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o TN (X)W Nombres Complexes

Définition de C et forme algé- Résumé & Plan
brique.....ccovieiiiiiiiiiiiaan Lobjectif de ce chapitre est de défi-
Forme exponentielle............ nir un nouvel ensemble C permet-
Application des nombres tant de faciliter les calculs de trigo-
complexes en trigonométrie.... nomeétrie par exemple.

EXErCiCeS «vvvuuerriennnnnninnns

L'histoire des nombres complexes commence vers le milieu
du XV ieme siecle avec une premiére apparition en 1545,
dans l'ceuvre de CARDAN, d'une expression contenant la
racine carrée d’'un nombre négatif, nombre qu'il appelle

« sophistiqué ». C'est Raphaél BOMBELLI qui met en place
les regles de calcul sur ces quantités que l'on appelle alors
«impossibles » avant de leur donner le nom d’imaginaires.

— Le saviez-vous ?

® Les énoncés importants (hors définitions) sont indiqués par un V9.

® Les énoncés et faits a la limite du programme, mais trés classiques parfois, seront
indiqués par le logo [H.P] . Si vous souhaitez les utiliser a un concours, il faut donc
en connaitre la preuve ou la méthode mise en jeu. Ils doivent étre considérés comme
un exercice important.

® Les preuves déja tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent étre lues uniquement par les curieuses et curieux. Nous n'en
parlerons pas en cours.

n DEFINITION DE C ET FORME ALGEBRIQUE

Les nombres réels, comme leur nom I'indique, sont issus du « monde réel ». Par
exemple les entiers servent a compter des unités, les nombres décimaux et fraction-
naires généralisent ce principe. Pour les irrationnels : par exemple \/E correspond a
lalongueur de la diagonale d'un carré de longueur de c6té 1,  a l'aire du disque de
rayon 1... bref, toutes ces quantités ont une interprétation.

Lintroduction de nombres dits « complexes » comme dans la prochaine définition a
été motivée par plusieurs probléemes.

® La résolution de certaines équations n'admettant pas, a priori, de solutions

réelles, comme par exemple
x2+1=0. (Eq Defi i)

En effet, x* ne peut jamais étre égal a —1. Méme si elle n'admet pas de solution
réelle, on peut en fait définir un ensemble contenant R, et noté C, dans lequel
cette équation admet deux solutions notées i et —i. Cet ensemble sera construit
expres pour cela.

® Engéométrie du plan. Siles réels représententl’ensemble dela droite réelle, alors
les nombres complexes définis plus bas correspondent au plan. On peut considé-
rer les nombres complexes comme une facon synthétique d’écrire I'abscisse et
I'ordonnée de chaque point du plan. Au lieu de travailler avec un couple de réels
(x,y), on utilise la notation x +iy. Le nombre imaginaire i sert a identifier I'or-
donnée. Lavantage d'une telle notation est qu’elle va simplifier les manipulations
géométriques car elle combine deux informations (abscisse et ordonnée) en un
seul nombre.

® Entrigonométrie, au travers de 'exponentielle complexe ', 0 € R, que nous dé-
finirons en fin de chapitre. Les nombres complexes s’inviterent alors dans d’autres
sciences, notamment en Physique ot les physiciens trouverent la encore les com-
plexes comme commodes pour manipuler des signaux périodiques (en électricité
notamment).
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n Généralités

— Définition/Proposition 1| Définition d'un nombre complexe
Il existe un ensemble C contenant R (R < C) dontles les éléments sont appelés les

nombres complexes, et muni de deux opérations d’addition + et de multiplication
x, qui satisfont les propriétés suivantes :
® C contientun élémenti pourlequel: i?=-1.
® [Forme algébrique] Siz € C,alors z peut étre écrit de maniére unique sous
une forme dite algébrique: z=x+iy, xeR, yeR.
On appellera:
o partie réelle de z le réel x noté Re(z),
o partie imaginaire de z le réel y noté Im (z).
¢ Six =0, on dit que z est imaginaire pur (ensemble noté iR).
o Siy=0,z=x€eR.
® Jesopérations + et x de C sont soumises aux mémes régles de calcul que leurs
analogues dans R : pour tous z, z’,z" € C,
o [Associativitéde +] (z+2')+z2"=z+ (2 +Z").
[Associativité de x] (z2')z" =z (Z'Z").
[Commutativité] z+z' =2z'+z, zxz' =2z xz.
[Distributivité] z(z'+z")=(zz')+ (zz").
[Neutres] z+0=0+z=2z, zl=1lz=z.

o
<
v
<

Lexistence de C est admise, des éléments de réponses sont néanmoins donnés ci-
apres. Méme si nous n'insisterons pas trop la-dessus : il ne suffit pas de prétendre
son existence pour qu’il existe, i.e. la phrase « soit C un ensemble contenant R et
possédant un élément i tel que i? = —1 » n'a aucune légitimité mathématique. Pour
définir proprement C, on part d'un ensemble déja connu, R en I'occurence (mais
attention, cet ensemble aussi on ne vous I'a jamais construit!) et on en définit un
autre possédant les propriétés souhaitées, c’est le propos de la prochaine preuve.

Preuve (Eléments sur la construction de C [H.P]) Rappelons que R? = {(x,y)|x € R,y € R},

c’est un ensemble bien défini que nous pouvons utiliser pour construire C. Alors on note C

I'ensemble R* muni des opérations + et x suivantes :

1. [Somme de nombres complexes] V(x,y,x’,y') € R%,

2. [Produitde nombres complexes] V(x,y,x',y') € R*,
x/y). a

Les éléments de C sont plutot représentés de la maniere suivante : 'élément (x, y) est noté

X +1.y, etles propriétés précédentes deviennent :

1. [Somme de nombres complexes] V(x,y,x',y’) € R,
i(y+y'),

2. [Produit de nombres complexes]
i(xy +x'y),

impliquant en particulier que i? = (0,1).(0,1) = (=1,0) en faisant y = 1, ' = 1, x = 0 et

(x,y)+(x,y") = (x+x',y+y'),
(x,).(x",y") = (xx'-yy', xy' +

(x+iy)+(x'+iy)=(x+x")+

Y(x,y,x,y) R, (x+iy).(x'+iy)=xx'—yy'+

x' = 0, c’est-a-dire en notation complexe i* = —1. On a donc construit un élément noté i et
un ensemble C, oi1 cet élément i est une solution dans C de x? +1 = 0. C'est ce qu’on voulait.

Reformulons l'unicité de 1'écriture algébrique (trés importante en pratique) sous
forme d’'une proposition indépendante.

Proposition 1| Unicité de la forme algébrique
Soientz=x+iy,z' =x"+iy' € C. Alors:

x+iy=x'+iyl = x=x'ety=y'".

On dit que 'on peut identifier partie réelle et partie imaginaire dans I'écriture algé-
brique. Les propriétés de la Définition/Proposition 1 permettent de faire toute sorte
de calculs, qui sont donc identiques a ceux menés dans R mais en tenant compte de
la relation i® = —1. Voici quelques exemples.

Exemple 1 Déterminer la forme algébrique des complexes ci-dessous.
1. 2,=3-2i +2+5i,

R4

2. z,=(3-2i)(2+5i),

7

3. z3= (\/g—i)z,

4

4, .Z4 = (1_1)2.

Nous définissions aussi un complexe particulier qui apparait souvent, et dont il faut
connaitre 'expression.

a. Les coordonnées du couple correspondent aux parties réelles et imaginaires de (x +iy)(x'+iy’)
avec la régle de calculi? = —1
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Notation Complexe j

i.

~[S

On note généralement  j = —3 +

Comme nous I'avons déja dit en introduction, les complexes permettent de résoudre
certaines équations dans un ensemble que nous avons crée de toute piece pourl'oc-
casion. Ils permettent aussi de factoriser comme nous allons le constater avec une
nouvelle identité remarquable.

Proposition 2 | Identités « a® + b »
Soient a, b € C. Alors :

a’>—b*>*=(a-b)(a+b), a*+b*=(a-ib)(a+ib).

Preuve

7

La premiere a déja été prouvée, passons a la seconde.

AFFIXE ET INTERPRETATION GEOMETRIQUE D'UN COMPLEXE. Rappelons
que

R* = {(x, ¥)
est 'ensemble des points géométriques du plan : ils possedent une abscisse et une
ordonnée. Un complexe a quant a lui également deux parametres : sa partie réelle et
sa partie imaginaire. Cela nous mene tout droit a la définition suivante.

xeRyeR}

Définition 1| Affixe
Soit M = (x,y) € R?, le complexe z = x +iy € C est appelé affixe associé a4 M. De
maniére analogue, si u = (x,y) est un vecteur de R?, 'élément z = x +iy € C est
appelé affixe de u.

La notion d’affixe permet donc de relier la géométrie du plan dans R* aux com-
plexes.

Exemple2 Soientz =2+i etz =1-2i.Représenter sur la figure ci-contre M(z),
MI(Z/)’ N(Z + Z’), Ml(z)» MZ(_Z)~

Imz

—
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n Conjugué & Module

Le complexe conjugué est un complexe qui interviendra souvent, nous le formali-
sons donc dans une notation.

Définition 2 | Conjugué
Si z € C, on appelle conjuguéde z=x+iyle complexez=x —iy.

Exemple 3 Calculer les conjugués de z,, z,, 23, Z4.

4

Exemple & Sur la figure précédente, ajouter le point M, (z).

Exemple 5 Calculer j? et I'exprimer en fonction de j.

4



BCPST1 € 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

Remarque 1 (Interprétation géométrique du conjugué) Le conjugué de z est
x —1iy, il correspond au symétrique de M par rapport a I'axe (Ox).

Im (z)
M(z)
x i Re(z)
M (Z)

Pour terminer cette section de généralités, on introduit la notion de module, ana-
logue de la valeur absolue pour les réels. Nous l'interpréterons géométriquement
un peu plus tard.

Définition 3 | Module
Si z € C, on appelle module de z le réel positif noté

2] = \/Re (2)? + Im (2)2.

z|, et défini par :

Pour z € R, on retrouve la valeur absolue : siz = x € R, alors  |z| = v/ x2 = |x]|.

Remarque 2 (Interprétation géométrique du module) Le module de z =
x +1iy € C est, rappelons-le, défini par |z| = y/x? + y2. 1l correspond, d’apres
le théoréeme de PYTHAGORE, a la distance entre O et M(z) notée d(O,M(z)).

Im (z)
M(z)
-t
ol
g |
X Re(z)

Exemple 6 Calculer les modules de z,, z,, z3, Z4.

Exemple7 (Lieux géométriques) Soitz, € C,M,(z,) etp € R*.Pour chaque en-
semble ci-dessous, interpréter géométriquement et le représenter sur un dessin.
® B, ={M(z) eCl|z -z =p}.

4
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® B, ={M(z) e C||z -z <p}.

® B; ={M(z)eC||z—-2z]|<p}

LIEN MODULE/ CON]UGUE. Le probleme de la définition précédente est qu'elle
nécessite de connaitre la forme algébrique du complexe afin de pouvoir calculer
son module. Une autre expression est celle présentée ci-apres, elle fait intervenir le
conjugué qui posséde tout un tas de propriétés permettant de gagner en rapidité
dans les calculs. Nous profiterons également dans la suite de cette propriété pour

déduire des propriétés surle module al'aide de celles déja établies sur le conjugué.

( Proposition 3 | Lien module/conjugué

|z = V/zzZ.

Si z € C, alors zz est un réel positif, eton a:

Preuve Notonsx =Re(z)ety =Im(z).Alors:zz = (x+iy)(x—iy) =x*+y*=|z|*=0.En

passant a la racine, on déduit la formule |z| = v/ zz.

Attention Des complexes ne se comparent pas

o

Nous savons toujours comparer deux réels, en revanche, il n’existe pas de moyen
simple de comparer deux complexes! On n’écrira donc jamais &9 des choses du
type «z < z' » avec z, z’ deux complexes.

Plus précisément, on ne peut pas définir sur C de relation d'ordre qui prolonge la relation d'ordre de R. En effet,

supposons qu'une telle relation dordre existe. Alors le complexei est soit positif, soit négatif.
® Sionsupposei =0 alorsi xi =0, donc—1 = 0, ce qui est absurde.

o ® Sionsupposei <0 alorsi xi = 0 également (en multipliant par un nombre négatif, on modifie le sens de
linégalité), donc —1 = 0, ce qui est également absurde.

m Propriétés

Exemple 8 (Technique de 'expression conjuguée (motivation))

® Soitz = x+iy € C tel que z # 0. On souhaite définir le complexe z’ = %, Cest-
a-dire définir la forme algébrique de z’ vérifiantzz' = z'z = 1.

® Pour deviner ladite forme algébrique, on utilise la technique de 1'« expres-
sion conjuguée », c’est-a-dire on multiplie la fraction % =L parz=x-iy.

X+iy
On constate que cette technique fait alors apparaitre un nombre réel au
dénominateur.
7

— Proposition 4 | Parties réelles, imaginaires, conjugué

Soient z,z' € C, et n € Z un entier relatif.

® [Existence d'un élément inverse]
cest-a-dire: 3z'e€C, zz'=zZz=1.
Plus précisément, z' est donné par: =z

Si z # 0, alors z est inversible dans C

= ﬁ On le note en général 1 ou

encorez . (vous ne devez pas apprendre par coeur la formulez' = % = &, mais la retrouver
au cas par cas a laide de la technique de l'expression conjuguée)
® [R-linéarité de la partie réelle/imaginaire]
VA, pue R, Re(Az+puz')=ARez+uRez,
Im(Az+pz') =Almz+puImz'.
® [Conjugué et somme/produit/quotient]
zn =7z".

VAER, Az=AZ. Side plus z’' #0, (3’):
z

z2+2'=z+2, zxz =zZx2,

N[ wl

e [Involutivité] z=z.
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o Attention Exemple 9 (Forme algébrique d’'un quotient) Calculer la forme algébrique
Il est faux de dire que pour tout A e C: des complexes ci-apres. On note z = x +iy € C un complexe quelconque.
Re(Az) =ARe(z), Im(Az)=AIm(z). 1. zZ5= %,
Pour une raison trés pragmatique déja : une telle formule ne peut étre vraie car o’

une partie réelle ou imaginaire est un nombre réel.

Preuve Onnoteraz =x+iy,z' = x’' +iy’ dans toute cette preuve.

® On vérifie simplement que l'expression de 1 = % trouvée dans I'exemple précédent _ 1
. z Iz 2. 26 = T Ao
convient : (4-1)(3+2i)
o’ 7
® Soient A, p € R. Alors:
Az+pz =A(x+iy)+p(x' +iy)=Ax+px")+i Ay +wy'). 3 7 = 22
On tire alors directement les formules : ) 7Tz
Re(Az+pz')=ARez+pnRez’, Im(Az+pz')=Almz+plmz'. e

® Ona:

z+z2' =x+x'+i(y+y), zxz' =xx'-yy' +i(xy +x'y).
Donc:

z+zZ =x+x' —i(y+y), zxz =xx' —yy' +i(xy' +x'y).
On vérifie alors sans difficulté que :

z+z =x—iy+x' —iy =z+2, zxz' =(x-iy)(x' -iy')=zx2z.
La formule de conjugaison de z" s’en déduit alors par récurrence évidente. Pour Az, on
écrit simplement Az = Ax +i(Ay), donc Az = Ax —i(Ay) = Ax +i(—Ay), d'ou l'on tire la
formule. Enfin, reste a calculer le conjugué d'un quotient, pour cela il suffit d’établir que
@ = %, il suffira ensuite d’utiliser le conjugué d'un produit pour conclure.

1 _ _x _:_Y Iy _x 4 ’ A
Rappelons que ; = Zaz Tlme donc (Z) =2y i D’autre part, on vérifie sans
peine que £ = x_liy = hp +i xzyTyz en utilisant la technique de I'expression conjuguée.

® Z=x-iy=x+iy==z.

Dans la preuve précédente on a utilisé une technique classique pour obtenir I'in-
verse d'un nombre complexe écrit sous forme algébrique. On peut la résumer
comme Ssuit.

Proposition 5 | Caractérisation des réels/imaginaires purs

Méthode (ALG)51  (Quotient sous forme algébrique : expression conju- Soient z,z' € C deux nombres complexes.
guée) Pour deuxréels x,y eR, etz =x+iy €C, ° Re(z)=l(z+2) Im(z):i(z—z)
—j —j _ 2 ’ 2i '
1 = *-1y _* ly:i.pi —y_ ® zeER — z=23, ZE€EIR <— z=-z.
x+iy  (x+ip)x-iy)  lel* 1zl {laf?

Remarque 3 (Interprétation géométrique) Interprétons géométriquement

Il faut parfaitement savoir appliquer cette méthode sur des exemples. . o
les formules de la proposition précédente.
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Im (z)

Re(z)

Preuve
o

N

Les propriétés du module sont similaires a celles déja établies dans le Cha-
pitre (ALG) 2 concernant la valeur absolue, a 'exception des propriétés concernant
les majorations. Car rappelons le, on ne peut comparer deux nombres complexes.

Proposition 6 | Module
Soient z,z' € C.

® [Séparation] |z|=0 < z=0.
® [Symétrie] |-z|=|z|, |z|=]z|.

® [Produit/quotient] |z xz'|=|z| x|z'|. De plussiz’ # 0, alors:

z|_ |z

2| 12|

® [Développement du module au carré]

lz+2'|? = |z|2+2Re(z?) +12']2.

® [Majoration partie réelle / imaginaire]

[Rez| < |z|,

Imz| < |z|.

Preuve
o
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Laformule de développement du carré du module d'une somme est trés importante

en pratique.

o

Méthode (ALG) 5.2 (Développement d’'une norme de somme au carré) Soit
|z+2'|? avec 2,2’ € C.

1. Ecrire la quantité en fonction du conjugué: |z+2'|> = (z+2')(z +2).

2. Développer.

Attention

On oublie la formule archi-fausse suivante :
|z +2'|2[#]|2|* +|2'|* + 2|2] | 2] .

Exemple 10 (Identité du parallélogramme) Soient z,z’' € C, alors:
lz+2'|2+|z-2'|* = 2(|z|2 + |z’|2).

4

Remarque 4 (Interprétation géométrique) Linterprétation géométrique est
la suivante : la somme des carrés des longueurs des diagonales d'un parallélo-
gramme est la somme des carrés des longueurs des cotés. Ce résultat peut se
retrouver avec le théoréme de PYTHAGORE dans le cas d'un rectangle.

Im (z)
Re(z)
Theoréme 1| Inégalité triangulaire
Soient z,z' € C. Alors: ||z|—|Z/|| < |z+ 72| <|z| +|Z/|.

Remarque 5 (Interprétation géométrique) Interprétons géométriquement
I'inégalité triangulaire.

Im(z)

Re(z)

Comme dans le cas de la valeur absolue, la majoration de droite sert beaucoup plus
souvent que la minoration de gauche, mais les deux sont bien a connaitre.

Preuve
1. Commencons par montrer que |z + 2’| < |z| + |2z'|. Nous allons montrer que I'inégalité
élevée au carré est vraie.

4
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2. De maniere analogue, on montre ensuite ||z| — |z'|| < |z + Z/|.
On admet que le cas d’égalité.

COMPLEXES DE MODULE 1. Les complexes de module 1, c’est-a-dire situés a dis-
tance 1 de O, jouissent de propriétés intéressantes, les voici.

— Définition 4 | Complexes de module 1
On appelle ensemble des complexes de module 1 'ensemble U défini par :

U={zeC]||z|=1}.

— Proposition 7 | Propriétés des complexes de module 1
Soient z,z' € U. Alors :
® [Stabilité] =zz' €U,

® [Inverse] l=7Z

Ley,
Z

Preuve
°

n FORME EXPONENTIELLE

Nous avons vu que C et R? trés proches et s'identifient. De la méme maniére qu'un
point de R? peut étre repéré par ses coordonnées cartésiennes et polaires, un com-
plexe peut étre écrit en forme algébrique ou comme nous allons le voir de suite sous
forme trigonométrique.

m Exponentielle imaginaire

Avant de discuter de la forme trigonométrique des J
complexes, nous allons avoir besoin de présen-
ter un complexe particulier : 'exponentielle ima-
ginaire. /

Définition 5| Nombre complexe e'® 2

Pour tout 0 € R, on appelle exponentielle ima-
ginaire de 0 € R, notée e'® le nombre com-
plexe de forme algébrique :

el® = cosO +i sin®.

Exemple 11

1. Ona:

4

I
(¢)
|

T
w
g
el

j=—3+i

ix
3

2. Calculer la forme algébrique de zy = €'3.
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Exemple 12 Placer sur le cercle trigonométrique les points d’affixes suivantes :
2in 7in

— il _ il _ 2 _ dz
zy=¢€", z,=¢€'2, zz=e3, z =e4.

~.

/ N

AN /

~_ |

Proposition 8 | Lien avec le cercle trigonométrique
Notons € < R? le cercle trigonométrique. Alors :

€ ={M(z) eR?|ze U} = {M(e'?)| 0 € [0,2n[}.

Preuve  (Point clef — Définition de sin, cos)
Soit z = x +iy € C. Alors |z| = 1 donc |z|* = x® + y* = 1, Clest-a-dire M(x, y) est un point du
cercle trigonométrique. Il existe donc 0 € R de sorte que
x =cos0, y=sinb.
Du c6té de z, nous avons alors:  z = cos0+isinf = e'®.

Pour I'instant, e'® n'est donc qu’une notation! Les propriétés de cette notation, qui
permettront d’effectuer des calculs, sont données dans la proposition suivante. Mais
si'on utilise une notation exponentielle c’est qu’elle va stirement hériter des mémes
propriétés que I'exponentielle réelle connue depuis le lycée. Les voici.

— Proposition 9 | Propriétés de 'exponentielle imaginaire
Soient 6,0’ € R deux réels. Alors :

o | =1, E=e’ie:i

eif”
® ™2 _j o eim—_,
o V(6,0)eR:, €0 = a0l i0-0) _ o
® o e=1 3Jkez, 6=2kn.

o Plus généralement : el® = el? — Jke Z, 0=0"+2km.
® [Formulede Moivre] V0eR, VYnez, e"%=(ef)".

Remarque 6 Laformule de MO1VRE signifie en d’autres termes que :
(cosB+1sinB)" = cos(nb) +1i sin(n6).
Elle aura de précieuses applications en trigonométrie.

Remarque 7 (Et pour 'exponentielle réelle?) Vous saviez déja que pour tous
b _ b b _ e

a,beR, e“"7=ee’, V=%,

Les propriétés du-dessus sont donc parfaitement analogues. De plus,

b

et=e’ <= a=»b

dans le monde réel. En revanche, pour des complexes, il ne faut pas oublier
d’ajouter +2km, k € Z apres b.

Preuve
[ I 4

® Conséquence directe des valeurs:  cos(%)=0, sin(%) =1, cos(n) = -1, sin(m) = 0.
o

.()"
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® Montrons le cas n € N par récurrence.

7

Soit n < 0 désormais. C’est dans ce cas un simple jeu d’écriture en cherchant a utiliser
les propriétés précédentes :
I A (i)_" N

i0 — -nig
€ car —n>0 €

-~
car —n>0

Exemple 13 Calculerj® et 1+j +j2.

Les formules ci-apres paraissent anecdotiques au premier abord, mais elles seront
d’intérét capital pour toutes les applications des nombres complexes en trigonomé-
trie.

Proposition 10 | Formules ’EULER
Soit 0 € R. Alors :

i0 -i0 i0 -i0
e " +e : . e —e€ :
cos§ = ———— =Re(e'?), sin0=—— =Im(e'?).
2 2i
Preuve  Nous avons déja établi que :

VzeC, Re(z)= %(z +z), Im(z)= %(z—i).

Soit 6 € R. En prenant z = e'% = cos0 +1 sin0, on obtient les formules d’EULER.

Exemple 14 Retrouver les formules de linéarisation du Chapitre (ALG) 3 sur
cos? 0 et sin? 0.
[ ] ”
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ﬂ Forme exponentielle

Nous avons déja rencontré un complexe j, qui s’écrivait sous deux formes.

® En effet, nous avons établi quej = — . On a vu également que I'écri-
ture exponentielle avait été bien pratique dans certains calculs (celui de j* no-
tamment, bien plus que la forme algébrique).

® On peut donc se demander a présent : « est-ce que tout complexe peut s’écrire
sous la forme e'® avec 6 € R?». La réponse est :

4

1 \/5 2in
= - = 3
2+12 e

® Enrevanche, siz # 0, le complexe é est bien de module 1:

Ces constats nous menent tout droit a la définition suivante.

— Définition/Proposition 2 | Argument d’'un nombre complexe (non nul) 40—
® Soit z un nombre complexe non nul. Alors :

iEEU, donc: 30€R, £ it
2| |z|
® Un tel réel O est appelé un argument de z. Lensemble des autres arguments
dezestalors: {0+2kn|keZ}.
® ][] existe un unique argument dans [0, 2n[, on 'appelle en général largument
principal de z.

Parfois certaines références considerent | — , 1] comme intervalle pour

Note , -
l'argument principal

Notation

Pour dire que 0 est un argument de z, onnote: argz =0 [2x]. Lire «un argu-
ment de z est ® modulo 27 », c’est-a-dire a « 27-pres ».

Remarque 8 (Interprétation géométrique) Interprétons géométriquement
les quantités points d’affixe z = x +iy € C, é—l et 'angle 0 sur un méme dessin.
Rajoutez sur le dessin ci-dessous Ii_l et langle®.

Im (z)

X Re(z)

— Définition 6 | Forme exponentielle
Soit z un nombre complexe non nul, dont 0 est un argument.

® Lécriture z=|z|e!® estappelée forme exponentielle de z.
® [écriture =z =|z|(cosO+isinO) estappelée forme trigonométrique de z.

Méthode (ALG) 5.3 (Mettre sous forme exponentielle un nombre complexe)
® Soit z # 0.

1. Calculer |z|, puis mettre |z| en facteur dans z.

2. Chercherfe [0,2n[telque: £ =e'% ie. tel que

|z]
Re(z) _Im(z)

cos(0)=———=, sin(0)=
|z]

|2|
La forme exponentielle est alors :  z = |z|e'®. Il arrive parfois que 'angle 6
ne soit pas explicite.

® [Produit/Quotient] Pour les produits et quotients de deux complexes, il
est inutile de commencer par le mettre sous forme algébrique avant de trou-
ver la forme exponentielle. En effet, notons z;, = |z,|e!® £ 0 (8, € R), z, =

|z,| 1% £ 0 (0, € R). Alors :
2 ice,-0,)

i0+0,) A _ 12l
Z, |z

212, = |z1| |z, €

Exemple 15 Mettre sous forme exponentielle les complexes suivants.
1. 1+i,1-1i,

R4
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2. 1-iv/3,

w
-
*

S IE

4 (\/§—i)n,n€l\l.

Exemple 16 Donner un argument des complexesi, —i, 2i. Cette question revient
a déterminer la forme exponentielle

P4

Exemple 17 (Lien entre les deux formes et application trigonométrique)

Donner les formes algébriques et exponentielles de 1_11_\‘/5 En déduire

cos

|2

1

N

) sin (%)



BCPST1 € 2025-2026

14

W/ Lycée Michel MONTAIGNE — Bordeaux

Méthode (ALG) 5.4 (Complexe sour forme « quasi-exponentielle ») Soit z # 0

tel que z = Ke'®, avec 0 € R.

® SiK e R (puisqueK nest pas supposé positif, ce west a priori pas la forme exponentielle de
z) alors, pour mettre z sous forme exponentielle, on écrit :

Ke'® si K=0,
“TY(-K) (-e?) = (-K)el®* M siK<o.

>0

® SiK € iR, on commence par écrire i sous la forme i = €'
sur le cas précédent.

I
2

, puis on retombe

Exemple 18 Déterminer la forme exponentielle de :
® z=xeR, x>0,

7

—4¢7210 !
L4 ST 9,9 eR,

e de z =sin(A)e'?, avec (A,0) € [0,271] x R.

Méthode (ALG) 5.5 (Technique de 'angle moitié (forme exponentielle d’'une
somme d’exponentielles imaginaires)) Soient deux nombres complexes z, z’
de module un donnés sous forme exponentielle : z = e, z’ = e'? avec (0,0 €
R?. Alors la forme exponentielle de z + z' s'obtient par le calcul suivant :

r_ i e i 8¢ 9.8 {040 0-0
z+zZ =e’+e’ =e 2 |el'z +e 'z [=2e 2 cos 2 |

La méthode s’adapte a z—z' en faisant apparaitre un sinus. Pour obtenir la forme
exponentielle, on applique alors la méthode précédente.

Exemple 19 (Deux formes exponentielles trés importantes)

1. Déterminer la forme exponentielle de 1 + e'® avec 0 € [0, n1[. Que dire si 0 €
[m,2m[?
® [Calcul de 'angle moitié]

P4

® [Mise en facteur de I'angle moitié]

4

® [Conclusion]
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2. Méme question avec 1 —¢€'

0

o Résumé Forme exponentielle de 1 + e'®

Soit 8 € [0, 27[. Les formes exponentielles de 1 + e'® sont données par :
.0 .

2cos(3)e'z sife[0,n|,

(0 .
(—2cos (g))el(2+”) si0 € [m 27

; (0, 3n

o 1 -¢f= Zsin(g)el(2+ 7))
Ces expressions ne sont pas a apprendre par coeur, mais surtout savoir les éta-
blir.

® 1+ef=

Passons a quelques propriétés de 'argument d'un nombre complexe, qui découlent
des propriétés déja établies sur I'exponentielle imaginaire.

Proposition 11| Propriétés de 'argument
Soient z et z’ deux complexes non nuls. Alors :

® arg(zz') =argz +argz’ [2m], ° arg(g) =argz—argz’ [2m],

® arg(z) = —argz [2m].

) . .
Preuve Notons z = |z|e'® et z' = |2'| e!® les formes exponentielles de z et z' avec (0,0') €

[0,27[2.

® zz' = |z||z'|e'®®) par propriétés de I'exponentielle. Donc arg(zz') = 0+ 6’ = argz +
argz’ [2m].

o :- "zz,"—iz, = %ei(e‘(”) par propriétés de I'exponentielle. Donc arg(zz') =0 -0’ = argz —
argz’ [2m].

® Z=|z]e® = Izlﬁ puisque |z| est un réel. Donc par propriété de I'exponentielle: 7z =
|z|e'®. Donc: arg(z) = -0 —argz [2m].

Proposition 12 | Caractérisation de I’égalité de nombres complexes
Soient z, z’ deux nombres complexes. Alors :

z=27 < Re(z) =Re(Z') et Im(z) =Im(z'),

< |z| =17'| et argz =argz’ [2m].

Preuve Lapremieére équivalence a déja été constatée lors de I’étude de la forme algébrique.
On montre donc uniquement :
_ lz| = |2'|
Z2=Z < !
argz = argz' [2m].

Evidente, par passage au module et 4 un argument.

Supposons que |z| = |z'|,argz = argz’ [27].

7
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BILAN SUR LES FORMES ALGEBRIQUES ET EXPONENTIELLES.

® [Comment choisir la forme a utiliser?] Lorsque 'on cherche a démontrer un
résultat sur des nombres complexes, il ne faut pas systématiquement I'écrire sous
forme algébrique: =z =Re(z)+ilm(z).
Cette forme est adaptée aux problemes « additifs », ol ce qui intervient est plutot
des sommes (ou plus généralement des combinaisons linéaires) de complexes.
Les problémes « multiplicatifs » se résolvent mieux en utilisant la forme exponen-
tiellelorsque z £ 0: z = |z|e' ¥8%,
® Terminons avec un rappel des propriétés calculatoires sur les deux formes.
Forme cartésienne

Forme exponentielle

2 oy . . i i’
éfinition z=x+iy,z =x"+i z=pe'",z' =p'e
Définit + ! " riv i0 s 1,10
Egalité z=7 = x=x,y=y z=7 < p=p,0=0

(mod 2m)
Somme z+2' =(x+x")+i(y+y")

. . i U
Produit zxz = (xx' —yy)+i(xy +x'y) szr:pprel(e+e)
Puissance 2" — pleind

1_z _ x-iy 1_1,-i6
Inverse 7 B o B 2 =o€
; 2 _ 2z _ xx'+yy+i(xy'-yx") Z _ P i('-0)
Quotient = e A z = ¢ .

m Racines 7-iémes d'un complexe

De maniére générale, on appelle «racine n-ieme » d’'un objet mathématique une
quantité qui élevée a la puissance n donne cet objet (I'objet en question peut étre
un réel, un complexe ou méme une matrice).

Regardons pour commencer un exemple. Notons K = R ou C et considérons I'équa-
tion z° = 1 avec z € K.

1. SiK =R, I'’équation n'admet qu'une solution : 1.

2in/3 edin/3

2. SiK =C,onvoitquej =e convient, mais aussi j? = — et en fait nous

allons montrer que ce sont les seules.

On constate que : I'ensemble des racines cubiques complexes de 1 contient l'en-
semble des racines cubiques réelles de 1, et il y en a systématiquement au moins
autant dans C que dans R.

— Définition 7| Racines n-iéme
Soit n € N* et a € C. On appelle racine n-ieme de a tout complexe z € C tel que
Z" =«
® Onnote U, (a) 'ensemble des solutions de z" = «. Si a = 1, on parle de racine

n-ieme de l'unité. On notera U, I'ensemble de ces complexes.
® Sin =2, onparle de racine carrée de a, pour n = 3 de racine cubique.

Notation

® Lesnotations y/a et {/asontréservées a a € R* (oubien a € Rsi n estimpair).
® Les notations y/a et {/a ol1 a € C ~ R sont interdites (elles n'ont aucun sens
car il n'y a pas unicité).

CAS PARTICULIER DES RACINES CARREES. Pour les racines carrées de com-
plexes, on peut utiliser la forme algébrique, qui parfois est explicite a I'inverse de
la forme exponentielle. Commencons par le cas particulier des racines carrées de
réels.



Proposition 13 | Racines carrées (complexes) d’'un réel

Soit a € R. Alors :

®s5ia>0, z°=a<< z=+/aq,

® sia=0, z°=0< z=0,

. . 2 .
® sia<0, zzza@z:(l\/—a) — z=+iy/—a.

BCPST1 € 2025-2026

Preuve  Reste uniquement le cas a < 0 qui est nouveau.

7

Exemple 20
® 22=2 < z=\20uz=-\2.
.ZZ:—3(:>z:(i\/§)2(:)Z=i 30uz:—i\/§.

17

Exemple 21 Retrouver U, en utilisant le résultat précédent.

4

Exemple 22 Résoudre (2z + 1)* + z* = 0. On donnera les solutions sous forme

algébrique.

4
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Voici a présent une méthode spécifique pour le cas ou a est complexe donné sous
forme algébrique.

Méthode (ALG) 5.6 (Calculs de racines carrées de complexes avec forme algé-
brique) Pourrésoudre z2 =a+ibaveca+ibeC.
1. Chercher z souslaformez=x+iy eC.
2. Enremplagant, on obtient: x?>-y*=a, 2xy=>h.
3. Pourrésoudre ce systéme, on introduit une troisieme équation provenant du
module |z|? = |a +1b|, ce qui donne :
x2+y2=Va?+b2.
D’otl au total :
*-y*=a, x*+y*=Va*+b? 2xy=bh.
En faisant la somme et la différence des deux premieres, on obtient des solu-
tions (4 au plus). On en exclut certaines a I'aide de la condition 2xy = b.

Lidée principale a retenir étant la suivante :

pour résoudre z? = q, travailler au choix sur la FORME
EXPONENTIELLE de z, ou la forme algébrique de z.

Le choixdépend de si on veut in fine des solutions données sous forme exponentielle
ou algébrique, et surtout si la forme exponentielle de a vous semble explicite.

Exemple 23 Déterminer les racines carrées de 3 +4i sous forme algébrique.

4



CAS GENERAL. Trouver les racines n-iemes d’'un complexe est un probléme mul-
tiplicatif (avec des puissances), donc la bonne forme a adopter est la forme expo-
nentielle, nous allons trés largement nous en servir dans la suite. On retient donc
que:

BCPST1 € 2025-2026

pour résoudre z" = q, travailler sur les FORMES EXPONENTIELLES !

Méthode (ALG) 5.7 (Calculs de racines n-iéme de complexes avec forme ex-

ponentielle) Pour résoudre z" = a avec a # 0 (si « = 0 il n’y a que zéro comme

solution).

1. Calculer la forme exponentielle de o = pe'®.

2. Chercher z sous la forme z = p’eiel, p'>0,0€0,2n].

3. Enremplagant, on obtient comme conditions (p’)" = p et n6’ = 0 + 2k avec
k € Z. Résoudre ces deux équations puis conclure, en regardant notamment
les k qui donnent un argument dans [0, 27[.

18

Exemple 24
1. Déterminer U,, exceptionnellement sans utiliser la forme exponentielle.
¢
»
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2,

Déterminer Us.

4

On montrerait de-méme que U, = {-1,1,—i,i}.

Dessiner les points géométriques d’affixes les éléments de U,, U; et U,. Que
remarque-t-on?

4
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5. Déterminer les racines quatriemes de —16.

4

Exemple 25 De maniere générale, déterminer U,, pour n = 1.

Equations du second degré

Exemple 26 (Introductif) Considéronsl’équation z?+z+1 = 0, qui n‘avait pas
de solution dans R et cherchons désormais des solutions dans C.

4

Considérons plus généralement une équation de la forme az? + bz + ¢ = 0 avec
a,b,c € R'. On a revu dans le Chapitre (ALG) 2 comment on trouvait ses réelles, a
l'aide de la forme canonique. On avait établi en notant A = b* —4ac que :

b2 A
az*+bz+c=a (z+—) -—

Notons 8 € C une racine complexe de A.

® SiA>0,5=1+/A convient car (\/Z)z =A.
® SiA<0,d=1iv—A convient car (i VA —A)2 =—(-A)=A.

On reconnait alors une identité remarquable du type « a® — b » :

el -5
:a(z_ ";;5)(z_ ‘2;5).

1. Restrictixon du programme, mais les résultats ci-apres s'étendent aussi aux coefficients com-
plexes

az’+bz+c=a

identité a® — b?
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On a ainsi factorisé dans C (comme vous laviez fait en premiére, mais dansR) 1'expression
az® + bz + ¢ peu importe le signe de A, ce qui nous méne tout droit aux solutions de
I’équation.

— Théoréme 2 | Solutions d’'une équation du second degré
Soit (a, b, c) € R® tel que a # 0. On considére 'équation az? + bz +c¢ = 0 d’'incon-
nue z € C. On appelle discriminant du trindme az® + bz + c leréel A = b* —4ac.

—b+V/A

2a

=b

2a

+

-b+iy/—A

2a
De plus, '’équation admet deux racines distinctes si A # 0 et une seule racine si

® Si A >0, les solutions de I'équation sont :
® Si A =0, 'unique solution de I'équation est :

® Si A <0, les solutions de I'équation sont :

A=0.

Remarque 9 Lesrelations coefficients-racines restent valables dans C : a utiliser
toujours en priorité lorsqu'une racine est évidente.

Exemple 27 Résoudre les équations :
1 22-z+3=0.

7

2. Z2242z+4=0. OnaA =4-16 = —12. Les solutions sont alors : _ZiTMi) =

—1+2i|.OnaA=4-16 = —12. Les solutions sont alors : 20 19 + 2i|.
2

3. z2—2cos(0)z+1=0,avecO € [0,2n[. A = —4sin® 0. Nous avons plusieurs cas :
® 5i0=m:alorsA =0 et on a une seule racine double[cos8).

® 5i0¢€[0,2n[~{n}, alors A <0, donc les racines sont 2039£2isinf _

+i0
> E

e

Exemple 28 Retrouver les solutions de (2z +1)? + z? = 0 en utilisant ce nouveau

résultat.

R4

n APPLICATION DES NOMBRES COMPLEXES EN TRIGONOMETRIE

Les nombres complexes, grace a l'exponentielle complexe, fournissent des mé-
thodes trés efficaces pour transformer des expressions trigonométriques. Voyons
comment.

Méthode (ALG) 5.8 (Linéarisation & Antilinéarisation avec des complexes)
1. [Pour linéariser cos® 0,sin*0] écrire
elf 4 o-if)K elf _ o-if) K
cosko=|———| , sinfo=|—=—"—|,
2 21
puis développer avec le bindme, regrouper les termes avec leur conjugué, uti-
liser les formules d’'EULER.
2. [Pour antilinéariser cos(k0),sin(kB)] écrire
i k0 0k Y
cos(k6) =Re(e'*) = Re((e ) ) =Re((cosB +isin0)*),

MOIVRE
sin(k0) =Im(e'*®) = Im ((eie)k) =Im((cos0 +isin0)*),
MoIVRE
puis développer avec le bindme et calculer les parties réelles et imaginaires.
3. [Pour linéariser des produits] En utilisant les formules
d’EULER, on peut linéariser des expressions de la forme
C0OSXCOoSYy,sinxsiny,cosxsiny,sinxcosy.
4. [Pour anti-linéariser des sommes] En utilisant des techniques d’angle
moitité, on peut antilinéariser des expressions de la forme cos x+cos y, sin x +
siny,cosx +siny,sinx + cosy.

Exemple 29 (Linéarisation)
1. Soient x, y € R. Montrer que cosxcosy = % (cos(x +y)+cos(x —y)).

7
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2. De-méme, établir une formule pour cosxsiny.

3. Soit x € R. Linéariser cos? x et sin® x en utilisant les nombres complexes.

4. Soit x € R. Linéariser cos® x sin x en utilisant les nombres complexes.

Exemple 30 (Anti-Linéarisation)
1. Soient x,y € R. Montrer que sin(x) + sin(y) = 2sin (52 ) cos (52).

2 2
7

2. Soit x € R. Exprimer cos(4x) en fonction de cosx, sinx, en utilisant les
nombres complexes.

4
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Les complexes peuvent rendre de multiples services en trigonométrie, y compris les
calculs de sommes de fonctions trigonométriques, comme le montrent les exemples
ci-apres.

Méthode (ALG) 5.9 (Calculs de sommes trigonométriques)

1. Ecrire cos, sin comme des parties réelles/imaginaires d’exponentielles com-
plexes.

2. Utiliser la linéarité de Re(...),Im(...), i.e.: Re(X..) =X Re(..),Im(}...) =
> Im(...).

3. Utiliser la formule donnant la somme de termes géométriques. Conclure.

n n
Exemple31 Calculer pour tout n € Nlessommes ) cos(kx)et Y sin(kx) pour
k=0 k=0
x eR.

R4

Exemple 32

n
Calculer pour tout 7 € N la somme )
k=0

coskx

cos® x

pour x € R tel que
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cosx ¥ 0.

nocoskx & Re (e'*¥)

=y coskx = (cosx)k

£l

(cosx)k

(cosx)¥ est réel

la partie réelle est linéaire

n elx k
=Re
Z;' COS X .
) 1 somme de termes d'une suite géométrique, car cosx # e'”*
1— ( el )n+ pour les x qui nous intéressent
cosx
cosx
ei(n+1)x
_ cos"*1 x
cosx réduction au méme dénominateur
COSn+1 x_el(n+l)x
— Re cos*1 x
cosx—el¥
cosx I_eR
1 COSn+1 x— ei(n+1)x cos™(x)
= Re - forme
n _ eix
COS™ X CosSx —e¢ algébrique des
n+1 o . nombres
_ 1 Re cos"" x —(cos(n+1)x +isin(n+1)x) complexes
cos x cosx —(cosx +1isinx)
- —isi
1 R cos"* x —cos(n+1)x sin(n+1)x
= € P
cos" x —isinx

1 sin(n+1)x
cos™ x sinx |

FICHE METHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

(Quotient sous forme algébrique : expression conju-
guée) Pour deuxréels x,y eR, etz =x+iy €C,

1 . . B
. x—iy X ly—i+i( y).

x+iy  (x+iy)x-iy)  lzl*  |zl? |z|?

(Développement d’'une norme de somme au carré) Soit
|z+2'|? avec z,2' € C.
1. Ecrire la quantité en fonction du conjugué :
2. Développer.

lz+ 2| =(z2+ 2 )(z + 2).

(Mettre sous forme exponentielle un nombre complexe)
® Soit z # 0.
1. Calculer |z|, puis mettre |z| en facteur dans z.
2. Chercher 6 € [0,27[ tel que : ﬁ =el? ie. tel que
Re(z Im(z
cos(0) = —( ), sin(0) = | (I )
z

||
La forme exponentielle est alors :  z = |z|e'®. Il arrive parfois que I'angle 8
ne soit pas explicite.

® [Produit/Quotient] Pour les produits et quotients de deux complexes, il
est inutile de commencer par le mettre sous forme algébrique avant de trou-
ver la forme exponentielle. En effet, notons z;, = |z,|e'®* £ 0 (8, € R), z, =

|z,| 1% £ 0 (0, € R). Alors :

i) A _ 1Al Giee,
z, |z

2125 = |z1| |z, €

(Complexe sour forme « quasi-exponentielle ») Soit z # 0
tel que z = Ke'®, avec 0 € R.
® SiK e R (puisqueK nest pas supposé positif, ce west a priori pas la forme exponentielle de
z) alors, pour mettre z sous forme exponentielle, on écrit :

Ke'® siK=0,
“TY(-K) (-e) = (-K)el®* M siK<0.

iZx .
® SiK € iR, on commence par écrire i sous la forme i = e'2, puis on retombe
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sur le cas précédent.

(Technique de 'angle moitié (forme exponentielle d’'une
somme d’exponentielles imaginaires)) Soient deux nombres complexes z, z'
de module un donnés sous forme exponentielle : z = e, z’ = e'? avec (6,0 €
R2. Alors la forme exponentielle de z + z' s'obtient par le calcul suivant :

: N . 0+0' . 0-0' . 0-0 . 0+0 6—9’
z+7z =€+l =¢i2 (e‘ 2 +el2 ):Ze‘ 2 cos( > |-

La méthode s’adapte a z—z' en faisant apparaitre un sinus. Pour obtenir la forme
exponentielle, on applique alors la méthode précédente.

(Calculs de racines carrées de complexes avec forme algé-
brique) Pour résoudre z =a+ibaveca+ib € C.
1. Chercher z souslaformez=x+iy eC.
2. Enremplagant, on obtient: x?>-y*=a, 2xy=>h.
3. Pourrésoudre ce systéme, on introduit une troisieme équation provenant du
module |z|? = |a +1b|, ce qui donne :
2+y2=Var+ b2,
D’ot1 au total :
x>—y*=a, x*+y*=Va’+b% 2xy=h.
En faisant la somme et la différence des deux premieres, on obtient des solu-
tions (4 au plus). On en exclut certaines a I'aide de la condition 2xy = b.

(Calculs de racines n-iéme de complexes avec forme ex-
ponentielle) Pour résoudre z" = a avec a + 0 (si « = 0 il n'y a que zéro comme
solution).

1. Calculer la forme exponentielle de = pe'®.

2. Chercher z sous la forme z = p'e'®, p’ > 0, 0 € [0, 27].

3. Enremplagant, on obtient comme conditions (p’)" = p et n®’ = 6+ 2km avec
k € Z. Résoudre ces deux équations puis conclure, en regardant notamment
les k qui donnent un argument dans [0, 27[.

(Linéarisation & Antilinéarisation avec des complexes)
1. [Pour linéariser cos* 0,sin* 0]  écrire
i6 , ,—i6\k i6 _ ,—-i6\k
ko [€ e N et
cos*0=(——]| , sin“O=|——]| ,
2 21

puis développer avec le bindme, regrouper les termes avec leur conjugué, uti-
liser les formules d’EULER.

. [Pour antilinéariser cos(k0),sin(k0)] écrire

_ ik8) _ 01k _ Kk
cos(kB) =Re(e )MoRRE Re ((e ) ) =Re((cosO +isin0)"),
: _ ko)  _ 0k _ . .k
sin(k6) =Im (e )MO;/RE Im ((e ) )— Im ((cosB +i sin6)¥),
puis développer avec le binome et calculer les parties réelles et imaginaires.

. [Pour linéariser des produits] En utilisant les formules

d’EULER, on peut linéariser des expressions de la forme
€0S X COsy,sinxsiny,cosxsiny,sinxcosy.

. [Pour anti-linéariser des sommes] En utilisant des techniques d’angle

moitité, on peut antilinéariser des expressions de laforme cos x +cos y, sin x +
siny,cosx £siny,sinx 4 cosy.

(Calculs de sommes trigonométriques)

. Ecrire cos, sin comme des parties réelles/imaginaires d’exponentielles com-

plexes.

. Utiliser la linéarité de Re(...),Im(...), i.e.: Re(X..)=XRe(...),Im(}...) =

YIm(...).

. Utiliser la formule donnant la somme de termes géométriques. Conclure.
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QUESTIONS DE COURS POSEES AU CONCOURS AGRO—VETO n EXERCICES
Question Réponse Commentaire La liste ci-dessous représente les éléments a maitriser absolument. Pour les travailler,
Définition du module d’un 2l =/ )7 siz = x+iy avec Connaitre il sagit de refaire les exemples du cours et les exercices associés a chaque item.
nombre complexe (x,y)eR? également
l'interprétation Savoir-faire
géométrique

1. Concernant la forme algébrique :
® savoir effectuer des calculs sur les formes algébriques (somme, produit, quotient,

BIC. ) o e et O
® savoir traduire 1'égalité de deux complexes donnés sous forme algébrique .... [J
® savoir calculer un module, unconjugué........... ... L il ([
® savoir représenter un complexedansleplan .............. ...l ([

2. Concernant la forme exponentielle :
® savoir que % est sur le cercle trigonométrique et la définition d’'un 'argument [J

® savoir calculer une forme exponentielle ............. ... ... i ]
® savoirmanipulere'® ... ... O
® savoir résoudre des équations avec des puissances a I'aide de la forme trigonomé-

15300 |01 P O
® savoir résoudre des équations duseconddegré............... ... ..., O

3. Concernant les applications des complexes :
@ SavOIr lINEATISET . . ...ttt e ([
® savoir anti-linéariser. .. ... ... e O
® savoir calculer des sommes trigonométriues ..., O
Signalétique du TD

® Lelogo ¥ désigne les exercices que vous traiterez en devoir 2 la maison. Vous pouvez
m'en rendre un ou plusieurs, au plus tard le lundi qui précede un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

® Lelogo @ désigne les exercices un peu plus difficiles; a aborder une fois le reste du
TD bien maitrisé.

Cahier de calculs
Fiche(s) a travailler : 17,18

Exercice 1 | Vrai ou Faux?

1. Soit z € C, la partie imaginaire de i z est égale a celle de z.
2. Soient z;,z, € C. Alors: |z; — 2,| < |z;| — | 2|
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Forme algébrique

Exercice 2 | Mettre les complexes suivants sous forme algébrique simple :
_3i . 3
1. z=13, 2. :(1—\/5),
1+4i 5-i |°
3. z=150 4 Z:(1+i 3) '
_ (#i)? _ 1
5. z= = 6. zZ= Sy
Toz=(1+0)20, 8. =22
9. Z:(5—21)3, 10. Z:m,
. _a: \4
N z= @S 2. z=(v3-2i).

Solution (exercice 2) Dans cet exercice, je ne détaille pas forcément tous
les calculs, je ne donne que la méthode générale ou des indications.

1.

z=- 5T 5 On a un quotient de nombres complexes dont on vaut la forme

algébrique : on multiplie par le conjugué du dénominateur.

= \/5 + 5i.| On utilise ici une identité remarquable.

19 9
z= ~%6 +i 26 On a un quotient de nombres complexes dont on vaut la

forme algébrique : on multiplie par le conjugué du dénominateur.

Ici plusieurs méthodes marchent bien : Soit on commence par mettre sous

3
Ve

nentielle le numérateur d'un c6té et le denomlnateur de l'autre c6té puis on
passe a la puissance 9. Soit on commence par mettre sous forme algébrique

V3-i

le nombre complexe i en multipliant par le conjugué du dénominateur

forme exponentielle le nombre complexe en mettant sous forme expo-

et on passe a la pulssance 9.

La encore il y a plusieurs méthodes qui marchent bien. Une possibi-
lité est de mettre sous forme exponentielle 1 +i d'un c6té et 1 —i de l'autre
coOté puis de les passer au carré et enfin de faire le quotient.

On peut par exemple commencer par tout mettre sous le méme
dénominateur en bas et on obtient z = é = ﬁ =i(1+1).

1+i
|z = i. | Ici il faut commencer par mettre sous forme exponen-
tielle 1 +i et on obtient que 1 +1i = \/_ 2e' s Ensulte on passe a la puissance

2019 i 2019
et on obtient que : z = (\/_ el’) = 21009, /261 %5 11 faut alors compter le

21009 + 21009

nombre de tours complets que l'on a fait dans M . Une facon de voir les
choses est d’écrire : 222 x 21t et de faire la division euclidienne de 2019 par 8.

On obtient : 2019 = 252 x8+3etainsiona: 20819 x 271 = 252 x 21 + 32, Ainsi

ona:z=219/2x¢ i(252x2m+ 3] _ 21009\/—(__ N _1) _ 1009, 210091
T - 2 T2 T .
8. OOn peut par exemple mettre sous forme algébrique chaque terme de la

somme de facon séparée en multipliant par le conjugué puis on les somme.
9. |z = 65 —142i.|On utilise une identité remarquable.

14 5
10. |z = 291 i TR On peut multiplier par le conjugué du dénominateur a sa-
voir (4+1)(3—-2i).
69 17 . S £ .
1M |z= 29~ i 29" On multiplie par le conjugué du dénominateur.

12. |z =-47+ 8\/§i ‘ On développe avec le bindme de NEWTON.

Exercice 3 | Soit x un réel fixé. Calculer la partie réelle et imaginaire de :
1. (x +i )2, 2. ﬁ

Solution (exercice 3)
® En développant (x +i)?, on obtient (x +i)% = (x* — 1) + 2i x. Ainsi
[Re(x+i)> =x*—1let Im(x+i)* =2x.|

_3i -3 142
® Ona: 8= (= xlzf:;xz; i) Ainsi, on obtient :
( x—3i ) x(x®+7) ( x—3i ) -x?-3
e — | = m — | = .
x2+1-2ix) x*+6x2+1 x2+1-2ix) x*+6x2+1
Forme exponentielle
Exercice &4 | FEcrire les nombres suivants sous forme exponentielle et trigono-
métrique :
1. z=-18 2. z=-Ti
3. z=1+i 4 z=(1+i)
5 z 1+;\/.§ 6. z=-2e3eli
-1
i [ 261 8 2
— im | 2e B .. Tt
7. z=-10e (e‘_77") 8. z=-5(cos(&)+isin(%))
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. =120

9, z=-—L 10 z:(ljl_‘./g)
ERbw !

1. Z:m, 9¢§+kn,k€Z

2. z=(HNY peN, 0+Z+kmkeZ.

Solution (exercice 4) Dans cet exercice, je ne détaille pas forcément tous

les calculs, je ne donne que la méthode générale ou des indications.

1 . On a en effet commencé par calculer le module qui vaut 18, puis
on a mis en facteur le module et on a mis —1 sous forme exponentielle.

2. On a en effet commencé par calculer le module qui vaut 7. Puis
on a mis en facteur le module et on a mis —i sous forme exponentielle.

3. On a calculé le module qui vaut /2 et on I'a mis en facteur.

4, On commence par mettre 1 +i sous forme exponentielle et on obtient que
1+i= \/_e 1. Ainsi on obtient que (1+1)° = (\/_)5 iy —4\/_e 4, Ainsi on

a: z—4\/_e

5 |z=¢€'%.]Icion peut par exemple mettre sous forme exponentielle d'un coté
le numérateur et de 'autre c6té le dénominateur. Puis on utilise les propriétés
sur les quotients d’exponentielles.

6. Ici le calcul du module donne |z| = 2 car pour tout 6 € R :

donc:z = 2(—1 xed x eem%‘) =267 . Ainsiona:
7. Méme type de calcul qui utilise les propriétés de !’ exponentlelle Icile module
vaut 10 x 26 = 640 et on obtient que z = 640¢' = .0n 51mp11ﬁe alorse' 1" en

_ =27n
remarquant par exemple que =2% = % = —7n+%. Ainsiona:e i =

5n
el (i) — ol 7 A1n81ona z = 640e' T

|e19| =1.0na

8. |z=5ei(3W =5¢'5" |Eneffet0na z=-5¢e5 —5e”‘. eis
9. Mettons tout d’abord sous forme exponentielle Z = 5 — 2\—[ Onal|Z| = \[,
ainsi,
7- L(_zﬂé) _Llew_ L
val 2 2] 3 V3

. . 1 . . _ _2in _ )
Ainsi comme z = 7, on obtient : |z = \/ge 3 = \/§]

10. On commence par mettre ce qui est al'intérieur de la parenthese sous forme
exponentielle. Comme c’est un quotient, on met sous forme exponentielle de

1+1\[

fagon séparée le numérateur et le dénominateur et on obtient que :

2e3

2= (VEeE)”

= \/_ 2e! 2 . Ainsi on obtient :

— 91061 1% _ 91041 %%
. . + 5
— 210e1n(10+§) — 210 % elOlT[ « el%
. 5
=21%!%,
Ainsiona:

11. Commencgons par calculer le module. Le formulaire de trigonométrie donne
|z| = |cosB]. Il faut donc discuter selon le signe du cosinus.
® Sicos0 =0, cest-a-diresi 3k € Z, -5 +2kn <0 < J + 2km,alors
1

cos@+1s1n6
® Sicos@<0,cest-a-diresidkez, Z+2kn<6<¥

-1 L
= —cosfe'me 10 =

z =co0s0 x cosfei®

+ 2km,alors

z=—c0s0 x —cos0el (™)

cosB +isinB
12. Ici plusieurs méthodes sont possibles. On peut par exemple commencer par

simplifier le quotient 1= 1+itan(0) ' on obtient en utilisant la définition de la tan-

itan(0) "
gente :

. cos (0)+i sin (0) L.
l1+itan(0) ~ cos(e _ cos(0)+isin(0)
1-itan(0) %E;;n(m ~ cos(0)—isin(0)

0S

1 suffit alors de remarquer que : cos(8) +i sin() = e'® et que cos(0) —
isin(0) = cos(—0) +isin(—0) = e'® en utilisant la définition de e'?, la parité

. . .. . N . 1+itan (0 el®
du cosinus et I'imparité du sinus. Ainsi on obtient que : Jt%:gge; = —19 =20,
En passant a la puissance n, on obtient que :

2in
3

Exercice 5 | Complexej Onrappelle quej =e

1. Justifier rapidementque: j*=1, 1+j+j%=0, j=j%
2. Exprimer les complexes suivants sous la forme a + fj avec (o, p) € R* :
1 1
— 3=
(L+)r 7 1-j2
Indication : On pourra pour z5 utiliser la technique de l'expression conjuguée.

z1=(1+j), z,=

Solution (exercice 5)
1. Voir cours.
® z;=(1+j)°
[ J Zy =

=(°)° =" =" xj =[-j]=—e".
1

(_j2)4:ji8:ji2.01 =j ]—ldonc =j.Donc|z, =j]

1
a+)*
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® Enremarquant que ]_2 =j al'aide de la premiere question, on obtient :
11—z 1-j 11— 15
e (DR B e IR R R

Exercice 6 | Soit ¢ € R. Donner I'expression du module de z, et z,. Mettre z, sous

forme exponentielle.
zy=t?+2i t-1, z,=1-cost+isint.

Solution (exercice 6)
® Ona

|2y 2= (2 =12 +4t? =t* + 212 +1 = (1+ %)%

|z = (1 + 122 = |1+ 2| =1+ 1>

sitifs est positive.
® Ona:

t
|z, = (1 —cost)?+sin®t = 2(1 - cos t) = 4sin® (E)

Ainsi, car lasomme de deux nombres po-

Ainsi, |z,| = 2|sin(%)|. Il faut alors discuter selon le signe du sinus qui n'est
pas toujours positif.

o Sisin(4)=0,0nal|z| =231n(§). étude desin(£)=0:

I3
2

t t
sin(z) =20« 3JkeZ 0+2kn < 3 Sn+2kn < Jk e Z,4kn <t <2n+4kmn.

o Sisin(£)<0,0ona étude de sin(£)<0:

Lt
|z,| = —2sin 5/

t t
sin(i) <0< 13dkeZ pit+t2kn< 3 <2n+2kn < Ik € Z,2n+4kn < t < 4n+4dkn

® On distingue donc deux cas selon le signe de sin(%).
o Cas 1 : Lorsque t vérifie : 3k € Z, 4km < t < 2n + 4k7 (0 ne se met pas
sous forme exponentielle, il faut donc étudier uniquement les nombres
complexes non nuls ce qui explique les inégalités strictes). On a alors

|2,| = 2sin(£) et donc::
z —ZSin(f) 1—cos(t) . sin(1)
©T 2 2sin(3)  2sin(f)
=Zsin(£) zsmz(%) .Zsin(é)COS(é)
2J | 2sin(3) 2sin (%)
AP LA TS
:231n(—) sm(—)+zcos(—)]
2 2 >

wson (e[ 2)- (2]
sl e -£) 293
—zain( L] [t <o
-sonfge

s =t
2

(T
Dans ce cas, on a donc obtenu que|z, = 2sin (E)e‘

o Cas2:Lorsque t vérifie: dk € Z, 2n+4kn < t <4m+4km:
On a alors |z,| = —2sin (%) et donc en refaisant le méme type de raisonne-
ment que ci-dessus :

Zy=—2 sin(%) (—ei%)
=-2 sin(f) (ei"einT_t)

. s 3m—t
:—Zsm(—)e1 z,

~ N

S

3n—t

N R AR~
Dans ce cas, on a donc obtenu que |z, = —2sin (E)e‘ z

® On peut également utiliser la méthode de I'angle moitié, c’est plus simple et
plus rapide! On a en effet :
zy=1-cost+isint=1-e!'
= e_i% (ei% —e_i%)
« e ( t) il
=2isin|{=|e 2
2
=2sin|=-]e z.
2

On reprend ensuite les mémes cas, et on obtient les mémes résultats que pré-
cédemment.

Exercice 7 | Soitu € Cun complexe de module 1 et d’'argument . Préciser le
module et un argument de 1 + u.

Solution (exercice 7) Comme u € C estun complexe de module 1, il s’écrit
sous la forme u = €'? avec ¢ un argument. Par la méthode des angles moitiés,
on obtient :

) . i i i i
l+u=el4e®=e? (e‘Tlp +e7(p) = 2cos(£)e7¢.
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Ainsi, [1+ u| = 2|cos(%)| etil faut étudier le signe de cos(%).

® Sicos(%)>0,alors:
{ |1+ u| =2cos(%)

7
Et la résolution de cos (%)= 0 donne

cos(g) =0
2

— HkEZ,—E+2kT[ P
2 2

—+2kn
2

< dke”Z —n+dkn<@<mn+4km.
® Sicos(%)<0,alors:

{ 1+ u| =-2cos(%)

arg(1+u) =2+m [2n].

En effet, —1 = ¢'™. Etla résolution de cos (%) < 0 donne
cos (9) <0
2

3
gs—n+2ka'r
2 2

< JdkeZ, pi+dkn<@<3n+4kn.

— dkeZ, g+2kn<

Exercice8 | &

1. Soient a et b des réels tels que b ne soit pas de la forme : (2k + 1)m avec k entier.

1+ cosa+isina
1+cosb+isinb’

Calculer le module et un argument de

2. Soit (o, B) € [0,27]?. Déterminer la forme exponentielle de Z =

Solution (exercice 8)

1. On peut remarquer que :
l+cosa+isina _ 1+e®
l+cosbh+isinb 1+eil’

On utilise donc la méthode de 'angle moitié pour le numérateur et le déno-

minateur. On obtient

ia
1+cosa+isina _ e22cos (%)
1+cosb+isinb e%2cos(§)
~ e? cos (%)

e? cos(2)

1-cosa+isina
1-sinf +icosPp’

On peut remarquer que ce nombre est bien défini car le dénominateur est
bien non nul car on a supposé que b n'est pas de la forme 2kn + 7t donc g
n'est pas de la forme kmn + 7 avec k € Z et ainsi cos(g) ne s'annule pas. On

obtient donc

1+cosa+isina cos(%) i 5
= = 2
14+cosb+isinb cos(g)
cos(%)

® Calculdumodule:|Z| =

.Ainsi, il faut étudier des cas selon le signe

os (2|

de ce qui est a I'interieur du module.

® (Casl:Si Cosfi)) > 0, a savoir s’ils sont tous les deux positifs ou tous les deux
Ccos 2
négatifs, on obtient alors :
a a
0s(3) _08(%) b
Y et Z= e 7.
cos(2) cos(2)

Z est alors bien sous forme exponentielle et un argument de Z est “;h

2| =

® Cas2:Si COSE i < 0, a savoir si I'un est négatif et 'autre positif, on obtlent
E
a a a
COS(Z) et 7 = _COS(Z) (_eiaT-b) _ _Cos(z)ei(aT-bH).
cos(2) cos(2) cos(2)
Z est alors bien sous forme exponentielle et un argument de Z est <2 + .

2. On utilise le méme type de raisonnement, en remarquant que :

_ 1-(cosa—isina)

1+i(cosP —1isinf)

alors:

Z] = -

—-ix

_ l1-e
1+ ie-ip
1 _e—ia
1+ei(z6)

On utilise ensuite la méthode de I'angle moitié, et on distingue 3 cas :
sin($) el (ﬁ2«+2)

® Sij >0, alors Z =
cos(g—%) cos(g—%)

® S SIEléZ)H) =0, alors Z = 0 et n'admet pas de forme exponentielle.
cos(5 -5

o si ) o alorsz = ——ME) i)

Exercice 9 | @ Autour des racines 7-iémes

. 2n
Soientu=e'7,S=u+u?+utetT=u®+u®+ub.
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1. Montrer que S et T sont conjugués, et que Im (S) = 0.
2. Calculer S+ T et ST.
3. En déduire que:
_2n  _4m _8m /3
sin — +sin — +sin — = —.
7 7 7 2

2m 4n 8n 1
COS— +CO0S— +CcosS— =—— et
7 7 7 2

Solution (exercice 9)

— j2n _j2n
1. Constatons queu=e7 =e 7 =¢
6)2 — ulZ

s 12;

i, 120 .
1742 — o5 = % De-méme:

a

w=u=u =uud =11 =1,
et

W=t = (1)t = w2t = 78 = (u)3ud = 1145,
Les termes de S, T sont donc conjuguées dans le méme ordre, et par propriété

de la conjugaison, on obtient La deuxieme partie est plus technique,
on utilise la formule de Moivre, puis on calcule les puissances :

Im (S)
= Im((cos(?) +i sin(27n))

+|cos|—|+isin|— || +|cos|—|+isin|— )
7 7 7 7
. (271 . (271 2n 3(2mM) . (2m 2m) |, 4(2m
:sm(—)-i-ZSm(—)cos(—)+4cos (—)sm(—)—4cos(—)sm (—)
7 7 7 7 7 7
. [(27 27 527 2m\ . ,(2m
:sm(—) (1+2cos(—)+4cos (—)—4005(—)sm (—))
7 7 7 7 7
La partie imaginaire est donc du signe de la parenthése car sin (27“) =0, etelle

vaut
2n 3 (27 2m) |, ,(2m
1+2cos|—|+4cos’|—|—4cos|— |sin“|—
7 7 7 7

2m 5 (2T . o f2m
=1+2cos (—) (1 + cos (—) —sin (—))
7 7 7
2n 52T
=1 +2cos(7)200s (7) =0
puisque cos(#) = 0. Donc finalement |Im (S) > 0.

1-u’ 1-1
=—— == |S+T=-1
1-u 1-u

6
S+T+1=)Y ur=
k=0
Puis

ST = (u+u?+u)(1® +u® +ub)

=ut+ub+u + P+ U+l d U

=+l +1+P+1+u+1+u?>+u®, enutilisantu’ =1,

=2+ (S+T)=2+(-1)[=1]
3. Constatons que

2m

47 8n . 2m . 4m . 8w
cos— +cos— +cos— =Re(S) et sin— +sin— +sin— =Im(S).
7 7 7 7 7 7

O, T=SetS+T=-1 doncS+§=—1:2Re(S):—l,donc.

De plus, ST = SS = |S|2 = 1, donc S est de module un. Or, Re (S)? +Im (S)? = 1,
doncIm(S)* =1-Re(S)* =1-1 = 3, on déduit que::

V3

Géomeétrie

Exercice 10 | Condition d’appartenance a un cercle. Soient A et B deux points
distincts du plan, d’affixes respectives a et b. Montrer qu'un point M d’affixe z ap-
partient au cercle I' de diametre [AB] si et seulement si :

2zz—(a+b)z—(a+b)z+ab+ab=0.

Solution (exercice 10) Lappartenance au cercle en question s’exprime a
I'aide de I'affixe du centre et d'un module. L'affixe du centre du cercle est “T”’, et
la distance d’un point M(z) au centre est

a+b

2
Ainsi, la condition d’appartenance au cercle est la suivante :

z—

a+b| |b-a|
M(z)el < |z-— ‘z
2 2

a+bi? |b-al* . . )
— |T— = élévation au carré

2 4
b b 1 —_
= (-2 (- 22 =y - a)o-a)

2 2 4

<~ (2z—a+b)(2z—a+b)=(b-a)(b—a)
— (2z-a-b)(2z-a-b)=(b-a)(b-7a)
< 4|z|?>-2zab-2zb-2az + |al|* + ab-2bz + ba + | b|?

= |b|? + |a|? - ba - ba.
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En simplifiant et en divisant par deux, on trouve la condition de I'énoncé : Exercice 12 | Résoudre dansCles équations suivantes. Pour l'ordre 2, on essaiera
‘2 Z2Z—(a+b)z—(a+b)z+ab+ab=0 les deux méthodes (avec la forme algébrique et la forme exponentielle). Dans les autres
cas, on fera appel a la forme exponentielle.

1. z°=i 2. z°=i 3. z*+4=0

Résolution d’équations 4.z =24+10i 5. z'=j.

Solution (exercice 12)

Exercice 11 | Résoudre dans C les équations suivantes. 1. ® [Méthode forme exponentielle] Comme 0 n'est pas solution, on
) ) cherche les solutions z sous la forme exponentielle z = re'® avec r > 0
1 (z2+1) +(2z+3) :0,. et eR.
2. 2z°(1—-cos(20))—2zsin(20) +1 =0avec b € R. 2o e 1260 _ il
|
. . 2 _ -
Solution (exercice 11) = 1" =1,3k€Z,20 = +2kn
1. O it trind : b
n recc;nnal un 2mnome ) ) ) — r=13keZ 6="41kn
(z+1)°+(22+3)" =0 <= z°+2z+1+4z°+122+9=0 < 5z°+14z+10 = 0. o 4
Le discriminant vaut A = 142 —4 x 5 x 10 = 4(49 - 50) = —4. Les solutions sont Alnsl, _ :
donc z; = —1;1521 - —75—1 etz, = % 7= {ei%,ei%ﬂ} _ { 1+1 , -1-i }
Ainsi | {—7—1 —7+i} V2 V2
insi, |.# = , . . PR .
5 5 ® [Méthode forme algébrique] On cherche les solutions sous la forme
2. on fait deux cas, car le coefficient du z? peut s’annuler. z=a+ib,aveca,beR. Alors:
® Sil—-cos(20)=0 < cos(20) =1 < Fke€Z20=2kn < IkeZ6= 22=i < a?-b*+i(2ab) =i
km.
) . , . a*-b* =0
On a alors sin(20) = 0, et on doit donc résoudre : 0+ 0+ 1 = 0, ce qui est =
. ) 2ab =1
impossible. Donc % = @.
® Sil—cos(20)=0 < VkeZ0+kmn. a® - b* =0 a* =%
C’est une équation du second degré en z, on calcule donc le discriminant —~ 2ab =1 4 ab = %
et on obtient lz|> =a®+b*=1 b =1
A = 4sin? (20) — 8(1 — cos (20)) en effectuant la somme des lignes 1 et 3. D’aprés la deuxieme équation,
= 4(2sin () cos (0))% — 8 x 2sin? (6) a, b sont de méme signe. On retrouve bien le méme ensemble de solu-
. 2 2 tions :
=16sin” (0)(cos” (0) — 1) 141 —1-1
jm  j5m -1-
= —16sin* (). y:{eu,eu}:{_,_ }
P 22 . 25sin (20)+4i sin® () \/5 \/E
Ainsi A < 0 et v —A = 4sin” (). On obtient alors z, = ==, 55— = 2. Comme 0 n’est pas solution, on cherche les solutions z sous la forme expo-
1 (k5 +1) en utilisant le fait que sin (26) = 2cos (8)sin (6). Et les racines nentielle z = re'® avec r > 0 et 0 € R.
étant alors complexes conjuguées, on obtient : z, = (=5 —i). Ainsi 2B=i = il =¢l2
{2 (s 1) 2 o O 3 ;
=< —i], = il = =
> | tano > \tane —r 1,3k ez, 30 2+2kn
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2k
e r=173kez, 0=_4+°8
6 3

Ainsi,

S
y:{elﬁyelﬁ,e 2 ,
2 2

3. Comme 0 n’est pas solution, on cherche donc les solutions sous la forme z =
ret® avec r > 0 et O € R. On obtient alors :

5 ign}:{\/§+i —\/§+i,_i}.

zt = -4 < riet® = 4"
— r*=4, 3keZ 40=7+2kn
n kT
<:>r=\/§, E”CEZ, 6:Z+7.

Ainsi, les solutions sont :

7 ={V2e't,V2e' ¥, V2e ¥, 267 E L.

4. ® [Méthode forme algébrique] Méthode avec la forme algébrique pour
les racines carrées d'un nombre complexe. On cherche donc z sous la
forme z = x +iy. On obtient donc

z2=24+10i < (x+iy)*=24+10i

)
2_ .2 ; ; xT-yt o= 24,
-y +2 =24+10
= x"-y xy1 1@{ 2xy = 10.
Calculons désormais le module de 24 + 10i.

|24 +10i| =2 x |12+45i| =2 x /144 + 25 =21/169 = 2 x 13 = 26.

Ainsi :
x?2—y? = 24,
Z2=24+10i = 2xy = 10,
x> +y? = 26.

En additionnant les lignes (1) et (3), on déduit 2x* = 50 soit x = +5. En
formant (3) - (1) on obtient y? = 1 soit y = +1. En tenant compte de (2) on
trouve (x,y) = (5,1) ou (x,y) = (=5, —1). Inversement, ces deux couples
sont bien solution du systeme initial.
Ainsi, les solutions sont|.# = {-5—1i,5+i}.|

® [Méthode forme exponentielle] On commence par essayer d’appli-
quer la méthode du cours et on cherche donc a mettre 24 +10i sous forme
exponentielle. On ne trouve pas de forme exponentielle simple, cette mé-
thode n’est pas applicable.

5. 0 n'est pas solution, on cherche donc les solutions z sous la forme z = re'
avec r >0 et 0 € R. On obtient

Z4:j — r4e419:j

0

1. z"=1, 2.

— =1
kez,40 = F+2kn
= r=1
dkez, 6 = Z+ET
Ainsi, | = {ei%,ei%ﬂ,ei%,ei%}

Exercice 13 | Soit n € N*. Résoudre dans C les équations suivantes et mettre les
solutions sous forme exponentielle.

zZ"=(z-1)", 3. (z+1)"=(z-1)".

Solution (exercice 13)

1. D’apres le cours, I'ensemble des solutions (cherchées sous forme trigonomé-

trique) est : | = {emrfn kelo, n- 1]]}

2. On peut tout de suite remarquer que z = 1 n'est pas solution. On obtient alors
pour tout z # 1, en utilisant la question précédente,

=l = (zil)nzl

z 2ikn

<~ dke{0,...,n—-1},

z—1
— dkel0,...,n—-1}, z:ew(z—l).
Si k =0, z = z— 1 n'a pas de solution. Ainsi, on peut prendre k € {1,...,n —1}.
On obtient alors
2ikn 2ikn
Z"=(z-1)" < 3Fke{l,...,n-1}, z(l—e n ):—eT

2ikn
_e n

e x (—2isin(%2))

n

— Jkell,...,n—-1},z=

ikn —i 1

ikn kx| 3n
«— Jkefl,...,.n-1},z=en = eln Tz,
Zsin(@) Zsin(k—“)
n n
1 jhmy 3n
Doncona:|f=q—r=€ "2 |[ke[l,n-1]
Zsin(%)
3. Comme dans la question précédente, on cherche a se ramener a la premiére

question.
® Comme 1 n'est pas solution de I’équation, on peut supposer que z # 1.
Ainsi, on peut bien diviser par (z — 1)" qui est bien non nul. Ainsi, on a
z+1\n
(z+1)"=(z-1)" < (—1)
Z —
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D’apres la premiere question, on a:

z+1 ik
(z+1)"=(z-1)" < 3k €{0,...,n—-1}, lze%
z_
— E”CE{O,...,H—].}, Z(l—emr’lm):—e%_

Ici, il faut faire attention car on ne peut JAMAIS diviser par un nombre sans
vérifier qu'il est bien non nul. Oron a:

2ikn 2ikn
en —1=0<=en =1
2km
— — =2k'n
n

— k=nk'
avec k' € Z.Or k € [0, n— 1] donc le seul k qui vérifie cela est k = 0.
¢ Pour k =0, on obtient: 0 = 2 donc il n'y a pas de solution pour k = 0.
¢ Pour k # 0, a savoir pour k € [1, n— 1], on sait que 1 _eH # 0 et on
peut donc bien diviser. On obtient
el 1
=—i
21kT[ _ 1 tan (k_r;[)

en utilisant la méthode de I'angle moitié.

=

® Conclusion:|.¥# = {z eC

1
Jdke|l,n-1),z=-1——— /|
[1,n-1], z ltan(k“)}

n

Exercice 14 | & Soit g € |-Z; Z[ fixé. On veut résoudre I'équation :

(E) (1+iz)*(1—itang) =2(12—1z)3(1 +1itan).

— z=2.

Donc

. La fonction tan réalise une bijection de ]— > —[ dans R et nous avons montré

que z estréel. Posons dés lors, puisque z € [IZQ{ 2 = tan 0 et résolvons'équation
ci-dessousen @€ |-2,2[:

(1+itanB)*(1-i tan(p) =(1-itan0)*(1 +itan¢).
Elle est équivalente a

1+itan0)\3 1+itang

(l—itanﬂ) ~l-itang’
ou encore, en multipliant par cos 6, cos ¢, au numérateur et dénominateur,

cosO+isinf)® [ e'° ¥ 6o

(cose—i sine) B (e‘ie) - ¢

cos@+ising e'?

= = eZi(p
cosp—ising e1¢
Donc on est amené a résoudre en 0 € ]
619 — e ig

2’5

D'ol1 60 = 2¢ + 2km avec k € Z, i.e. 0 = %’m. On ne garde ensuite que les
solutions dans |-%, 2, I'ensemble des solutions est

{tan((p+kn), (p+kn€]_2 bis }
3 3

2’2

Trigonométrie

W/ Lycée Michel MONTAIGNE — Bordeaux

1. Montrer que si z est solution de (E) alors [1 —iz| = |1 +iz|. En déduire que z est

réel. Exercice 15 | Linéarisation Linéariser les expressions suivantes.
= 1 i i A . . .
2. Posons z = tan 0. Justifier ce changement d’inconnue, puis résoudre (E). 1. sin’x, 2. sin®xcos?x, 3. cos®x,sin®x,
4. sin®xcos® x, 5. sin®xcos?x.

Solution (exercice 14)
1. Soit z une solution, alors passons au module : |1 +iz|?

=1-iz]®

ol - s Solution (exercice 15)
puisque 1 + tan® = W Donc en multipliant par |cos ¢| et en utilisant la po- u . ) ) ; o '
sitivité des modules, on obtient:  |[1+iz| = |1 —iz|.|Elevons ceci au carré, 1. Ofl utilise la formule d’EULER, puis on développe grace a la for'mule du pl_
on a alors : nome de NEwToON. Il suffit ensuite de rassembler les exponentielles conju-
. . guées, et d'appliquer a nouveau la formule d’EULER dans l'autre sens.

[1+iz|=]1-iz| gix _ orix\5

— |1+iz|*=|1-iz|? sinsx:(T)

— (1+iz)(1-iz)=(1-iz)(1+i%z) 1 . o . . . . . . .

l—iZ+iz+ |Z|2 —l_iz+iz+ |Z|2 — ﬁ (e51x _ 5e41xe—1x + 10e31xe—21x _ 10e21xe—31x + Selxe—41x _ e—51x)
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1 . ) ) . . .
— 37 (651x _ e—51x _ 5(631x _ e—31x) + lo(elx _ e—lx))
1

= i (2i sin(5x) — 5(2i sin(3x)) + 10(2i sin(x)))

On obtient finalement : |sin® x = %gx) — 2sin(3x) + 2 sinx|.

2. Attention de ne pas linéariser séparemment les deux termes! Il faut ici déve-
lopper toutes les exponentielles, avant de repasser aux cosinus et sinus.

sin® x cos? x

~ el® —eix 3 el 4 eix 2
B 2i 2

= _8_11 X le x (e3ix —3el* 4 3e71% _ e—3ix)(e2ix +2+ e—zix)

= ;TIi(eSix +2631% 4 ol¥ _ 331X _ gelX _g-ix 4 30ix 4 ga-ix
+3e31% _gTix _gedix _ e—six)

= 3_711 (esu — 70X _ (e8I _ g73ix) _p(el¥ — e‘i"))

-1
=331 (2i sin(5x) — 2i sin(3x) — 4i sinx).

sin(5x) | sin(3x) |, sinx
16 16 8 |

cos (6x) + 3cos(4x)
32 16 32

6.
— <) 4 & cos (4x) - $2 cos (2x) + & |

On obtient :|sin® x cos® x = —

15cos(2x) , 5

On obtient :|cos® x = +3

On obtient :|sin® (x) =

o v & W

On obtient : |sin* (x) cos* (x) = 5+ (cos (8x) — 4 cos (4x) +3)|

Exercice 16 | Antilinéarisation

1. Exprimer en fonction des puissances de cos x et de sin x : cos (3x) et sin (4x).
2. Exprimer en fonction des puissances de cosx et de sinx : cos(5x) et sin(5x). En

déduire la valeur de cos(Z).

Solution (exercice 16)

1. Il s’agit ici d’utiliser la formule de MOIVRE pour exprimer le cosinus comme
la partie réelle d’'une exponentielle complexe, et le sinus comme sa partie
imaginaire. Puis on calcule 'exponentielle comme une puissance, en déve-
loppant grace a la formule du bindbme de NEwWTON, et on identifie la partie
réelle et la partie imaginaire.

Onobtient: ‘sin4 (x) cos® (x) = 55 (cos (7x) — cos (5x) — 3 cos (3x) + 3 cos (x)) |

On a cos(3x) = Re(e®*). On ade plus:

e3* = (e'*)® < (cosx +isinx)?

= cos® x + 3i cos® xsinx — 3 cos xsin® x — i sin x.

On a donc cos(3x) = Re(cos® x + 3i cos? xsinx —3cosxsin® x —i sin®x) =
cos’x — 3cosxsin’x, soit, en utilisant sin’x = 1 — cos’x
‘cos(Sx) =4cos®x -3 cosx‘.
De méme, on remarque que sin(4x) = Im(e**). La méme méthode
donne : ‘sin(4x) = 4cosxsinx(cos® x —sin® x) = 4 cosxsinx (1 — 2sin® x)‘
On applique la méme méthode, et on obtient :

cos (5x) = cos® (x) — 10 cos® (x) sin? (x) + 5cos (x) sin* (x)

sin (5x) = sin® (x) — 10 cos? (x) sin® (x) + 5cos* (x) sin (x).
On commence par exprimer cos (5x) en fonction de cos x uniquement :

cos (5x) = cos® (x) —10cos® (x)(1 — cos? (x) + 5cos (x)(1 — cos? (x))?

=16co0s’(x) —20cos3(x) +5.
En prenant x = {; dans la relation précédente, on a alors :
[To) = 160015 -20005 ({5 +5.
cos 16 cos 20cos +5
10 10 10

En remarquant que cos (3 ) = cos (%) = 0, on obtient que cos () est solu-
tion de I'équation :

16X° —20X3 +5=0 < X(16X* -20X%+5) =0.
Ainsi c'est équivalenta:X = 0 oua 16X*—20X*+5 = 0. Comme cos (%) # 0,
on doit donc résoudre : 16X* — 20X* +5 = 0. On pose encore Y = X* afin de
se ramener a une équation du second degré en Y et on obtient : 16Y? —

20Y + 5 = 0. Les solutions sont alors Y = %g ouY = %. Ainsi, comme
Y=X?ona

Comme % € [0, %], on sait, le cosinus étant décroissant sur cet intervalle

V3

2

que: 0 < %= < cos (1—’:)) < 1. En particulier, il ne peut pas étre négatif, donc

1 5-45 3
— =< < =

4 8 8
R L )

\S]

(o]
\S}
\}
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En particulier,ona: \/ T‘[ i = (%), et donc cos(lo) _ /55 i

Exercice 17 | & Soient n € N~{0} et x € R. Calculer :

Y0 €0s*(px).

Solution (exercice 17) En utilisant les formules d’Euler, nous avons
Z cos?(px) = Z (elP* + g7 1P*)?
p:O

i (eZipx +e—2ipx +2)
p:

(=]

i

n
efP¥ 1+ ) e HPY 4 (n+ 1))
p=0

1 1_e21("+1)x l_e—Zi(n+l)x .
1 ( o t e t2(n+1)| six¢Z,
3(n+1) _

4 sinon.

I
P N N N

Or, par propriété de la conjugaison, on constate que :
1 — e2i(n+)x 1 — e-2i(n+1)x
1 — e2ix = 1 —e—2ix

Dong, si x ¢ N, on peut finir le calcul en utilisant la technique de 'angle moitié

) 1 e21(n+1)x
pZoCOS (px) = (ZRe(—l_e21 +2(n+1)
i(n+1)x _o9: o3
:E(Re(e(,l 21s1r.1((.n+1)x))+(n+1))
2 elx —2isin(x)
|1 nx\sin((n+1)x)
= E(COS(7)—sin(x) +(n+1)).

Exercice 18 | @ Soient n € Net (a,p) € R%. Calculer :

1. C=X7_(;)cos(o+kp), 2. S=Y}_,(7)sin(a+kp).
Solution (exercice 18) Commencons par calculer
= (1) iarkp)
€ )
£L

il suffira ensuite de calculer la partie réelle et imaginaire.

=7 i« v [P
Y (k)e( +kB) — o Y (k) (e rs)k >
k=0 k=0 binome

=e'*(1+e'P)"
n angle moitié
=e'“ (eig (2005(9))) , >
2
— eia+nigzn cos” (E)
5]

On déduit alors les parties réelles et imaginaires,

i (Z) cos(a+ kp) = Re(i (Z)ei(“kﬁ))

k=0

=[2"cos" (g) cos ((x + ng) ,

= (. - (7 i(o+
Z(k)sm((x+kﬁ)=lm(2(k)e( kﬁ))

k=0 k=0

=[2" cos” (g) sin (0( + ng) .

Devoir-maison fﬁ

Exercice 19 | Lien forme algébrique et exponentielle On définitles complexes

ci-apres:

P WN A

j:ei%n, zZg=1+1i, z;=(1+1)j =724xj, z2=(1+i)j2=z0xj2.

Donner I'écriture exponentielle de z,, z; et z,.

. Donner I'écriture algébrique de j puis celle de z;.
. En déduire les valeurs exactes de cos
. Onpose w =—-2+2i.

lln) 11n

et sm(—2)

41) Ecrire w sous forme exponentielle.
42) Résoudre dans C I'équation (E) : z° = w. On recherchera les solutions sous
forme exponentielle puis on reconnaitra z,, z, et z,.

Solution (exercice 19)

1. Ona: |z|=V12+12=/2.
Ainsi : z0=\/_(7+1\[) \/E(fﬂf) V26l i

En profitant des formes exponentielles a notre disposition :
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z = (1+i)j = vV2eTel s = /2¢! i(3+%) = V2el flrérIl)triZﬁ:;lzilg;,Oz'lket:zlz.ﬁi;’s]ic;:2. On retrouve alors les formes expo-
z=(1+1)j2 = V2eiTel ¥ = 2el(I+¥) =| \/2¢ P =120, 21,2}
2. Ona: j=cos(&)+isin(%)= —%+i§.Aussi,
zp = (1+1)j

:(1+i)(—%+i—)

3. D’apresla question1,0ona:
: 1ln 117 117
=+/2e'12 =+/2cos (—) +i ZSin(—).
\/_ \/_ 12 12
1+\/§ i \/§—1

Or,on aobtenuque 2z, =--—- dans la question précédente.

Ainsi: v/2cos( ) +i Zsm(“") = 1+‘[ ‘[ L Par identification des
parties réelles et imaginaires :

{ﬁcos(%): R {C"S(—;‘) S
V/2sin (42) Vi1 : 5
4. 41) Ona: |w|=+1(-22+22=+8=2\2.

puis: w=2v2(-L+i %) =[2v2¢ 7]

4.2) 0 n'est pas solution de (E). Posons alors z = pe®, oi1p > 0 et 0 € [0, 27].
Ona:

() = z2*=w
— plel = 2y/2e'%

(:){p =22 — {p=\/5

kez, 30=%+2n

sin(1%2)




Analyse




