu-
ment de 𝑧 est θmodulo 2π », c’est-à-dire à « 2π-près ».

Remarque 8 (Interprétation géométrique) Interprétons géométriquement
les quantités points d’affixe 𝑧 = 𝑥+ i𝑦 ∈ ℂ, 𝑧

|𝑧| et l’angle θ sur un même dessin.
Rajoutez sur le dessin ci-dessous 𝑧

|𝑧| et l’angle θ.

Re(𝑧)

Im(𝑧)

𝑥

𝑦

•
M(𝑧)

Définition 6 | Forme exponentielle
Soit 𝑧 un nombre complexe non nul, dont θ est un argument.
• L’écriture 𝑧 = |𝑧|eiθ est appelée forme exponentielle de 𝑧.
• L’écriture 𝑧 = |𝑧|(cosθ+ i sinθ) est appelée forme trigonométrique de 𝑧.

Méthode (ALG) 5.3 (Mettre sous forme exponentielle un nombre complexe)
• Soit 𝑧 ≠ 0.

1. Calculer |𝑧|, puis mettre |𝑧| en facteur dans 𝑧.
2. Chercher θ ∈ [0,2π[ tel que : 𝑧

|𝑧| = eiθ, i.e. tel que

cos(θ) =
Re(𝑧)
|𝑧|

, sin(θ) =
Im(𝑧)
|𝑧|

.

La forme exponentielle est alors : 𝑧 = |𝑧|eiθ. Il arrive parfois que l’angle θ
ne soit pas explicite.

• [Produit/Quotient] Pour les produits et quotients de deux complexes, il
est inutile de commencer par le mettre sous forme algébrique avant de trou-
ver la forme exponentielle. En effet, notons 𝑧1 = |𝑧1|eiθ1 ≠ 0 (θ1 ∈ ℝ), 𝑧2 =
|𝑧2|eiθ2 ≠ 0 (θ2 ∈ ℝ). Alors :

𝑧1𝑧2 = |𝑧1| |𝑧2|ei (θ1+θ2) ,
𝑧1
𝑧2

=
|𝑧1|
|𝑧2|

ei (θ1−θ2) .

Exemple 15 Mettre sous forme exponentielle les complexes suivants.
1. 1+ i ,1− i ,

PEN-FANCY

12
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2. 1− i√3,
PEN-FANCY

3. 1+i
1−i ,
PEN-FANCY

4. (√3− i )
𝑛
,𝑛 ∈ ℕ.

PEN-FANCY

Exemple 16 Donner un argument des complexesi ,−i ,2i . Cette question revient
à déterminer la forme exponentielle
PEN-FANCY

Exemple 17 (Lien entre les deux formes et application trigonométrique)
Donner les formes algébriques et exponentielles de 1−i

1−i√3
. En déduire

cos ( π12 ) ,sin (
π
12 ).

PEN-FANCY

13
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Méthode (ALG) 5.4 (Complexe sour forme « quasi-exponentielle ») Soit 𝑧 ≠ 0
tel que 𝑧 = Keiθ, avec θ ∈ ℝ.
• Si K ∈ ℝ (puisque K n’est pas supposé positif, ce n’est a priori pas la forme exponentielle de

𝑧) alors, pour mettre 𝑧 sous forme exponentielle, on écrit :

𝑧 =
⎧⎪
⎨⎪
⎩

Keiθ si K⩾ 0 ,
(−K)⎵⎵⎵⎵⎵⎵
>0

(−eiθ) = (−K)ei (θ+π) si K< 0 .

• Si K ∈ iℝ, on commence par écrire i sous la forme i = ei
π
2 , puis on retombe

sur le cas précédent.

Exemple 18 Déterminer la forme exponentielle de :
• 𝑧 = 𝑥 ∈ ℝ,𝑥 > 0,

PEN-FANCY

• 𝑧 = 𝑥 ∈ ℝ,𝑥 < 0,
PEN-FANCY

• −2eiθ,θ ∈ ℝ.
PEN-FANCY

• i eiθ,θ ∈ ℝ,
PEN-FANCY

• −4e−2iθ

5e5iθ′
, θ,θ′ ∈ ℝ,

PEN-FANCY

• de 𝑧 = sin(λ)eiθ, avec (λ,θ) ∈ [0,2π]×ℝ.
PEN-FANCY

Méthode (ALG) 5.5 (Technique de l’angle moitié (forme exponentielle d’une
somme d’exponentielles imaginaires)) Soient deux nombres complexes 𝑧,𝑧′

de module un donnés sous forme exponentielle : 𝑧 = eiθ,𝑧′ = eiθ
′
avec (θ,θ′) ∈

ℝ2. Alors la forme exponentielle de 𝑧+𝑧′ s’obtient par le calcul suivant :

𝑧+𝑧′ = eiθ+eiθ
′
= ei

θ+θ′
2 (ei

θ−θ′
2 +e−i

θ−θ′
2 ) = 2ei

θ+θ′
2 cos(

θ−θ′

2
) .

Laméthode s’adapte à𝑧−𝑧′ en faisant apparaitre un sinus. Pour obtenir la forme
exponentielle, on applique alors la méthode précédente.

Exemple 19 (Deux formes exponentielles très importantes)
1. Déterminer la forme exponentielle de 1+ eiθ avec θ ∈ [0,π[. Que dire si θ ∈

[π,2π[?
• [Calcul de l’angle moitié]

PEN-FANCY

• [Mise en facteur de l’angle moitié]
PEN-FANCY

• [Conclusion]
PEN-FANCY

14
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2. Même question avec 1−eiθ.
PEN-FANCY

Résumé Forme exponentielle de 1±eiθ
♥

Soit θ ∈ [0,2π[. Les formes exponentielles de 1±eiθ sont données par :

• 1+eiθ =
⎧
⎨
⎩

2cos (θ2 )e
i θ2 si θ ∈ [0,π[,

(−2cos (θ2 ))e
i ( θ2+π) si θ ∈ [π,2π[.

• 1−eiθ = 2sin (θ2 )e
i ( θ2+

3π
2 ).

Ces expressions ne sont pas à apprendre par coeur,mais surtout savoir les éta-
blir.

Passons à quelques propriétés de l’argument d’un nombre complexe, qui découlent
des propriétés déjà établies sur l’exponentielle imaginaire.

Proposition 11 | Propriétés de l’argument
Soient 𝑧 et 𝑧′ deux complexes non nuls. Alors :

arg(𝑧𝑧′) = arg𝑧+arg𝑧′ [2π],• arg(
𝑧
𝑧′
) = arg𝑧−arg𝑧′ [2π],•

arg(𝑧) = −arg𝑧 [2π].•

Preuve Notons 𝑧 = |𝑧|eiθ et 𝑧′ = |𝑧′|eiθ
′
les formes exponentielles de 𝑧 et 𝑧′ avec (θ,θ′) ∈

[0,2π[2.
• 𝑧𝑧′ = |𝑧| |𝑧′|ei (θ+θ

′) par propriétés de l’exponentielle. Donc arg(𝑧𝑧′) = θ + θ′ = arg𝑧 +
arg𝑧′ [2π].

• 𝑧
𝑧′ =

|𝑧|eiθ

|𝑧′|eiθ′
= |𝑧|

|𝑧′|e
i (θ−θ′) par propriétés de l’exponentielle. Donc arg(𝑧𝑧′) = θ−θ′ = arg𝑧−

arg𝑧′ [2π].
• 𝑧 = |𝑧|eiθ = |𝑧|eiθ puisque |𝑧| est un réel. Donc par propriété de l’exponentielle : 𝑧 =

|𝑧|e−iθ. Donc : arg(𝑧) = −θ−arg𝑧 [2π].

Proposition 12 | Caractérisation de l’égalité de nombres complexes ♥

Soient 𝑧,𝑧′ deux nombres complexes. Alors :
𝑧 = 𝑧′ ⟺ Re(𝑧) = Re(𝑧′) et Im(𝑧) = Im(𝑧′) ,

⟺ |𝑧| = |𝑧′| et arg𝑧 = arg𝑧′ [2π] .

Preuve Lapremière équivalence a déjà été constatée lors de l’étudede la forme algébrique.
On montre donc uniquement :

𝑧 = 𝑧′ ⟺ { |𝑧| = |𝑧′|
arg𝑧 = arg𝑧′ [2π] .

⟹ Évidente, par passage au module et à un argument.
⟹ Supposons que |𝑧| = |𝑧′| ,arg𝑧 = arg𝑧′ [2π].

PEN-FANCY

15



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

16
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Bilan sur les formes algébriques et exponentielles.

• [Comment choisir la forme à utiliser?] Lorsque l’on cherche à démontrer un
résultat sur des nombres complexes, il ne fautpas systématiquement l’écrire sous
forme algébrique : 𝑧 = Re(𝑧)+ i Im(𝑧) .
Cette forme est adaptée aux problèmes « additifs », où ce qui intervient est plutôt
des sommes (ou plus généralement des combinaisons linéaires) de complexes.
Les problèmes «multiplicatifs » se résolventmieux en utilisant la forme exponen-
tielle lorsque 𝑧 ≠ 0 : 𝑧 = |𝑧|ei arg𝑧.

• Terminons avec un rappel des propriétés calculatoires sur les deux formes.
Forme cartésienne Forme exponentielle

Définition 𝑧 = 𝑥+ i𝑦,𝑧′ = 𝑥′+ i𝑦′ 𝑧 = ρeiθ,𝑧′ = ρ′eiθ
′

Égalité 𝑧 = 𝑧′ ⟺ 𝑥=𝑥′, 𝑦 = 𝑦′ 𝑧 = 𝑧′ ⟺ ρ=ρ′, θ = θ′

(mod 2π)

Somme 𝑧+𝑧′ = (𝑥+𝑥′)+ i (𝑦+𝑦′) …

Produit 𝑧×𝑧′ = (𝑥𝑥′−𝑦𝑦′)+i (𝑥𝑦′+𝑥′𝑦) 𝑧×𝑧′ = ρρ′ei (θ+θ
′)

Puissance … 𝑧𝑛 = 𝑟𝑛ei𝑛θ

Inverse 1
𝑧 =

𝑧
𝑧𝑧 =

𝑥−i𝑦
𝑥2+𝑦2

1
𝑧 =

1
ρe

−iθ

Quotient 𝑧′
𝑧 =

𝑧′𝑧
𝑧𝑧 =

𝑥𝑥′+𝑦𝑦′+i (𝑥𝑦′−𝑦𝑥′)
𝑥2+𝑦2

𝑧′
𝑧 =

ρ′

ρ e
i (θ′−θ).

2.3 Racines 𝑛-ièmes d’un complexe

De manière générale, on appelle « racine 𝑛-ième » d’un objet mathématique une
quantité qui élevée à la puissance 𝑛 donne cet objet (l’objet en question peut être
un réel, un complexe ou même une matrice).

Regardons pour commencer un exemple. Notons𝕂=ℝ ou ℂ et considérons l’équa-
tion 𝑧3 = 1 avec 𝑧 ∈ 𝕂.

1. Si𝕂=ℝ, l’équation n’admet qu’une solution : 1.

𝑥

𝑦

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

𝒞𝑥⟼𝑥3

2. Si 𝕂 = ℂ, on voit que j = e2iπ/3 convient, mais aussi j 2 = e4iπ/3 – et en fait nous
allons montrer que ce sont les seules.

On constate que : l’ensemble des racines cubiques complexes de 1 contient l’en-
semble des racines cubiques réelles de 1, et il y en a systématiquement au moins
autant dans ℂ que dans ℝ.

Définition 7 | Racines 𝑛-ième
Soit 𝑛 ∈ ℕ⋆ et α ∈ ℂ. On appelle racine 𝑛-ième de α tout complexe 𝑧 ∈ ℂ tel que
𝑧𝑛 = α.
• On note𝕌𝑛(α) l’ensemble des solutions de 𝑧𝑛 = α. Si α = 1, on parle de racine

𝑛-ième de l’unité. On notera 𝕌𝑛 l’ensemble de ces complexes.
• Si 𝑛 = 2, on parle de racine carrée de α, pour 𝑛 = 3 de racine cubique.

Notation
Σ
• Lesnotations√α et 𝑛√α sont réservées àα ∈ ℝ+ (oubienα ∈ ℝ si𝑛 est impair).
• Les notations√α et 𝑛√α où α ∈ ℂ∖ℝ sont interdites (elles n’ont aucun sens

car il n’y a pas unicité).

Cas particulier des racines carrées. Pour les racines carrées de com-
plexes, on peut utiliser la forme algébrique, qui parfois est explicite à l’inverse de
la forme exponentielle. Commençons par le cas particulier des racines carrées de
réels.
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Proposition 13 | Racines carrées (complexes) d’un réel
Soit 𝑎 ∈ ℝ. Alors :
• si 𝑎 > 0, 𝑧2 = 𝑎 ⟺ 𝑧=±√𝑎,
• si 𝑎 = 0, 𝑧2 = 0 ⟺ 𝑧= 0,
• si 𝑎 < 0, 𝑧2 = 𝑎 ⟺ 𝑧= (i√−𝑎)

2
⟺ 𝑧=±i√−𝑎.

Preuve Reste uniquement le cas 𝑎 < 0 qui est nouveau.
PEN-FANCY

Exemple 20
• 𝑧2 = 2 ⟺ 𝑧=√2 ou 𝑧 = −√2.
• 𝑧2 =−3 ⟺ 𝑧= (i√3)2 ⟺ 𝑧= i√3 ou 𝑧 = −i√3.

Exemple 21 Retrouver 𝕌2 en utilisant le résultat précédent.
PEN-FANCY

Exemple 22 Résoudre (2𝑧 + 1)2 + 𝑧2 = 0. On donnera les solutions sous forme
algébrique.
PEN-FANCY

Voici à présent une méthode spécifique pour le cas où 𝑎 est complexe donné sous
forme algébrique.

Méthode (ALG) 5.6 (Calculs de racines carrées de complexes avec forme algé-
brique) Pour résoudre 𝑧2 = 𝑎+ i𝑏 avec 𝑎+ i𝑏 ∈ ℂ.
1. Chercher 𝑧 sous la forme 𝑧 = 𝑥+ i𝑦 ∈ ℂ.
2. En remplaçant, on obtient : 𝑥2−𝑦2 = 𝑎, 2𝑥𝑦 = 𝑏.
3. Pour résoudre ce système, on introduit une troisième équation provenant du

module |𝑧|2 = |𝑎+ i𝑏|, ce qui donne :
𝑥2+𝑦2 =√𝑎2+𝑏2.

D’où au total :
𝑥2−𝑦2 = 𝑎, 𝑥2+𝑦2 =√𝑎2+𝑏2, 2𝑥𝑦 = 𝑏.

En faisant la somme et la différence des deux premières, on obtient des solu-
tions (4 au plus). On en exclut certaines à l’aide de la condition 2𝑥𝑦 = 𝑏.

L’idée principale à retenir étant la suivante :

pour résoudre 𝑧2 = α, travailler au choix sur la FORME
EXPONENTIELLE de 𝑧, ou la forme algébrique de 𝑧.

Le choix dépendde si on veut infine des solutionsdonnées sous formeexponentielle
ou algébrique, et surtout si la forme exponentielle de α vous semble explicite.

Exemple 23 Déterminer les racines carrées de 3+4i sous forme algébrique.
PEN-FANCY
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Cas général. Trouver les racines 𝑛-ièmes d’un complexe est un problème mul-
tiplicatif (avec des puissances), donc la bonne forme à adopter est la forme expo-
nentielle, nous allons très largement nous en servir dans la suite. On retient donc
que :

pour résoudre 𝑧𝑛 = α, travailler sur les FORMES EXPONENTIELLES !

Méthode (ALG) 5.7 (Calculs de racines 𝑛-ième de complexes avec forme ex-
ponentielle) Pour résoudre 𝑧𝑛 = α avec α ≠ 0 (si α = 0 il n’y a que zéro comme
solution).
1. Calculer la forme exponentielle de α = ρeiθ.
2. Chercher 𝑧 sous la forme 𝑧 = ρ′eiθ

′
, ρ′ > 0, θ ∈ [0,2π[.

3. En remplaçant, on obtient comme conditions (ρ′)𝑛 = ρ et 𝑛θ′ = θ+2𝑘π avec
𝑘 ∈ ℤ. Résoudre ces deux équations puis conclure, en regardant notamment
les 𝑘 qui donnent un argument dans [0,2π[.

Exemple 24
Déterminer 𝕌2, exceptionnellement sans utiliser la forme exponentielle.
PEN-FANCY

1.

Déterminer 𝕌3.
PEN-FANCY

2.

On montrerait de-même que 𝕌4 = {−1,1,−i , i }.3.

Dessiner les points géométriques d’affixes les éléments de𝕌2,𝕌3 et𝕌4. Que
remarque-t-on?
PEN-FANCY

4.

18
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Déterminer les racines quatrièmes de −16.
PEN-FANCY

5.

Exemple 25 De manière générale, déterminer 𝕌𝑛 pour 𝑛 ⩾ 1.
PEN-FANCY

2.4 Équations du second degré

Exemple 26 (Introductif) Considérons l’équation 𝑧2+𝑧+1 = 0, qui n’avait pas
de solution dans ℝ et cherchons désormais des solutions dans ℂ.
PEN-FANCY

Considérons plus généralement une équation de la forme 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 avec
𝑎,𝑏,𝑐 ∈ ℝ¹. On a revu dans le Chapitre (ALG) 2 comment on trouvait ses réelles, à
l’aide de la forme canonique. On avait établi en notant Δ= 𝑏2−4𝑎𝑐 que :

𝑎𝑧2+𝑏𝑧+𝑐 = 𝑎[(𝑧+
𝑏
2𝑎

)
2
−

Δ
4𝑎2

].

Notons δ ∈ ℂ une racine complexe de Δ.

• Si Δ⩾ 0, δ =√Δ convient car (√Δ)
2
=Δ.

• Si Δ< 0, δ = i√−Δ convient car (i√−Δ)
2
=−(−Δ) = Δ.

On reconnaît alors une identité remarquable du type «𝑎2−𝑏2 » :

𝑎𝑧2+𝑏𝑧+𝑐 = 𝑎[(𝑧+
𝑏
2𝑎

)
2
−(

δ
2𝑎

)
2

]

= 𝑎(𝑧−
−𝑏+δ
2𝑎

)(𝑧−
−𝑏−δ
2𝑎

).
identité 𝑎2−𝑏2

1. Restrictixon du programme, mais les résultats ci-après s’étendent aussi aux coefficients com-
plexes

19
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On a ainsi factorisé dans ℂ (comme vous l’aviez fait en première, mais dans ℝ) l’expression
𝑎𝑧2+𝑏𝑧+𝑐 peu importe le signe deΔ, ce qui nous mène tout droit aux solutions de
l’équation.

Théorème 2 | Solutions d’une équation du second degré ♥

Soit (𝑎,𝑏,𝑐) ∈ ℝ3 tel que 𝑎 ≠ 0. On considère l’équation 𝑎𝑧2+𝑏𝑧+𝑐 = 0 d’incon-
nue 𝑧 ∈ ℂ. On appelle discriminant du trinôme 𝑎𝑧2+𝑏𝑧+𝑐 le réelΔ= 𝑏2−4𝑎𝑐.

• Si Δ> 0, les solutions de l’équation sont :
−𝑏±√Δ

2𝑎
.

• Si Δ= 0, l’unique solution de l’équation est : −𝑏
2𝑎 .

• Si Δ< 0, les solutions de l’équation sont :
−𝑏± i√−Δ

2𝑎
.

De plus, l’équation admet deux racines distinctes si Δ ≠ 0 et une seule racine si
Δ= 0.

Remarque 9 Les relations coefficients-racines restent valables dansℂ : à utiliser
toujours en priorité lorsqu’une racine est évidente.

Exemple 27 Résoudre les équations :
1. 𝑧2−𝑧+ 1

4 = 0.
PEN-FANCY

2. 𝑧2 +2𝑧+4 = 0. On a Δ = 4−16 = −12. Les solutions sont alors : −2±(4i )
2 =

−1±2i .On a Δ= 4−16 = −12. Les solutions sont alors : −2±(4i )
2 = −1±2i .

3. 𝑧2−2cos(θ)𝑧+1 = 0, avec θ ∈ [0,2π[.Δ=−4sin2 θ. Nous avons plusieurs cas :
• si θ = π : alors Δ= 0 et on a une seule racine double cosθ .
• si θ ∈ [0,2π[∖{π}, alors Δ< 0, donc les racines sont 2cosθ±2i sinθ

2 = e±iθ .

Exemple 28 Retrouver les solutions de (2𝑧+1)2+𝑧2 = 0 en utilisant ce nouveau
résultat.
PEN-FANCY

3 APPLICATION DES NOMBRES COMPLEXES EN TRIGONOMÉTRIE

Les nombres complexes, grâce à l’exponentielle complexe, fournissent des mé-
thodes très efficaces pour transformer des expressions trigonométriques. Voyons
comment.

Méthode (ALG) 5.8 (Linéarisation & Antilinéarisation avec des complexes)
1. [Pour linéariser cos𝑘 θ,sin𝑘 θ] écrire

cos𝑘 θ = (
eiθ+e−iθ

2
)
𝑘

, sin𝑘 θ = (
eiθ−e−iθ

2i
)
𝑘

,

puis développer avec le binôme, regrouper les termes avec leur conjugué, uti-
liser les formules d’EULER.

2. [Pour antilinéariser cos(𝑘θ),sin(𝑘θ)] écrire
cos(𝑘θ) = Re (ei𝑘θ) =

MOIVRE
Re ((eiθ)𝑘) = Re ((cosθ+ i sinθ)𝑘) ,

sin(𝑘θ) = Im (ei𝑘θ) =
MOIVRE

Im ((eiθ)𝑘) = Im ((cosθ+ i sinθ)𝑘) ,
puis développer avec le binôme et calculer les parties réelles et imaginaires.

3. [Pour linéariser des produits] En utilisant les formules
d’EULER, on peut linéariser des expressions de la forme
cos𝑥cos𝑦,sin𝑥sin𝑦,cos𝑥sin𝑦,sin𝑥cos𝑦.

4. [Pour anti-linéariser des sommes] En utilisant des techniques d’angle
moitité, onpeut antilinéariser des expressionsde la forme cos𝑥±cos𝑦,sin𝑥±
sin𝑦,cos𝑥± sin𝑦,sin𝑥±cos𝑦.

Exemple 29 (Linéarisation)
1. Soient 𝑥,𝑦 ∈ ℝ. Montrer que cos𝑥cos𝑦 = 1

2 (cos(𝑥+𝑦)+cos(𝑥−𝑦)).
PEN-FANCY
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2. De-même, établir une formule pour cos𝑥sin𝑦.
PEN-FANCY

3. Soit 𝑥 ∈ ℝ. Linéariser cos2𝑥 et sin3𝑥 en utilisant les nombres complexes.
PEN-FANCY

4. Soit 𝑥 ∈ ℝ. Linéariser cos3𝑥sin𝑥 en utilisant les nombres complexes.
PEN-FANCY

Exemple 30 (Anti-Linéarisation)
1. Soient 𝑥,𝑦 ∈ ℝ. Montrer que sin(𝑥)+ sin(𝑦) = 2sin (𝑥+𝑦2 )cos (𝑥−𝑦2 ).

PEN-FANCY

2. Soit 𝑥 ∈ ℝ. Exprimer cos(4𝑥) en fonction de cos𝑥, sin𝑥, en utilisant les
nombres complexes.
PEN-FANCY
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Les complexes peuvent rendre de multiples services en trigonométrie, y compris les
calculs de sommes de fonctions trigonométriques, comme lemontrent les exemples
ci-après.

Méthode (ALG) 5.9 (Calculs de sommes trigonométriques)
1. Écrire cos,sin comme des parties réelles/imaginaires d’exponentielles com-

plexes.
2. Utiliser la linéarité de Re(...) , Im(...), i.e. : Re(∑...) = ∑Re(...), Im(∑...) =

∑ Im(...).
3. Utiliser la formule donnant la somme de termes géométriques. Conclure.

Exemple 31 Calculer pour tout𝑛 ∈ℕ les sommes
𝑛
∑
𝑘=0

cos(𝑘𝑥) et
𝑛
∑
𝑘=0

sin(𝑘𝑥)pour

𝑥 ∈ ℝ.
PEN-FANCY

Exemple 32 Calculer pour tout 𝑛 ∈ ℕ la somme
𝑛
∑
𝑘=0

cos𝑘𝑥
cos𝑘𝑥

pour 𝑥 ∈ ℝ tel que
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cos𝑥 ≠ 0.
𝑛
∑
𝑘=0

cos𝑘𝑥
cos𝑘𝑥

=
𝑛
∑
𝑘=0

Re (ei𝑘𝑥)
(cos𝑥)𝑘

=
𝑛
∑
𝑘=0

Re(
ei𝑘𝑥

(cos𝑥)𝑘
)

= Re(
𝑛
∑
𝑘=0

(
ei𝑥

cos𝑥
)
𝑘

)

= Re⎛⎜
⎝

1−( ei𝑥
cos𝑥 )

𝑛+1

1− ei𝑥
cos𝑥

⎞⎟
⎠

= Re⎛
⎝

1− ei (𝑛+1)𝑥
cos𝑛+1𝑥

1− ei𝑥
cos𝑥

⎞
⎠

= Re⎛
⎝

cos𝑛+1𝑥−ei (𝑛+1)𝑥
cos𝑛+1𝑥
cos𝑥−ei𝑥
cos𝑥

⎞
⎠

=
1

cos𝑛𝑥
Re(

cos𝑛+1𝑥−ei (𝑛+1)𝑥

cos𝑥−ei𝑥
)

=
1

cos𝑛𝑥
Re(

cos𝑛+1𝑥−(cos(𝑛+1)𝑥+ i sin(𝑛+1)𝑥)
cos𝑥−(cos𝑥+ i sin𝑥)

)

=
1

cos𝑛𝑥
Re(

(cos𝑛+1𝑥−cos(𝑛+1)𝑥)− i sin(𝑛+1)𝑥
−i sin𝑥

)

=
1

cos𝑛𝑥
⋅
sin(𝑛+1)𝑥

sin𝑥
.

(cos𝑥)𝑘 est réel

la partie réelle est linéaire

somme de termes d’une suite géométrique, car cos𝑥 ≠ ei𝑥
pour les 𝑥 qui nous intéressent

réduction au même dénominateur

1
cos𝑛(𝑥) ∈ ℝ

forme
algébrique des
nombres
complexes

FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (ALG) 5.1 (Quotient sous forme algébrique : expression conju-
guée) Pour deux réels 𝑥,𝑦 ∈ ℝ, et 𝑧 = 𝑥+ i𝑦 ∈ ℂ,

1
𝑥+ i𝑦

=
𝑥− i𝑦

(𝑥+ i𝑦)(𝑥− i𝑦)
=
𝑥− i𝑦
|𝑧|2

=
𝑥
|𝑧|2

+ i (
−𝑦
|𝑧|2

) .

Méthode (ALG) 5.2 (Développement d’une norme de somme au carré) Soit
|𝑧+𝑧′|2 avec 𝑧,𝑧′ ∈ ℂ.
1. Écrire la quantité en fonction du conjugué : |𝑧+𝑧′|2 = (𝑧+𝑧′)(𝑧+𝑧′).
2. Développer.

Méthode (ALG) 5.3 (Mettre sous forme exponentielle un nombre complexe)
• Soit 𝑧 ≠ 0.

1. Calculer |𝑧|, puis mettre |𝑧| en facteur dans 𝑧.
2. Chercher θ ∈ [0,2π[ tel que : 𝑧

|𝑧| = eiθ, i.e. tel que

cos(θ) =
Re(𝑧)
|𝑧|

, sin(θ) =
Im(𝑧)
|𝑧|

.

La forme exponentielle est alors : 𝑧 = |𝑧|eiθ. Il arrive parfois que l’angle θ
ne soit pas explicite.

• [Produit/Quotient] Pour les produits et quotients de deux complexes, il
est inutile de commencer par le mettre sous forme algébrique avant de trou-
ver la forme exponentielle. En effet, notons 𝑧1 = |𝑧1|eiθ1 ≠ 0 (θ1 ∈ ℝ), 𝑧2 =
|𝑧2|eiθ2 ≠ 0 (θ2 ∈ ℝ). Alors :

𝑧1𝑧2 = |𝑧1| |𝑧2|ei (θ1+θ2) ,
𝑧1
𝑧2

=
|𝑧1|
|𝑧2|

ei (θ1−θ2) .

Méthode (ALG) 5.4 (Complexe sour forme « quasi-exponentielle ») Soit 𝑧 ≠ 0
tel que 𝑧 = Keiθ, avec θ ∈ ℝ.
• Si K ∈ ℝ (puisque K n’est pas supposé positif, ce n’est a priori pas la forme exponentielle de

𝑧) alors, pour mettre 𝑧 sous forme exponentielle, on écrit :

𝑧 =
⎧⎪
⎨⎪
⎩

Keiθ si K⩾ 0 ,
(−K)⎵⎵⎵⎵⎵⎵
>0

(−eiθ) = (−K)ei (θ+π) si K< 0 .

• Si K ∈ iℝ, on commence par écrire i sous la forme i = ei
π
2 , puis on retombe
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sur le cas précédent.

Méthode (ALG) 5.5 (Technique de l’angle moitié (forme exponentielle d’une
somme d’exponentielles imaginaires)) Soient deux nombres complexes 𝑧,𝑧′

de module un donnés sous forme exponentielle : 𝑧 = eiθ,𝑧′ = eiθ
′
avec (θ,θ′) ∈

ℝ2. Alors la forme exponentielle de 𝑧+𝑧′ s’obtient par le calcul suivant :

𝑧+𝑧′ = eiθ+eiθ
′
= ei

θ+θ′
2 (ei

θ−θ′
2 +e−i

θ−θ′
2 ) = 2ei

θ+θ′
2 cos(

θ−θ′

2
) .

Laméthode s’adapte à𝑧−𝑧′ en faisant apparaitre un sinus. Pour obtenir la forme
exponentielle, on applique alors la méthode précédente.

Méthode (ALG) 5.6 (Calculs de racines carrées de complexes avec forme algé-
brique) Pour résoudre 𝑧2 = 𝑎+ i𝑏 avec 𝑎+ i𝑏 ∈ ℂ.
1. Chercher 𝑧 sous la forme 𝑧 = 𝑥+ i𝑦 ∈ ℂ.
2. En remplaçant, on obtient : 𝑥2−𝑦2 = 𝑎, 2𝑥𝑦 = 𝑏.
3. Pour résoudre ce système, on introduit une troisième équation provenant du

module |𝑧|2 = |𝑎+ i𝑏|, ce qui donne :
𝑥2+𝑦2 =√𝑎2+𝑏2.

D’où au total :
𝑥2−𝑦2 = 𝑎, 𝑥2+𝑦2 =√𝑎2+𝑏2, 2𝑥𝑦 = 𝑏.

En faisant la somme et la différence des deux premières, on obtient des solu-
tions (4 au plus). On en exclut certaines à l’aide de la condition 2𝑥𝑦 = 𝑏.

Méthode (ALG) 5.7 (Calculs de racines 𝑛-ième de complexes avec forme ex-
ponentielle) Pour résoudre 𝑧𝑛 = α avec α ≠ 0 (si α = 0 il n’y a que zéro comme
solution).
1. Calculer la forme exponentielle de α = ρeiθ.
2. Chercher 𝑧 sous la forme 𝑧 = ρ′eiθ

′
, ρ′ > 0, θ ∈ [0,2π[.

3. En remplaçant, on obtient comme conditions (ρ′)𝑛 = ρ et 𝑛θ′ = θ+2𝑘π avec
𝑘 ∈ ℤ. Résoudre ces deux équations puis conclure, en regardant notamment
les 𝑘 qui donnent un argument dans [0,2π[.

Méthode (ALG) 5.8 (Linéarisation & Antilinéarisation avec des complexes)
1. [Pour linéariser cos𝑘 θ,sin𝑘 θ] écrire

cos𝑘 θ = (
eiθ+e−iθ

2
)
𝑘

, sin𝑘 θ = (
eiθ−e−iθ

2i
)
𝑘

,

puis développer avec le binôme, regrouper les termes avec leur conjugué, uti-
liser les formules d’EULER.

2. [Pour antilinéariser cos(𝑘θ),sin(𝑘θ)] écrire
cos(𝑘θ) = Re (ei𝑘θ) =

MOIVRE
Re ((eiθ)𝑘) = Re ((cosθ+ i sinθ)𝑘) ,

sin(𝑘θ) = Im (ei𝑘θ) =
MOIVRE

Im ((eiθ)𝑘) = Im ((cosθ+ i sinθ)𝑘) ,
puis développer avec le binôme et calculer les parties réelles et imaginaires.

3. [Pour linéariser des produits] En utilisant les formules
d’EULER, on peut linéariser des expressions de la forme
cos𝑥cos𝑦,sin𝑥sin𝑦,cos𝑥sin𝑦,sin𝑥cos𝑦.

4. [Pour anti-linéariser des sommes] En utilisant des techniques d’angle
moitité, onpeut antilinéariser des expressionsde la forme cos𝑥±cos𝑦,sin𝑥±
sin𝑦,cos𝑥± sin𝑦,sin𝑥±cos𝑦.

Méthode (ALG) 5.9 (Calculs de sommes trigonométriques)
1. Écrire cos,sin comme des parties réelles/imaginaires d’exponentielles com-

plexes.
2. Utiliser la linéarité de Re(...) , Im(...), i.e. : Re(∑...) = ∑Re(...), Im(∑...) =

∑ Im(...).
3. Utiliser la formule donnant la somme de termes géométriques. Conclure.
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QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Question Réponse Commentaire

Définition du module d’un
nombre complexe

|𝑧| =√𝑥2+𝑦2 si 𝑧 = 𝑥+ i𝑦 avec
(𝑥,𝑦) ∈ ℝ2

Connaitre
également
l’interprétation
géométrique

4 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Concernant la forme algébrique :
• savoir effectuer des calculs sur les formes algébriques (somme, produit, quotient,

etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir traduire l’égalité de deux complexes donnés sous forme algébrique . . . . ⬜
• savoir calculer un module, un conjugué . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir représenter un complexe dans le plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

2. Concernant la forme exponentielle :
• savoir que 𝑧

|𝑧| est sur le cercle trigonométrique et la définition d’un l’argument ⬜
• savoir calculer une forme exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir manipuler eiθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir résoudre des équations avec des puissances à l’aide de la forme trigonomé-

trique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir résoudre des équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

3. Concernant les applications des complexes :
• savoir linéariser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir anti-linéariser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir calculer des sommes trigonométriues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

Cahier de calculs
Fiche(s) à travailler : 17, 18

Exercice 1 ∣ Vrai ou Faux?

1. Soit 𝑧 ∈ ℂ, la partie imaginaire de i𝑧 est égale à celle de 𝑧.
2. Soient 𝑧1,𝑧2 ∈ ℂ. Alors : |𝑧1−𝑧2| ⩽ |𝑧1|− |𝑧2|.
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4.1 Forme algébrique

Exercice 2 ∣ Mettre les complexes suivants sous forme algébrique simple :

𝑧 = 1−3i
1+3i ,1. 𝑧 = (i −√2)

3
,2.

𝑧 = 1+4i
1−5i ,3. 𝑧 = ( √3−i

1+i√3
)
9
,4.

𝑧 = (1+i )2
(1−i )2 ,5. 𝑧 = 1

1
i+1−1

,6.

𝑧 = (1+ i )2019,7. 𝑧 = 2+5i
1−i +

2−5i
1+i ,8.

𝑧 = (5−2i )3,9. 𝑧 = 1
(4−i )(3+2i ) ,10.

𝑧 = (3+i )(2−3i )
−2i+5 ,11. 𝑧 = (√3−2i )

4
.12.

Solution (exercice 2) Dans cet exercice, je ne détaille pas forcément tous
les calculs, je ne donne que la méthode générale ou des indications.

1. 𝑧 = −
4
5
−
3i
5
. On a un quotient de nombres complexes dont on vaut la forme

algébrique : on multiplie par le conjugué du dénominateur.
2. 𝑧 =√2+5i . On utilise ici une identité remarquable.

3. 𝑧 = −
19
26

+ i
9
26
. On a un quotient de nombres complexes dont on vaut la

forme algébrique : on multiplie par le conjugué du dénominateur.
4. Ici plusieurs méthodes marchent bien : Soit on commence par mettre sous

forme exponentielle le nombre complexe √3−i
1+i√3

enmettant sous forme expo-
nentielle le numérateur d’un côté et le dénominateur de l’autre côté puis on
passe à la puissance 9. Soit on commence par mettre sous forme algébrique
le nombre complexe √3−i

1+i√3
en multipliant par le conjugué du dénominateur

et on passe à la puissance 9.
5. 𝑧 = −1. Là encore il y a plusieurs méthodes qui marchent bien. Une possibi-

lité est de mettre sous forme exponentielle 1+ i d’un côté et 1− i de l’autre
côté puis de les passer au carré et enfin de faire le quotient.

6. 𝑧 = −1+ i . On peut par exemple commencer par tout mettre sous le même
dénominateur en bas et on obtient 𝑧 = 1

−i
1+i

= 1+i
−i = i (1+ i ).

7. 𝑧 = −21009+21009i . Ici il faut commencer par mettre sous forme exponen-
tielle 1+ i et on obtient que 1+ i = √2ei

π
4 . Ensuite on passe à la puissance

et on obtient que : 𝑧 = (√2ei
π
4 )

2019
= 21009√2ei

2019π
4 . Il faut alors compter le

nombre de tours complets que l’on a fait dans 2019π
4 . Une façon de voir les

choses est d’écrire : 20198 ×2π et de faire la division euclidienne de 2019 par 8.
On obtient : 2019 = 252×8+3 et ainsi on a : 2019

8 ×2π = 252×2π+ 3π
4 . Ainsi

on a : 𝑧 = 21009√2×ei (252×2π+
3π
4 ) = 21009√2(−√2

2 + √2
2 i ) = −21009+21009i .

8. OOn peut par exemple mettre sous forme algébrique chaque terme de la
somme de façon séparée en multipliant par le conjugué puis on les somme.

9. 𝑧 = 65−142i . On utilise une identité remarquable.

10. 𝑧 =
14
221

− i
5
221

. On peut multiplier par le conjugué du dénominateur à sa-

voir (4+ i )(3−2i ).

11. 𝑧 =
69
29

− i
17
29
. On multiplie par le conjugué du dénominateur.

12. 𝑧 = −47+8√3i . On développe avec le binôme de NEWTON.

Exercice 3 ∣ Soit 𝑥 un réel fixé. Calculer la partie réelle et imaginaire de :

(𝑥+ i )2,1. 𝑥−3i
𝑥2+1−2i𝑥 .2.

Solution (exercice 3)
• En développant (𝑥+ i )2, on obtient (𝑥+ i )2 = (𝑥2−1)+2i𝑥. Ainsi

Re(𝑥+ i )2 = 𝑥2−1 et Im(𝑥+ i )2 = 2𝑥.

• On a : 𝑥−3i
𝑥2+1−2i𝑥 =

(𝑥−3i )(𝑥2+1+2i𝑥)
𝑥4+6𝑥2+1 . Ainsi, on obtient :

Re(
𝑥−3i

𝑥2+1−2i𝑥
) =

𝑥(𝑥2+7)
𝑥4+6𝑥2+1

et Im(
𝑥−3i

𝑥2+1−2i𝑥
) =

−𝑥2−3
𝑥4+6𝑥2+1

.

4.2 Forme exponentielle

Exercice 4 ∣ Écrire les nombres suivants sous forme exponentielle et trigono-
métrique :

𝑧 = −181. 𝑧 = −7i2.

𝑧 = 1+ i3. 𝑧 = (1+ i )54.

𝑧 = 1+i√3
√3−i

5. 𝑧 = −2ei
π
3 e−i

π
46.

𝑧 = −10eiπ ( 2e
i 5π8

ei
7π
4
)
6

7. 𝑧 = −5(cos ( 2π5 )+ i sin (
2π
5 ))8.
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𝑧 = 1
i
2−

1
2√3

9. 𝑧 = ( 1+i√3
1−i )

20
10.

𝑧 = 1
1+i tanθ , θ ≠ π

2 +𝑘π, 𝑘 ∈ ℤ11.

𝑧 = ( 1+i tanθ1−i tanθ )
𝑛 , 𝑛 ∈ ℕ, θ ≠ π

2 +𝑘π, 𝑘 ∈ ℤ.12.

Solution (exercice 4) Dans cet exercice, je ne détaille pas forcément tous
les calculs, je ne donne que la méthode générale ou des indications.
1. 𝑧 = 18eiπ . On a en effet commencé par calculer le module qui vaut 18, puis

on a mis en facteur le module et on a mis −1 sous forme exponentielle.
2. 𝑧 = 7𝑒−i

π
2 . On a en effet commencé par calculer le module qui vaut 7. Puis

on a mis en facteur le module et on a mis −i sous forme exponentielle.
3. 𝑧 =√2ei

π
4 . On a calculé le module qui vaut√2 et on l’a mis en facteur.

4. On commence par mettre 1+ i sous forme exponentielle et on obtient que
1+ i =√2ei

π
4 . Ainsi on obtient que (1+ i )5 = (√2)5ei

5π
4 = 4√2ei

5π
4 . Ainsi on

a : 𝑧 = 4√2ei
5π
4 .

5. 𝑧 = ei
π
2 . Ici on peut par exemple mettre sous forme exponentielle d’un côté

lenumérateur et de l’autre côté le dénominateur. Puis onutilise les propriétés
sur les quotients d’exponentielles.

6. Ici le calcul du module donne |𝑧| = 2 car pour tout θ ∈ ℝ : |eiθ| = 1. On a
donc : 𝑧 = 2(−1×e

iπ
3 ×ee

iπ iπ
4 ) = 2ei

13π
12 . Ainsi on a : 𝑧 = 2ei

13π
12 .

7. Même typede calcul qui utilise les propriétés de l’exponentielle. Ici lemodule
vaut 10×26 = 640 et on obtient que 𝑧 = 640ei

−27π
4 . On simplifie alors ei

−27π
4 en

remarquant par exemple que −27π
4 = −28π+π

4 = −7π+ π
4 . Ainsi on a : ei

−27π
4 =

ei (π+
π
4 ) = ei

5π
4 . Ainsi on a : 𝑧 = 640ei

5π
4 .

8. 𝑧 = 5ei (
2π
5 +π) = 5e

7iπ
5 . En effet on a : 𝑧 = −5ei

2π
5 = 5eiπei

2π
5 .

9. Mettons tout d’abord sous forme exponentielle Z = i
2 −

1
2√3

. On a |Z| = 1
√3

,
ainsi,

Z =
1
√3

(−
1
2
+ i

√3
2
) =

1
√3

e
2iπ
3 =

1
√3

j .

Ainsi comme 𝑧 = 1
Z , on obtient : 𝑧 =√3e−

2iπ
3 =√3j 2.

10. Oncommenceparmettre ce qui est à l’intérieur de la parenthèse sous forme
exponentielle. Comme c’est un quotient, onmet sous forme exponentielle de
façon séparée le numérateur et le dénominateur et on obtient que : 1+i√3

1−i =
2ei

π
3

√2e−i
π
4
=√2ei

7π
12 . Ainsi on obtient :

𝑧 = (√2ei
7π
12 )

20

= 210ei
140π
12 = 210ei

35π
3

= 210eiπ(10+
5
3 ) = 210×e10iπ×ei

5π
3

= 210ei
5π
3 .

Ainsi on a : 𝑧 = 210ei
5π
3 .

11. Commençons par calculer lemodule. Le formulaire de trigonométrie donne
|𝑧| = |cosθ|. Il faut donc discuter selon le signe du cosinus.
• Si cosθ ⩾ 0, c’est-à-dire si ∃𝑘 ∈ ℤ, −π

2 +2𝑘π ⩽ θ ⩽ π
2 +2𝑘π,alors

𝑧 = cosθ×
1

cosθ+ i sinθ
= cosθe−iθ.

• Si cosθ ⩽ 0, c’est-à-dire si ∃𝑘 ∈ ℤ, π
2 +2𝑘π ⩽ θ ⩽ 3π

2 +2𝑘π,alors

𝑧 = −cosθ×
−1

cosθ+ i sinθ
= −cosθeiπe−iθ =−cosθei (π−θ).

12. Ici plusieursméthodes sont possibles. On peut par exemple commencer par
simplifier le quotient 1+i tan(θ)

1−i tan(θ) . On obtient en utilisant la définition de la tan-
gente :

1+ i tan(θ)
1− i tan(θ)

=
cos(θ)+i sin(θ)

cos(θ)
cos(θ)−i sin(θ)

cos(θ)

=
cos(θ)+ i sin(θ)
cos(θ)− i sin(θ)

.

Il suffit alors de remarquer que : cos(θ) + i sin(θ) = eiθ et que cos(θ) −
i sin(θ) = cos(−θ)+ i sin(−θ) = e−iθ en utilisant la définition de eiθ, la parité
du cosinus et l’imparité du sinus. Ainsi on obtient que : 1+i tan(θ)1−i tan(θ) =

eiθ
e−iθ = e2iθ.

En passant à la puissance 𝑛, on obtient que : 𝑧 = e2∈θ.

Exercice 5 ∣ Complexe j On rappelle que j = e
2iπ
3 .

1. Justifier rapidement que : j 3 = 1, 1+ j + j 2 = 0, j = j 2.
2. Exprimer les complexes suivants sous la forme α+βj avec (α,β) ∈ ℝ2 :

𝑧1 = (1+ j )5,   𝑧2 =
1

(1+ j )4
, 𝑧3 =

1
1− j 2

.

Indication : On pourra pour 𝑧3 utiliser la technique de l’expression conjuguée.

Solution (exercice 5)
1. Voir cours.
• 𝑧1 = (1+ j )5 = (−j 2)5 =−j 10 =−j 9× j = −j =−e

2iπ
3 .

• 𝑧2 = 1
(1+j )4 =

1
(−j 2)4 =

1
j 8 =

1
j 2 . Or j 3 = j 2j = 1 donc 1

j 2 = j . Donc 𝑧2 = j .
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• En remarquant que j 2 = j à l’aide de la première question, on obtient :
1

1− j 2
=

1− j 2

(1− j 2)(1− j 2)
=

1− j

1− j 2− j 2−|j 2|
=

1− j
1+1+1

=
1− j
3

.

Exercice 6 ∣ Soit 𝑡 ∈ ℝ. Donner l’expression dumodule de 𝑧1 et 𝑧2. Mettre 𝑧2 sous
forme exponentielle.

𝑧1 = 𝑡2+2i 𝑡 −1, 𝑧2 = 1−cos𝑡 + i sin𝑡.

Solution (exercice 6)
• On a

|𝑧1|2 = (𝑡2−1)2+4𝑡2 = 𝑡4+2𝑡2+1 = (1+𝑡2)2.

Ainsi, |𝑧1| =√(1+𝑡2)2 = |1+𝑡2| = 1+𝑡2 car la sommede deux nombres po-
sitifs est positive.

• On a :
|𝑧2|2 = (1−cos𝑡)2+ sin2 𝑡 = 2(1−cos𝑡) = 4sin2 (

𝑡
2
).

Ainsi, |𝑧2| = 2|sin ( 𝑡2 )|. Il faut alors discuter selon le signe du sinus qui n’est
pas toujours positif.

⋄ Si sin ( 𝑡2 ) ⩾ 0, on a |𝑧2| = 2sin(
𝑡
2
). étude de sin ( 𝑡2 ) ⩾ 0 :

sin(
𝑡
2
) ⩾ 0⟺∃𝑘 ∈ ℤ, 0+2𝑘π ⩽

𝑡
2
⩽ π+2𝑘π⟺∃𝑘 ∈ℤ, 4𝑘π ⩽ 𝑡 ⩽ 2π+4𝑘π.

⋄ Si sin ( 𝑡2 ) ⩽ 0, on a |𝑧2| = −2sin(
𝑡
2
). étude de sin ( 𝑡2 ) ⩽ 0 :

sin(
𝑡
2
) ⩽ 0⟺∃𝑘 ∈ℤ, 𝑝𝑖+2𝑘π ⩽

𝑡
2
⩽ 2π+2𝑘π⟺∃𝑘 ∈ℤ,2π+4𝑘π ⩽ 𝑡 ⩽ 4π+4𝑘π.

• On distingue donc deux cas selon le signe de sin ( 𝑡2 ).
⋄ Cas 1 : Lorsque 𝑡 vérifie : ∃𝑘 ∈ ℤ, 4𝑘π < 𝑡 < 2π + 4𝑘π (0 ne se met pas

sous forme exponentielle, il faut donc étudier uniquement les nombres
complexes non nuls ce qui explique les inégalités strictes). On a alors
|𝑧2| = 2sin ( 𝑡2 ) et donc :

𝑧2 = 2sin(
𝑡
2
)[
1−cos(𝑡)
2sin ( 𝑡2 )

+ 𝑖
sin(𝑡)
2sin ( 𝑡2 )

]

= 2sin(
𝑡
2
)[
2sin2 ( 𝑡2 )
2sin ( 𝑡2 )

+ 𝑖
2sin ( 𝑡2 )cos (

𝑡
2 )

2sin ( 𝑡2 )
]

= 2sin(
𝑡
2
)[sin(

𝑡
2
)+𝑖cos(

𝑡
2
)]

= 2sin(
𝑡
2
)[𝑖(cos(

𝑡
2
)−𝑖sin(

𝑡
2
))]

= 2sin(
𝑡
2
)[𝑖(cos(−

𝑡
2
)+𝑖sin(−

𝑡
2
))]

= 2sin(
𝑡
2
)[𝑒𝑖

π
2 ×𝑒−𝑖

𝑡
2 ]

= 2sin(
𝑡
2
)𝑒𝑖

π−𝑡
2 .

Dans ce cas, on a donc obtenu que 𝑧2 = 2sin(
𝑡
2
)ei

π−𝑡
2 .

⋄ Cas 2 : Lorsque 𝑡 vérifie : ∃𝑘 ∈ ℤ, 2π+4𝑘π < 𝑡 < 4π+4𝑘π :
On a alors |𝑧2| = −2sin ( 𝑡2 ) et donc en refaisant le même type de raisonne-
ment que ci-dessus :

𝑧2 =−2sin(
𝑡
2
)(−ei

π−𝑡
2 )

= −2sin(
𝑡
2
)(eiπei

π−𝑡
2 )

= −2sin(
𝑡
2
)ei

3π−𝑡
2 .

Dans ce cas, on a donc obtenu que 𝑧2 =−2sin(
𝑡
2
)ei

3π−𝑡
2 .

• On peut également utiliser la méthode de l’angle moitié, c’est plus simple et
plus rapide! On a en effet :

𝑧2 = 1−cos𝑡 + i sin𝑡 = 1−e−i 𝑡

= e−i
𝑡
2 (ei

𝑡
2 −e−i

𝑡
2 )

= 2i sin(
𝑡
2
)e−i

𝑡
2

= 2sin(
𝑡
2
)ei

π−𝑡
2 .

On reprend ensuite lesmêmes cas, et on obtient lesmêmes résultats que pré-
cédemment.

Exercice 7 ∣ Soit 𝑢 ∈ ℂ un complexe de module 1 et d’argument φ. Préciser le
module et un argument de 1+𝑢.

Solution (exercice 7) Comme𝑢 ∈ ℂestuncomplexedemodule 1, il s’écrit
sous la forme 𝑢 = eiφ avec φ un argument. Par la méthode des angles moitiés,
on obtient :

1+𝑢 = ei0+eiφ = e
iφ
2 (e−

iφ
2 +e

iφ
2
) = 2cos(

φ
2
)e

iφ
2 .
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Ainsi, |1+𝑢| = 2|cos (φ2 )| et il faut étudier le signe de cos (φ2 ).
• Si cos (φ2 ) ⩾ 0, alors :

{ |1+𝑢| = 2cos (φ2 )
arg(1+𝑢) = φ

2 [2π] .
Et la résolution de cos (φ2 ) ⩾ 0 donne

cos(
φ
2
) ⩾ 0

⟺ ∃𝑘 ∈ ℤ, −
π
2
+2𝑘π ⩽

φ
2
⩽
π
2
+2𝑘π

⟺ ∃𝑘 ∈ℤ, −π+4𝑘π ⩽φ⩽ π+4𝑘π.
• Si cos (φ2 ) ⩽ 0, alors :

{ |1+𝑢| = −2cos (φ2 )
arg(1+𝑢) = φ

2 +π [2π] .
En effet, −1 = eiπ. Et la résolution de cos (φ2 ) ⩽ 0 donne

cos(
φ
2
) ⩽ 0

⟺ ∃𝑘 ∈ ℤ,
π
2
+2𝑘π ⩽

φ
2
⩽
3π
2
+2𝑘π

⟺ ∃𝑘 ∈ℤ, 𝑝𝑖+4𝑘π ⩽φ⩽ 3π+4𝑘π.

Exercice 8 ∣ BOMB

1. Soient 𝑎 et 𝑏 des réels tels que 𝑏 ne soit pas de la forme : (2𝑘+1)π avec 𝑘 entier.

Calculer le module et un argument de
1+ cos𝑎+ i sin𝑎
1+cos𝑏+ i sin𝑏

.

2. Soit (α,β) ∈ [0,2π]2. Déterminer la forme exponentielle de Z =
1− cosα+ i sinα
1− sinβ+ i cosβ

.

Solution (exercice 8)
1. On peut remarquer que :

1+cos𝑎+ i sin𝑎
1+ cos𝑏+ i sin𝑏

=
1+ei𝑎

1+ei𝑏
.

On utilise donc la méthode de l’angle moitié pour le numérateur et le déno-
minateur. On obtient

1+cos𝑎+ i sin𝑎
1+ cos𝑏+ i sin𝑏

=
e
𝑖𝑎
2 2cos (𝑎2 )

e 𝑖𝑏
2 2cos (𝑏2 )

=
e
𝑖𝑎
2 cos (𝑎2 )

e 𝑖𝑏
2 cos (𝑏2 )

.

On peut remarquer que ce nombre est bien défini car le dénominateur est
bien non nul car on a supposé que 𝑏 n’est pas de la forme 2𝑘π+π donc 𝑏

2
n’est pas de la forme 𝑘π+ π

2 avec 𝑘 ∈ ℤ et ainsi cos (𝑏2 ) ne s’annule pas. On
obtient donc

Z =
1+cos𝑎+ i sin𝑎
1+cos𝑏+ i sin𝑏

=
cos (𝑎2 )

cos (𝑏2 )
ei

𝑎−𝑏
2 .

• Calcul dumodule : |Z| = | cos (
𝑎
2 )

cos ( 𝑏2 )
|. Ainsi, il faut étudier des cas selon le signe

de ce qui est à l’interieur du module.
• Cas 1 : Si cos (

𝑎
2 )

cos ( 𝑏2 )
> 0, à savoir s’ils sont tous les deux positifs ou tous les deux

négatifs, on obtient alors :

|Z| =
cos (𝑎2 )

cos (𝑏2 )
et Z =

cos (𝑎2 )

cos (𝑏2 )
ei

𝑎−𝑏
2 .

Z est alors bien sous forme exponentielle et un argument de Z est 𝑎−𝑏
2 .

• Cas 2 : Si cos ( 𝑎2 )

cos ( 𝑏2 )
< 0, à savoir si l’un est négatif et l’autre positif, on obtient

alors :

|Z| = −
cos (𝑎2 )

cos (𝑏2 )
et Z =−

cos (𝑎2 )

cos (𝑏2 )
(−ei

𝑎−𝑏
2 ) = −

cos (𝑎2 )

cos (𝑏2 )
ei (

𝑎−𝑏
2 +π).

Z est alors bien sous forme exponentielle et un argument de Z est 𝑎−𝑏
2 +π.

2. On utilise le même type de raisonnement, en remarquant que :

Z =
1−(cosα− i sinα)
1+ i (cosβ− i sinβ)

=
1−e−iα

1+ i.e.−iβ

=
1−e−iα

1+ei ( π2−β)
.

On utilise ensuite la méthode de l’angle moitié, et on distingue 3 cas :
• Si sin( α2 )

cos( β2−
π
4 )
> 0, alors Z = sin( α2 )

cos( β2−
π
4 )
ei (

β−α
2 + π

4 ).

• Si sin( α2 )

cos( β2−
π
4 )
= 0, alors Z = 0 et n’admet pas de forme exponentielle.

• Si sin( α2 )

cos( β2−
π
4 )
< 0, alors Z =− sin( α2 )

cos( β2−
π
4 )
ei (

β−α
2 + 3π

4 ).

Exercice 9 ∣ BOMB Autour des racines 7-ièmes

Soient 𝑢 = ei
2π
7 , S = 𝑢+𝑢2+𝑢4 et T = 𝑢3+𝑢5+𝑢6.
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1. Montrer que S et T sont conjugués, et que Im(S) ⩾ 0.
2. Calculer S+T et ST.
3. En déduire que :

cos
2π
7
+cos

4π
7
+cos

8π
7
= −

1
2

et sin
2π
7
+ sin

4π
7
+ sin

8π
7
=
√3
2
.

Solution (exercice 9)
1. Constatons que 𝑢= ei 2π7 = e−i

2π
7 = e−i

2π
7 +2iπ = ei

12π
7 =𝑢6. De-même :

𝑢2 =𝑢2 = (𝑢6)2 =𝑢12 =𝑢7𝑢5 = 1.𝑢5 =𝑢5,
et

𝑢4 =𝑢4 = (𝑢6)4 =𝑢24 =𝑢3×7𝑢3 = (𝑢7)3𝑢5 = 1.𝑢5.
Les termes de S,T sont donc conjuguées dans lemêmeordre, et par propriété
de la conjugaison, on obtient S = T. La deuxième partie est plus technique,
on utilise la formule de Moivre, puis on calcule les puissances :

Im(S)

= Im ((cos(
2π
7
)+ i sin(

2π
7
))

+(cos(
2π
7
)+ i sin(

2π
7
))
2
+(cos(

2π
7
)+ i sin(

2π
7
))
4
)

= sin(
2π
7
)+2sin(

2π
7
)cos(

2π
7
)+4cos3 (

2π
7
)sin(

2π
7
)−4cos(

2π
7
)sin3 (

2π
7
)

= sin(
2π
7
)(1+2cos(

2π
7
)+4cos3 (

2π
7
)−4cos(

2π
7
)sin2 (

2π
7
))

La partie imaginaire est donc du signe de la parenthèse car sin ( 2π7 ) ⩾ 0, et elle
vaut

1+2cos(
2π
7
)+4cos3 (

2π
7
)−4cos(

2π
7
)sin2 (

2π
7
)

= 1+2cos(
2π
7
)(1+cos2 (

2π
7
)− sin2 (

2π
7
))

= 1+2cos(
2π
7
)2cos2 (

2π
7
) ⩾ 0

puisque cos ( 2π7 ) ⩾ 0. Donc finalement Im(S) ⩾ 0.
2.

S+T+1 =
6
∑
𝑘=0

𝑢𝑘 =
1−𝑢7

1−𝑢
=
1−1
1−𝑢

=⟹ S+T=−1

Puis
ST = (𝑢+𝑢2+𝑢4)(𝑢3+𝑢5+𝑢6)

= 𝑢4+𝑢6+𝑢7+𝑢5+𝑢7+𝑢8+𝑢7+𝑢9+𝑢10

=𝑢4+𝑢6+1+𝑢5+1+𝑢+1+𝑢2+𝑢3, en utilisant 𝑢7 = 1,
= 2+(S+T) = 2+(−1) = 1.

3. Constatons que

cos
2π
7
+cos

4π
7
+cos

8π
7
= Re(S) et sin

2π
7
+sin

4π
7
+sin

8π
7
= Im(S) .

Or, T = S et S+T =−1 donc S+S = −1 = 2Re(S) = −1, donc Re(S) = − 1
2 .

De plus, ST = SS = |S|2 = 1, donc S est de module un. Or, Re(S)2+Im(S)2 = 1,
donc Im(S)2 = 1−Re(S)2 = 1− 1

4 =
3
4 , on déduit que :

Im(S) =
√3
2
.

4.3 Géométrie

Exercice 10 ∣ Condition d’appartenance à un cercle. Soient A et B deux points
distincts du plan, d’affixes respectives 𝑎 et 𝑏. Montrer qu’un point M d’affixe 𝑧 ap-
partient au cercle Γ de diamètre [AB] si et seulement si :

2𝑧𝑧−(𝑎+𝑏)𝑧−(𝑎+𝑏)𝑧+𝑎𝑏+𝑎𝑏 = 0.

Solution (exercice 10) L’appartenance au cercle en question s’exprime à
l’aide de l’affixe du centre et d’un module. L’affixe du centre du cercle est 𝑎+𝑏

2 , et
la distance d’un pointM(𝑧) au centre est

|𝑧−
𝑎+𝑏
2

| .

Ainsi, la condition d’appartenance au cercle est la suivante :

M(𝑧) ∈ Γ ⟺ |𝑧−
𝑎+𝑏
2

| =
|𝑏 −𝑎|
2

⟺ |𝑧−
𝑎+𝑏
2

|
2
=
|𝑏−𝑎|2

4
élévation au carré

⟺ (𝑧−
𝑎+𝑏
2

)(𝑧−
𝑎+𝑏
2

) =
1
4
(𝑏 −𝑎)(𝑏 −𝑎)

⟺ (2𝑧−𝑎+𝑏)(2𝑧−𝑎+𝑏) = (𝑏−𝑎)(𝑏 −𝑎)

⟺ (2𝑧−𝑎−𝑏)(2𝑧−𝑎−𝑏) = (𝑏−𝑎)(𝑏−𝑎)

⟺ 4|𝑧|2−2𝑧𝑎𝑏−2𝑧𝑏−2𝑎𝑧+ |𝑎|2+𝑎𝑏−2𝑏𝑧+𝑏𝑎+|𝑏|2

= |𝑏|2+|𝑎|2−𝑏𝑎−𝑏𝑎.
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En simplifiant et en divisant par deux, on trouve la condition de l’énoncé :

2𝑧𝑧−(𝑎+𝑏)𝑧−(𝑎+𝑏)𝑧+𝑎𝑏+𝑎𝑏 = 0 .

4.4 Résolution d’équations

Exercice 11 ∣ Résoudre dans ℂ les équations suivantes.

1. (𝑧+1)2+(2𝑧+3)2 = 0,
2. 2𝑧2(1− cos(2θ))−2𝑧sin(2θ)+1 = 0 avec θ ∈ ℝ.

Solution (exercice 11)
1. On reconnaît un trinôme :

(𝑧+1)2+(2𝑧+3)2 = 0⟺𝑧2+2𝑧+1+4𝑧2+12𝑧+9 = 0⟺5𝑧2+14𝑧+10 = 0.
Le discriminant vautΔ= 142−4×5×10 = 4(49−50) = −4. Les solutions sont
donc 𝑧1 = −14−2i

10 = −7−i
5 et 𝑧2 = −7+i

5 .

Ainsi, 𝒮={
−7− i
5

,
−7+ i
5

}.

2. on fait deux cas, car le coefficient du 𝑧2 peut s’annuler.
• Si 1−cos(2θ) = 0 ⟺ cos(2θ) = 1 ⟺ ∃𝑘 ∈ℤ,2θ = 2𝑘π ⟺ ∃𝑘 ∈ℤ,θ =

𝑘π.
On a alors sin(2θ) = 0, et on doit donc résoudre : 0+0+1 = 0, ce qui est
impossible. Donc𝒮1 =∅.

• Si 1−cos(2θ) = 0 ⟺ ∀𝑘 ∈ℤ,θ ≠ 𝑘π.
C’est une équation du second degré en 𝑧, on calcule donc le discriminant
et on obtient

Δ= 4sin2 (2θ)−8(1−cos(2θ))
= 4(2sin(θ)cos(θ))2−8×2sin2 (θ)
= 16sin2 (θ)(cos2 (θ)−1)
= −16sin4 (θ).

Ainsi Δ < 0 et √−Δ = 4sin2 (θ). On obtient alors 𝑧1 =
2sin(2θ)+4i sin2 (θ)

4×2sin2 (θ) =
1
2 (

1
tanθ + i ) en utilisant le fait que sin(2θ) = 2cos(θ)sin(θ). Et les racines

étant alors complexes conjuguées, on obtient : 𝑧2 = 1
2 (

1
tanθ − i ). Ainsi

𝒮={
1
2
(

1
tanθ

− i ) ,
1
2
(

1
tanθ

+ i )} .

Exercice 12 ∣ Résoudre dansℂ les équations suivantes. Pour l’ordre 2, on essaiera
les deuxméthodes (avec la formealgébrique et la forme exponentielle).Dans les autres
cas, on fera appel à la forme exponentielle.

𝑧2 = i1. 𝑧3 = i2. 𝑧4+4 = 03.

𝑧2 = 24+10i4. 𝑧4 = j .5.

Solution (exercice 12)
1. • [Méthode forme exponentielle] Comme 0 n’est pas solution, on

cherche les solutions 𝑧 sous la forme exponentielle 𝑧 = 𝑟eiθ avec 𝑟 > 0
et θ ∈ ℝ.

𝑧2 = i ⟺ 𝑟2e2iθ = ei
π
2

⟺ 𝑟2 = 1, ∃𝑘 ∈ ℤ, 2θ =
π
2
+2𝑘π

⟺ 𝑟 = 1, ∃𝑘 ∈ ℤ, θ =
π
4
+𝑘π.

Ainsi,

𝒮= {ei
π
4 ,ei

5π
4 } = {

1+ i
√2

,
−1− i
√2

}.

• [Méthode forme algébrique] On cherche les solutions sous la forme
𝑧 = 𝑎+ i𝑏, avec 𝑎,𝑏 ∈ ℝ. Alors :

𝑧2 = i ⟺ 𝑎2−𝑏2+ i (2𝑎𝑏) = i

⟺ { 𝑎2−𝑏2 = 0
2𝑎𝑏 = 1

⟺
⎧⎪
⎨⎪
⎩

𝑎2−𝑏2 = 0
2𝑎𝑏 = 1
|𝑧|2 = 𝑎2+𝑏2 = 1

⟺
⎧⎪
⎨⎪
⎩

𝑎2 = 1
2

𝑎𝑏 = 1
2

𝑏2 = 1
2

en effectuant la somme des lignes 1 et 3. D’après la deuxième équation,
𝑎,𝑏 sont de même signe. On retrouve bien le même ensemble de solu-
tions :

𝒮= {ei
π
4 ,ei

5π
4 } = {

1+ i
√2

,
−1− i
√2

}.

2. Comme 0 n’est pas solution, on cherche les solutions 𝑧 sous la forme expo-
nentielle 𝑧 = 𝑟eiθ avec 𝑟 > 0 et θ ∈ ℝ.

𝑧3 = i ⟺ 𝑟3𝑒3iθ = ei
π
2

⟺ 𝑟3 = 1, ∃𝑘 ∈ ℤ, 3θ =
π
2
+2𝑘π
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⟺ 𝑟=1, ∃𝑘 ∈ ℤ, θ =
π
6
+
2𝑘π
3

.

Ainsi,

𝒮= {ei
π
6 ,ei

5π
6 ,ei

3π
2 } = {

√3+ i
2

,
−√3+ i

2
,−i}.

3. Comme 0 n’est pas solution, on cherche donc les solutions sous la forme 𝑧 =
𝑟eiθ avec 𝑟 > 0 et θ ∈ ℝ. On obtient alors :

𝑧4 =−4 ⟺ 𝑟4e4iθ = 4eiπ

⟺ 𝑟4 = 4, ∃𝑘 ∈ ℤ, 4θ = π+2𝑘π

⟺ 𝑟 =√2, ∃𝑘 ∈ ℤ, θ =
π
4
+
𝑘π
2
.

Ainsi, les solutions sont : 𝒮= {√2ei
π
4 ,√2ei

3π
4 ,√2e−i

3π
4 ,√2e−i

π
4 }.

4. • [Méthode forme algébrique] Méthode avec la forme algébrique pour
les racines carrées d’un nombre complexe. On cherche donc 𝑧 sous la
forme 𝑧 = 𝑥+ i𝑦. On obtient donc

𝑧2 = 24+10i ⟺ (𝑥+ i𝑦)2 = 24+10i

⟺ 𝑥2−𝑦2+2𝑥𝑦i = 24+10i ⟺ { 𝑥2−𝑦2 = 24,
2𝑥𝑦 = 10.

Calculons désormais le module de 24+10i .
|24+10i | = 2× |12+5i | = 2×√144+25 = 2√169 = 2×13 = 26.

Ainsi :

𝑧2 = 24+10i ⟺
⎧⎪
⎨⎪
⎩

𝑥2−𝑦2 = 24,
2𝑥𝑦 = 10,

𝑥2+𝑦2 = 26.
En additionnant les lignes (1) et (3), on déduit 2𝑥2 = 50 soit 𝑥 = ±5. En
formant (3)−(1) on obtient 𝑦2 = 1 soit 𝑦 =±1. En tenant compte de (2) on
trouve (𝑥,𝑦) = (5,1) ou (𝑥,𝑦) = (−5,−1). Inversement, ces deux couples
sont bien solution du système initial.
Ainsi, les solutions sont 𝒮= {−5− i ,5+ i }.

• [Méthode forme exponentielle] On commence par essayer d’appli-
quer la méthode du cours et on cherche donc à mettre 24+10i sous forme
exponentielle. On ne trouve pas de forme exponentielle simple, cette mé-
thode n’est pas applicable.

5. 0 n’est pas solution, on cherche donc les solutions 𝑧 sous la forme 𝑧 = 𝑟eiθ

avec 𝑟 > 0 et θ ∈ ℝ. On obtient
𝑧4 = j ⟺ 𝑟4e4iθ = j

⟺ { 𝑟4 = 1,
∃𝑘 ∈ ℤ, 4θ = 2π

3 +2𝑘π

⟺ { 𝑟 = 1,
∃𝑘 ∈ ℤ, θ = π

6 +
𝑘π
2 .

Ainsi, 𝒮= {ei
π
6 ,ei

2π
3 ,ei

−5π
6 ,ei

−π
3 }.

Exercice 13 ∣ Soit 𝑛 ∈ℕ⋆. Résoudre dans ℂ les équations suivantes et mettre les
solutions sous forme exponentielle.

𝑧𝑛 = 1,1. 𝑧𝑛 = (𝑧−1)𝑛,2. (𝑧+1)𝑛 = (𝑧−1)𝑛.3.

Solution (exercice 13)
1. D’après le cours, l’ensemble des solutions (cherchées sous forme trigonomé-

trique) est : 𝒮= {e
2i𝑘π
𝑛 |𝑘 ∈ J0 , 𝑛−1K}.

2. Onpeut tout de suite remarquer que 𝑧 = 1n’est pas solution. On obtient alors
pour tout 𝑧 ≠ 1, en utilisant la question précédente,

𝑧𝑛 = (𝑧−1)𝑛 ⟺ (
𝑧

𝑧−1
)
𝑛
= 1

⟺ ∃𝑘 ∈ {0,…,𝑛−1},
𝑧

𝑧−1
= e

2i𝑘π
𝑛

⟺ ∃𝑘∈ {0,…,𝑛−1}, 𝑧 = e
2i𝑘π
𝑛 (𝑧−1).

Si 𝑘 = 0, 𝑧 = 𝑧−1 n’a pas de solution. Ainsi, on peut prendre 𝑘 ∈ {1,…,𝑛−1}.
On obtient alors

𝑧𝑛 = (𝑧−1)𝑛 ⟺ ∃𝑘∈ {1,…,𝑛−1}, 𝑧(1−e
2i𝑘π
𝑛 ) = −e

2i𝑘π
𝑛

⟺ ∃𝑘∈ {1,…,𝑛−1}, 𝑧 =
−e

2i𝑘π
𝑛

e i𝑘π
𝑛 ×(−2i sin (𝑘π𝑛 ))

⟺ ∃𝑘 ∈ {1,…,𝑛−1}, 𝑧 = e
i𝑘π
𝑛

−i
2sin (𝑘π𝑛 )

=
1

2sin (𝑘π𝑛 )
ei

𝑘π
𝑛 + 3π

2 .

Donc on a : 𝒮={ 1
2sin ( 𝑘π𝑛 )

ei
𝑘π
𝑛 + 3π

2 |𝑘 ∈ J1 , 𝑛−1K}

3. Comme dans la question précédente, on cherche à se ramener à la première
question.
• Comme 1 n’est pas solution de l’équation, on peut supposer que 𝑧 ≠ 1.

Ainsi, on peut bien diviser par (𝑧−1)𝑛 qui est bien non nul. Ainsi, on a

(𝑧+1)𝑛 = (𝑧−1)𝑛 ⟺ (
𝑧+1
𝑧−1

)
𝑛
= 1.
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D’après la première question, on a :

(𝑧+1)𝑛 = (𝑧−1)𝑛 ⟺ ∃𝑘∈ {0,…,𝑛−1},
𝑧+1
𝑧−1

= e
2i𝑘π
𝑛

⟺ ∃𝑘∈ {0,…,𝑛−1}, 𝑧(1−e
2i𝑘π
𝑛 ) = −e

2i𝑘π
𝑛 −1.

Ici, il faut faire attention car onnepeut JAMAISdiviser par unnombre sans
vérifier qu’il est bien non nul. Or on a :

e
2i𝑘π
𝑛 −1 = 0 ⟺ e

2i𝑘π
𝑛 = 1

⟺
2𝑘π
𝑛

= 2𝑘′π

⟺ 𝑘=𝑛𝑘′

avec 𝑘′ ∈ ℤ. Or 𝑘 ∈ J0 , 𝑛−1K donc le seul 𝑘 qui vérifie cela est 𝑘 = 0.
⋄ Pour 𝑘 = 0, on obtient : 0 = 2 donc il n’y a pas de solution pour 𝑘 = 0.
⋄ Pour 𝑘 ≠ 0, à savoir pour 𝑘 ∈ J1 , 𝑛−1K, on sait que 1− e

2i𝑘π
𝑛 ≠ 0 et on

peut donc bien diviser. On obtient

𝑧 =
e
2i𝑘π
𝑛 +1

e 2i𝑘π
𝑛 −1

=−i
1

tan (𝑘π𝑛 )
en utilisant la méthode de l’angle moitié.

• Conclusion : 𝒮={𝑧 ∈ ℂ |∃𝑘 ∈ J1 , 𝑛−1K, 𝑧 = −i
1

tan (𝑘π𝑛 )
} .

Exercice 14 ∣ BOMB Soit φ ∈ ]−π
2 ;

π
2 [ fixé. On veut résoudre l’équation :

(E) (1+ i𝑧)3(1− i tanφ) = (1− i𝑧)3(1+ i tanφ).

1. Montrer que si 𝑧 est solution de (E) alors |1− i𝑧| = |1+ i𝑧|. En déduire que 𝑧 est
réel.

2. Posons 𝑧 = tanθ. Justifier ce changement d’inconnue, puis résoudre (E).

Solution (exercice 14)
1. Soit 𝑧 une solution, alors passons au module : |1+ i𝑧|3 1

|cosφ| = |1− i𝑧|3 1
|cosφ|

puisque 1+ tan2 = 1
cos2 . Donc en multipliant par |cosφ| et en utilisant la po-

sitivité des modules, on obtient : |1+ i𝑧| = |1− i𝑧|. Élevons ceci au carré,
on a alors :

|1+ i𝑧| = |1− i𝑧|
⟺ |1+ i𝑧|2 = |1− i𝑧|2

⟺ (1+ i𝑧)(1− i𝑧) = (1− i𝑧)(1+ i𝑧)
⟺ 1− i𝑧+ i𝑧+ |𝑧|2 = 1− i𝑧+ i𝑧+ |𝑧|2

⟺ 𝑧=𝑧.
Donc 𝑧 ∈ ℝ.

2. La fonction tan réalise une bijection de ]−π
2 ,

π
2 [ dans ℝ et nous avons montré

que 𝑧 est réel. Posons dès lors, puisque 𝑧 ∈ ℝ, 𝑧 = tanθ et résolvons l’équation
ci-dessous en θ ∈ ]−π

2 ,
π
2 [ :

(1+ i tanθ)3(1− i tanφ) = (1− i tanθ)3(1+ i tanφ).
Elle est équivalente à

(
1+ i tanθ
1− i tanθ

)
3
=
1+ i tanφ
1− i tanφ

,

ou encore, en multipliant par cosθ, cosφ, au numérateur et dénominateur,

(
cosθ+ i sinθ
cosθ− i sinθ

)
3
= (

eiθ

e−iθ
)
3

= e6iθ

=
cosφ+ i sinφ
cosφ− i sinφ

=
eiφ

e−iφ
= e2iφ

Donc on est amené à résoudre en θ ∈ ]−π
2 ,

π
2 [ :

e6iθ = e2iφ.
D’où 6θ = 2φ+ 2𝑘π avec 𝑘 ∈ ℤ, i.e. θ = φ+𝑘π

3 . On ne garde ensuite que les
solutions dans ]−π

2 ,
π
2 [, l’ensemble des solutions est

{tan(
φ+𝑘π

3
) ,

φ+𝑘π
3

∈ ]−
π
2
,
π
2
[}.

4.5 Trigonométrie

Exercice 15 ∣ Linéarisation Linéariser les expressions suivantes.

sin5𝑥,1. sin3𝑥cos2𝑥,2. cos6𝑥, sin6𝑥,3.

sin4𝑥cos3𝑥,4. sin4𝑥cos4𝑥.5.

Solution (exercice 15)
1. On utilise la formule d’EULER, puis on développe grâce à la formule du bi-

nôme de NEWTON. Il suffit ensuite de rassembler les exponentielles conju-
guées, et d’appliquer à nouveau la formule d’EULER dans l’autre sens.

sin5𝑥 = (
ei𝑥−e−i𝑥

2i
)
5

=
1
32i

(e5i𝑥−5e4i𝑥e−i𝑥+10e3i𝑥e−2i𝑥−10e2i𝑥e−3i𝑥+5ei𝑥e−4i𝑥−e−5i𝑥)
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=
1
32i

(e5i𝑥−e−5i𝑥−5(e3i𝑥−e−3i𝑥)+10(ei𝑥−e−i𝑥))

=
1
32i

(2i sin(5𝑥)−5(2i sin(3𝑥))+10(2i sin(𝑥))) =
1
32i

(2i sin(5𝑥)−10𝑖sin(3𝑥)+20𝑖sin𝑥) .

On obtient finalement : sin5𝑥 = sin(5𝑥)
16 − 5

16 sin(3𝑥)+
5
8 sin𝑥 .

2. Attention de ne pas linéariser séparemment les deux termes! Il faut ici déve-
lopper toutes les exponentielles, avant de repasser aux cosinus et sinus.

sin3𝑥cos2𝑥

= (
ei𝑥−e−i𝑥

2i
)
3

(
ei𝑥+e−i𝑥

2
)
2

=
−1
8𝑖

×
1
4
×(e3i𝑥−3ei𝑥+3e−i𝑥−e−3i𝑥) (e2i𝑥+2+e−2i𝑥)

=
−1
32i

(e5i𝑥+2e3i𝑥+ei𝑥−3𝑒3i𝑥−6ei𝑥−3e−i𝑥+3ei𝑥+6e−i𝑥

+3e−3i𝑥−e−i𝑥−2e−3i𝑥−e−5i𝑥)

=
−1
32i

(e5i𝑥−e−5i𝑥−(e3i𝑥−e−3i𝑥)−2(ei𝑥−e−i𝑥))

=
−1
32i

(2i sin(5𝑥)−2i sin(3𝑥)−4i sin𝑥) .

On obtient : sin3𝑥cos2𝑥 =− sin(5𝑥)
16 + sin(3𝑥)

16 + sin𝑥
8 .

3. On obtient : cos6𝑥 = cos(6𝑥)
32 + 3cos(4𝑥)

16 + 15cos(2𝑥)
32 + 5

8 .

4. On obtient : sin6 (𝑥) = − cos(6𝑥)
32 + 3

16 cos(4𝑥)−
15
32 cos(2𝑥)+

5
16 .

5. Onobtient : sin4 (𝑥)cos3 (𝑥) = 1
26 (cos(7𝑥)− cos(5𝑥)−3cos(3𝑥)+3cos(𝑥)) .

6. On obtient : sin4 (𝑥)cos4 (𝑥) = 1
27 (cos(8𝑥)−4cos(4𝑥)+3) .

Exercice 16 ∣ Antilinéarisation

1. Exprimer en fonction des puissances de cos𝑥 et de sin𝑥 : cos(3𝑥) et sin(4𝑥).
2. Exprimer en fonction des puissances de cos𝑥 et de sin𝑥 : cos(5𝑥) et sin(5𝑥). En

déduire la valeur de cos ( π10 ).

Solution (exercice 16)
1. Il s’agit ici d’utiliser la formule de MOIVRE pour exprimer le cosinus comme

la partie réelle d’une exponentielle complexe, et le sinus comme sa partie
imaginaire. Puis on calcule l’exponentielle comme une puissance, en déve-
loppant grâce à la formule du binôme de NEWTON, et on identifie la partie
réelle et la partie imaginaire.

• On a cos(3𝑥) = Re(e3i𝑥). On a de plus :
e3i𝑥 = (ei𝑥)3 ⟺ (cos𝑥+ i sin𝑥)3

= cos3𝑥+3i cos2𝑥sin𝑥−3cos𝑥sin2𝑥− i sin3𝑥.
On a donc cos(3𝑥) = Re(cos3𝑥+3i cos2𝑥sin𝑥−3cos𝑥sin2𝑥− i sin3𝑥) =
cos3𝑥 − 3cos𝑥sin2𝑥, soit, en utilisant sin2𝑥 = 1 − cos2𝑥 :
cos(3𝑥) = 4cos3𝑥−3cos𝑥 .

• De même, on remarque que sin(4𝑥) = Im(e4i𝑥). La même méthode
donne : sin(4𝑥) = 4cos𝑥sin𝑥(cos2𝑥− sin2𝑥) = 4cos𝑥sin𝑥(1−2sin2𝑥) .

2. • On applique la même méthode, et on obtient :
cos(5𝑥) = cos5 (𝑥)−10cos3 (𝑥)sin2 (𝑥)+5cos(𝑥)sin4 (𝑥)
sin(5𝑥) = sin5 (𝑥)−10cos2 (𝑥)sin3 (𝑥)+5cos4 (𝑥)sin(𝑥).

• On commence par exprimer cos(5𝑥) en fonction de cos𝑥 uniquement :
cos(5𝑥) = cos5 (𝑥)−10cos3 (𝑥)(1−cos2 (𝑥)+5cos(𝑥)(1−cos2 (𝑥))2

= 16cos5(𝑥)−20cos3(𝑥)+5.
En prenant 𝑥 = π

10 dans la relation précédente, on a alors :

cos(
5π
10

) = 16cos5 (
π
10
)−20cos3 (

π
10
)+5.

En remarquant que cos ( 5π10 ) = cos (π2 ) = 0, on obtient que cos ( π10 ) est solu-
tion de l’équation :

16X5−20X3+5 = 0 ⟺ X(16X4−20X2+5) = 0.
Ainsi c’est équivalent à :X= 0ou à 16X4−20X2+5 = 0. Comme cos ( π10 ) ≠ 0,
on doit donc résoudre : 16X4−20X2+5 = 0. On pose encore Y = X2 afin de
se ramener à une équation du second degré en Y et on obtient : 16Y2 −
20Y+5 = 0. Les solutions sont alors Y = 5−√5

8 ou Y = 5+√5
8 . Ainsi, comme

Y = X2, on a

X=√5−√5
8

ou X=−√
5−√5

8
ou X=√5+√5

8
ou X=−√

5+√5
8

.

Comme π
10 ∈ [0,

π
6 ], on sait, le cosinus étant décroissant sur cet intervalle

que : 0 < √3
2 < cos ( π10 ) < 1. En particulier, il ne peut pas être négatif, donc

cos ( π10 ) vaut√ 5−√5
8 ou√ 5+√5

8 . Or on a :

√4<√5<√9 ⟺ 2< 5−√5< 3

⟺
1
4
<
5−√5

8
<
3
8

⟺
1
2
<√5−√5

8
<

√3

2√2
.
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En particulier, on a :√ 5−√5
8 < √3

2 = cos (π6 ), et donc cos ( π10 ) =√ 5+√5
8 .

Exercice 17 ∣ BOMB Soient 𝑛 ∈ℕ∖{0} et 𝑥 ∈ ℝ. Calculer : ∑𝑛
𝑝=0 cos

2(𝑝𝑥).

Solution (exercice 17) En utilisant les formules d’Euler, nous avons
𝑛
∑
𝑝=0

cos2(𝑝𝑥) =
1
4

𝑛
∑
𝑝=0

(ei𝑝𝑥+e−i𝑝𝑥)2

=
1
4

𝑛
∑
𝑝=0

(e2i𝑝𝑥+e−2i𝑝𝑥+2)

=
1
4
(

𝑛
∑
𝑝=0

e2i𝑝𝑥+
𝑛
∑
𝑝=0

e−2i𝑝𝑥+(𝑛+1))

=
⎧⎪
⎨⎪
⎩

1
4 (

1−e2i (𝑛+1)𝑥
1−e2i𝑥 + 1−e−2i (𝑛+1)𝑥

1−e−2i𝑥 +2(𝑛+1)) si 𝑥 ∉ ℤ,
3(𝑛+1)

4
sinon.

Or, par propriété de la conjugaison, on constate que :

1−e2i (𝑛+1)𝑥

1−e2i𝑥
= (

1−e−2i (𝑛+1)𝑥

1−e−2i𝑥
).

Donc, si 𝑥 ∉ ℕ, on peut finir le calcul en utilisant la technique de l’angle moitié
𝑛
∑
𝑝=0

cos2(𝑝𝑥) =
1
4
(2Re(

1−e2i (𝑛+1)𝑥

1−e2i𝑥
)+2(𝑛+1))

=
1
2
(Re(

ei (𝑛+1)𝑥

ei𝑥
−2i sin((𝑛+1)𝑥)

−2i sin(𝑥)
)+(𝑛+1))

=
1
2
(cos(

𝑛𝑥
2
)
sin((𝑛+1)𝑥)

sin(𝑥)
+(𝑛+1)) .

Exercice 18 ∣ BOMB Soient 𝑛 ∈ℕ et (α,β) ∈ ℝ2. Calculer :

C=∑𝑛
𝑘=0 (

𝑛
𝑘)cos(α+𝑘β),1. S =∑𝑛

𝑘=0 (
𝑛
𝑘)sin(α+𝑘β).2.

Solution (exercice 18) Commençons par calculer
𝑛
∑
𝑘=0

(
𝑛
𝑘
)ei (α+𝑘β),

il suffira ensuite de calculer la partie réelle et imaginaire.
𝑛
∑
𝑘=0

(
𝑛
𝑘
)ei (α+𝑘β) = eiα

𝑛
∑
𝑘=0

(
𝑛
𝑘
)(eiβ)𝑘

= eiα (1+eiβ)𝑛

= eiα (ei
β
2 (2cos(

β
2
)))

𝑛
,

= eiα+𝑛i
β
2 2𝑛 cos𝑛 (

β
2
) .

binôme

angle moitié

On déduit alors les parties réelles et imaginaires,
𝑛
∑
𝑘=0

(
𝑛
𝑘
)cos(α+𝑘β) = Re(

𝑛
∑
𝑘=0

(
𝑛
𝑘
)ei (α+𝑘β))

= 2𝑛 cos𝑛 (
β
2
)cos(α+𝑛

β
2
) ,

𝑛
∑
𝑘=0

(
𝑛
𝑘
)sin(α+𝑘β) = Im(

𝑛
∑
𝑘=0

(
𝑛
𝑘
)ei (α+𝑘β))

= 2𝑛 cos𝑛 (
β
2
)sin(α+𝑛

β
2
) .

4.6 Devoir-maisonLaptop-House

Exercice 19 ∣ Lien forme algébrique et exponentielle On définit les complexes
ci-après : j = ei

2π
3 , 𝑧0 = 1+ i , 𝑧1 = (1+ i )j = 𝑧0× j , 𝑧2 = (1+ i )j 2 = 𝑧0× j 2.

1. Donner l’écriture exponentielle de 𝑧0,𝑧1 et 𝑧2.
2. Donner l’écriture algébrique de j puis celle de 𝑧1.
3. En déduire les valeurs exactes de cos ( 11π12 ) et sin ( 11π12 ).
4. On pose𝑤 =−2+2i .

4.1) Écrire𝑤 sous forme exponentielle.
4.2) Résoudre dans ℂ l’équation (E) ∶ 𝑧3 =𝑤. On recherchera les solutions sous

forme exponentielle puis on reconnaitra 𝑧0,𝑧1 et 𝑧2.

Solution (exercice 19)
1. On a : |𝑧0| =√12+12 =√2.

Ainsi : 𝑧0 =√2( 1
√2

+ i 1
√2
) =√2(√2

2 + i √2
2 ) = √2ei

π
4 .

En profitant des formes exponentielles à notre disposition :
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𝑧1 = (1+ i )j =√2ei
π
4 ei

2π
3 =√2ei (

π
4+

2π
3 ) = √2ei

11π
12

𝑧2 = (1+ i )j 2 =√2ei
π
4 ei

4π
3 =√2ei (

π
4+

4π
3 ) = √2ei

19π
12

2. On a : j = cos ( 2π3 )+ i sin (
2π
3 ) = −

1
2
+ i

√3
2

. Aussi,

𝑧1 = (1+ i )j

= (1+ i )(−
1
2
+ i

√3
2
)

= −
1
2
+ i

√3
2

−
1
2
i −

√3
2

= −
1+√3

2
+ i

√3−1
2

3. D’après la question 1, on a :

𝑧1 =√2ei
11π
12 =√2cos(

11π
12

)+ i√2sin(
11π
12

) .

Or, on a obtenu que 𝑧1 =− 1+√3
2 + i √3−1

2 dans la question précédente.

Ainsi : √2cos ( 11π12 )+ i√2sin ( 11π12 ) = − 1+√3
2 + i √3−1

2 . Par identification des
parties réelles et imaginaires :

⎧
⎨
⎩

√2cos ( 11π12 ) = − 1+√3
2

√2sin ( 11π12 ) =
√3−1
2 ,

soit :
⎧
⎨
⎩

cos ( 11π12 ) = −√2+√6
4

sin ( 11π12 ) =
√6−√2

4 .

4. 4.1) On a : |𝑤| =√(−2)2+22 =√8= 2√2.
Puis : 𝑤 = 2√2(−√2

2 + i √2
2 ) = 2√2ei

3π
4 .

4.2) 0 n’est pas solution de (E). Posons alors 𝑧 = ρe𝑖θ, où ρ > 0 et θ ∈ [0,2π[.
On a :
(E) ⟺ 𝑧3 =𝑤

⟺ ρ3e𝑖3θ = 2√2e𝑖
3π
4

⟺
⎧
⎨
⎩

ρ3 = 2√2
∃𝑘 ∈ ℤ, 3θ = 3π

4 +2π
⟺

⎧
⎨
⎩

ρ=√2
∃𝑘 ∈ ℤ, θ = π

4 +
2𝑘π
3 .

0 ⩽
π
4
+
2𝑘π
3

< 2π

⟺ −�
π
4
⩽
2𝑘�π
3

<
7�π
4

⟺ −
3
8
⩽ 𝑘 <

21
8
.

Comme − 1
2 ⩽ − 3

8 ⩽ 0 et 2 < 21
8 < 3, on obtient alors les trois solutions

en prenant 𝑘 = 0, 𝑘 = 1 puis 𝑘 = 2. On retrouve alors les formes expo-
nentielles de 𝑧0, 𝑧1 et 𝑧2. Ainsi :

𝒮= {𝑧0,𝑧1,𝑧2}
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II Deuxième partie

Analyse


