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Calculs de primitives, intégrales &
Equations différentielles

Chapitre (AN)2

n CALCULS DE PRIMITIVES

1 Calculs de primitives............ Résumé & Plan
2 Equations différentielles........ Nous allons voir dans une chapitre
EXEICICES v nmmeeeseeneannnns un outil clef qui va nous permettre n Généralités
Dapres un théoréme de de modéliser divers phénomenes :
] lanotion d’équations différentielles. P o e
LIOUVIfLZE’ la fon Cf ton , q . Définition 1| Primitives
x — e~ nepossede pasde  Ce type d'objet apparait naturelle- Soit f : 1 — R une fonction définie sur un intervalle I de R. On appelle primitive
primitive qui puisse ment dans de nombres domaines : de f sur I toute fonction F : T — R dérivable telle que F' = f.
sexprimer a laide des en électricité, en mécanique, en bio-
fonctions usuelles (In, exp, logie (dynamiques de population) Une primitive réalise 'opération inverse de la dérivation : on part d’'une fonction, et
cos, sin etc.). AL on cherche a savoir si elle s'écrit sous forme d’'une dérivée.
— Le saviez-vous ? Exemple 1
2 2 . o,
® x — % et x — % — 6 sont des primitives de x — x sur R,
. L P , L. — et imiti —s et 1
Parmi toutes les disciplines mathématiques, la théorie des ¢ x e* —In(x) est une primitive de x e’ — 3 surRy.
équations différentielles est la plus importante. Elle fournit
lexplication de toutes les manifestations élémentaires de la Proposition 1| Ensemble des primitives

Soit f : 1 — R une fonction définie sur un intervalle I. SiF : I — R est une
primitive de f sur l'intervalle I, alors les primitives de f sur I sont les fonctions
delaformeF+c,ouceR.

nature ot le temps est impliqué.
— Sophus LiE

Y

® Les énoncés importants (hors définitions) sont indiqués par un 9.

® Les énoncés et faits a la limite du programme, mais trés classiques parfois, seront
indiqués par le logo [H.P]. Si vous souhaitez les utiliser & un concours, il faut donc
en connaitre la preuve ou la méthode mise en jeu. Ils doivent étre considérés comme
un exercice important.

® Les preuves déja tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent étre lues uniquement par les curieuses et curieux. Nous n'en
parlerons pas en cours.

On retiendra notamment que si f admet
une primitive, alors elle en admet méme
une infinité : puisque si F est une pri-
mitive, toutes les fonctions F + ¢ avec ¢
une constante en sont aussi. Il n’est donc
pas question de parler de la primitive de
f-Nous admettons le théoréme ci-apres,
difficile a démontrer.

Un objet central nous servira pour la résolution d’équations différentielles : les pri- X
mitives. On commence donc par des révisions & compléments sur le sujet.
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Preuve

4

Theoréme 1| Existence de primitives pour les fonctions continues
Soit f : 1 — R une fonction continue sur un intervalle I. Alors :

® f posséde une primitive sur I.
® Pour tout x, € I et y, € R, il existe une unique primitive F telle que F(x,) = y,.

Graphiquement, parmi toutes les primitives de f, il n'en existe qu'une seule F dont
la courbe représentative 6 passe par le point (x,,,). Ce théoréme est admis, la
démonstration (peu importe laquelle) dépasse tres largement le programme de 1ére
année.

Preuve Nous admettons I'existence. Démontrons 1'unicité avec condition initiale.

4

Enfin, la propriété de linéarité de la dérivation se transmet alors automatiquement
aux primitives.

Proposition 2 | Linéarité de la primitivation
Soient f : 1 — R ,g : I — R deux fonctions, F une primitive de f et G une
primitive de g. Alors : pour tout (A, p) € R?, AF + uG est une primitive de A f + ug.

Preuve Immédiat par linéarité de la dérivation: (AF+ pG)' = AF' +pG =Af +pug.

Méthode (AN) 21 (Justifier existence d’'une primitive) Il suffit de montrer la
continuité de la fonction, le plus souvent en utilisant des théoremes d’opéra-
tions élémentaires sur les fonctions continues.

Exemple 2 Déterminer, sur un domaine a préciser, une primitive des fonctions
ci-apres.

1. x—2x

3. x—¢€f

5. Xx—cosx

7 x—3+-L

7

' Exemple 3

x—x?-3x+1

X — sinx

® Pour x > 0, on pose F(x) = xIn(x) — x. Montrer que F est dérivable sur R**,
et calculer la dérivée, ainsi que F(e). Que remarque-t-on?

4

® En déduire l'unique primitive de In qui s'annule en 1.
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n Primitive & Intégrale sur un segment

Nous allons introduire une notation qui sera étudiée plus en détail plus tard dans
I'année (22). Nous ne motivons pas encore outre mesure son introduction, pour l'ins-
tant il faudra juste comprendre son utilité pour le calcul de primitives.

Cadre

Dans toute cette sous-section, la notation [a, b] désignera toujours un seg-
ment, avec a, b € R.

— Définition/Proposition 1| Intégrale d’une fonction continue sur un segment —
Soit f : [a, b] — R une fonction continue sur [a, b].

b
® On appelle intégrale de f sur le segment [a, b] le réel noté f

fa " Fx)dx, f[ @ dx ) défini par: '

f ( ou encore

b B b B B
[a fdx = [FLL = Fb)-Fa)

(ou F désigne une primitive de f).

b
® On appelle intégrande de f fla fonction f.
a

b

Preuve Laquantité f f(x)dx ne dépend pas de la primitive choisie. La définition de l'in-
a

tégrale sera donc bien posée.

4

Remarque 1
® Sia = b, alors avec les notations de la définition précédente, on a:

[ 1 =Rz =F(@-F@ =o0.

b
® Si f =K e Rest constante, alors : f f(x)dx = [Kx]Z =K(b-a).

a
® Lavariable utilisée dans I'intégrale est, comme dans les sommes et produits,
muette.

Exemple & Calculer les intégrales ci-apres.
1
1 f (-4x® + x* -1)dx,
0

4

2 dt
2. f ,
1 2t—1
7
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T
3. f I,e "/*dt avecl,,T,T € R".
0

PROPRIETES CALCULATOIRES DE L'INTEGRALE. Lidée est ici seulement d’éta-
blir les propriétés qui vont nous servir pour le calcul de primitives. Nous viendrons
compléter cette liste plus tard, dans le 22 dédié a I'intégration.

— Proposition 3 | Propriétés de I'intégrale
Soient I un intervalle et (a, b) € I?. Alors :
® [Linéarité] Pour tout (f,g) € (¢°(I,R))* et (A\,n) e R*, ona:

Lb(Af+ug)=ALbf+ung-

® [Positivité] Sif e €°(I,R)et a<b, alors:
fz0—= fbf = 0.
® [Croissance] gi (f,g) € (€°(1,R))* et a< b, alors:
f<g= fabfsfabg-
® [Relation de CHASLES] Soient f € €°(I,R) et ¢ € I. Alors :
[r=["s+[r.
® [Ordre des bornes] Si f € €°(I,R), alors :
fir=='r
Preuve
°o

® SiFestune primitive de f, alors'’hypothése nous donne F' = 0, donc que F est croissante.
b
On obtient immédiatement f f =F(b)—-F(a)=0puisque a < b.
a

o

Citons également deux propriétés parfois utiles dans les calculs, qui concernent le
crochet, et qui ont déja été justifiées dans la preuve précédente.

— Proposition 4 | Propriétés du crochet
Soient I un intervalle et (a, b) € I2.
® [Linéarité] SoientF,G:I— R deux fonctions, et (A, 1) € R, ona:
[AF +uGls = X [F15 +u[Gl}.
® [Ordre des bornes]
[F]a = - [FI;.

Si F: I — R est une fonction, alors:

La relation de CHASLES permet de calculer notamment des intégrales dont I'inté-
grande est définie par morceaux, voyons un exemple avec la valeur absolue.

Exemple 5
1. Calculer fz |sin (x)|dx.

-1
2

E]



g ©

g S réel.

0 Note | Je r'utiliserai pas ces notations.

8

@ Preuve

5 s

[a T

O

m

2. Calculer fo min (E’x) dx. Le théoreme précédent nous montre tout I'intérét de calculer des intégrales pour
ys obtenir une primitive.
»'
Méthode (AN)2.2 (Primitiver une fonction en utilisant une inté-
grale) Lorsque vous avez besoin d’'une technique d’intégration (intégration par
parties ou changement de variable par exemple) pour primitiver une fonction
X

f :I— R continue sur I, choisir a € I, puis calculer f f pour tout x € I.. Si la

LO a
fonction f n'est pas définie en un point, on prendre garde a bien effectuer ces
calculs pour les x ot c’est possible.

Exemple 6 Donner la primitive sur R qui s'annule en 0 de x — 27,

7
LIEN ENTRE PRIMITIVE ET INTEGRALE. Par définition de I'intégrale, il est néces-
saire de connaitre une primitive pour la calculer, il existe donc un fort lien entre les
deux notions. Voyons lequel.
Théoréme 2 | Lien primitive & Intégrale
SoientIunintervalle, a € Iet f : I — R une fonction continue. Alors la fonction :
I — R
F: X — fxf(t) dr m Primitives usuelles
a

est 'unique primitive de f sur I qui s’annule en a.

Dans les tableaux suivants, pour chaque fonction f définie sur un intervalle I précisé,
on donne une primitive F. Les primitives suivantes doivent étre connues par coeur,

e Notation o "
. . . . P . ou a minima étre retrouvées rapidement.
Soient I un intervalle, f : 1 — R une fonction continue. Le théoréme précédent P

justifie la notation ci-dessous parfois utilisée :
] f f(¢)dt ou f f désigne une primitive de f, c’est une fonction, et Eenanion

X X
o f f(t)dt ou f f désigne la valeur en x € R d’une primitive de f, c’est un

W/ Lycée Michel MONTAIGNE — Bordeaux



BCPST1 (€9 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Alaide des formules du tableau et de la dérivation d’'une composée, on peut calculer
. o, U ! . 2 _.*
une primitive de u'u", 75, %, u' cos u, u’sinu, u'e" etc. lorsque u est dérivable.

< In(|ul)
u' x cos(u) sin(u)
u' x sin(u) —cos(u)
o _ 2
oo = u' (1+tan®(u)) tan(u)
13;2 arctan(u)

On a donc par conséquent (lorsque u(x) = ax+bet u'(x) = a.

Condition

ax+ b))t
(ax + b)* Q-l 10, 00[ a+ -1
a+1
1 In|ax+b|
_— R~{a aclR
ax+b a ta}
ax+b
eax+b e R ae [R*
a
—cos(ax
sin(ax + b) —cos(ax) R acR*
a
sin(ax) .
cos(ax +b) —_— R acR
a

Exemple 8 Déterminer, sur un ensemble a préciser, une primitive des fonctions

suivantes.
2
. X
1. f X m
o’
RN sin(x)
2. g X 03 (x)"
o’

1 —In|cos(ax + b
" In|x]| R~ {a} aelR tan(ax + b) | ; ) cos(x) #0
e* e’ R aeR*
In|x| xln|x|—x R*
sin(x) _ cos(x) i 4ER Exemple 7. (Pu1s§ances) Déterminer, sur un ensemble a préciser, une primitive
des fonctions suivantes.
cos(x) sinx R acR” 1 fix— 1+3x
tan(x) —In|cos(x)] cos(x)#0 g
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CAS DE FRACTIONS RATIONNELLES.
trinéme.

3. h =tan. (Celajustifie la formule énoncée dans le tableau)

Méthode (AN) 2.3 (Primitives de fractions rationnelles) On sait déterminer
1

ax?+bx+
constantes réelles et a # 0. Il suffit de discuter selon la valeur du discriminant
A
1. si A > 0, alors on factorise le dénominateur pour se ramener a x —
1

.. o
(x-a)(x—p) S
serez toujours guidés a cette étape dans les exercices) qui se primitivent avec un loga-
rithme.

une primitive des fonctions de la forme x — ou a, b et c sont des

puis on écrit la fraction comme somme de deux autres (vous

1

- N9 )

(x —a)?

3. si A <0, alors on met le dénominateur sous forme canonique et on effectue
1

uw?+1

2. SiA =0, alors on factorise le dénominateur pour se ramener a x —

un changement de variable pour se ramener a u —

Exemple 9 Déterminer une primitive des fonctions suivantes sur un domaine a

préciser.
1
24 x—
¢ [Domaine] Cherchons le domaine de continuité 2 de la fraction.

4

.f:x.—>

On s’intéresse ici aux inverses de fonctions

¢ [Décomposition en éléments simples]
constantes de sorte que :
1 A B

Vxeg, = + .
x24+x-2 x-1 x+2

¢ [Primitivation]

"
o 1
xX— —
§ 4x2 —4x+1
U4

Déterminer A,B € R deux
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1
® h:x—
x2+x+1
’I

Remarque 2 Dans les exemples précédents, le numérateur était égal a 1. N'im-
porte quelle fraction rationnelle peut se « ramener » a une telle fraction; c’est
le théoréeme de « décomposition en éléments simples » complétement [H.P| en
BCPST. Vous serez donc toujours guidés sur ce sujet.

CAS DE FONCTIONS TRIGONOMETRIQUES.

Méthode (AN) 2.4 (Primitive de cos” sin?, avec p, g € N)

- - e - . g+l
1. Sip =1, une primitive directe de cos x sin? est : s“;‘T.

. o e,. . . p+l
2. Si g =1, une primitive directe de cos” x sin est : C‘;SH

3. Dans tous les autres cas : commencer par linéariser I'expression (si elle com-
porte des produits/puissances), a 'aide de nombres complexes si besoin,
puis primitiver.

Exemple 10
1. Déterminer, sur un ensemble a préciser, une primitive de x — sin? x.

7

2. Déterminer, sur un ensemble a préciser, une primitive de x — cos® x.

3. Déterminer, sur un ensemble a préciser, une primitive de x — cos® xsin x.
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Techniques de calculs d’intégrales

Nous avons vu précédemment que calculer une primitive revient a un calcul d’in-
tégrale. Pour ces dernieres nous disposons de deux techniques principales de cal-
cul : I'intégration par parties et le changement de variable. Ces techniques doivent
étre envisagées naturellement lorsque l'intégrande ne se primitive pas de maniere
évidente. Introduisons au préalable une notation qui nous permettra de décrire les
hypotheses portant sur les fonctions avec lesquelles nous allons travailler.

— Définition 2 | Fonctions de classe €'
Soit I un intervalle. On dit qu'une fonction f définie sur I est de classe 6" si :

(i) f est dérivable sur 1,
(ii)

On note €' (I) 'ensemble des fonctions de classe € sur I a valeurs réelles.

f' est continue sur I.

On dit parfois, lorsque f est de classe 6", que « f est continitment

Note .
dérivable »

1l existe des fonctions dérivables non forcément € ; en revanche, de tels exemples
seront étudiés plus tard dans I'année (ils ne sont pas a chercher parmi les fonctions
usuelles en tout état de cause).

INTEGRATION PAR PARTIES. Cette formule sert dés que l'on souhaite intégrer un
produit dont I'un des termes devient plus simple en le dérivant.

Théoréme 3 | Intégration par parties
Soient u, v : [a, b] — R deux fonctions de classe €". Alors :

fbu'(t)v(t)dtz—fbu(t)u'(t)dt+[uu]z.

b
On utilise une intégration par parties des que f u(t)v'(t)dt estplus simple a calcu-
a

b
ler que f u'(t)v(t)dt : on ne s'occupe pas trop du crochet, puisque c’est un terme

a
qui se calculera de toute facon.

o

Attention

Toute intégration par parties doit étre justifiée, en rappelant convenablement
I'hypotheése € sur des fonctions appropriées.

Preuve  (Point clef — Intégrer la formule de dérivation d’un produit)
Puisque u, v sont supposées ¢',les fonctions u, v sont continues car dérivables, et #’, v’ sont
continues. Ainsi, uv’ et u'v) sont continues, donc leur intégrale sur [a, b] existe.

7

Méthode (AN)2.5  (Quand utiliser lintégration par parties? et mise en

place) Pour intégrer un produit de deux fonctions, dont 1'une est facile a pri-

mitiver et 'autre est facile a dériver. Exemple : une exponentielle multipliée par

un polyndéme. Lorsque 'on effectue une intégration par parties, on :

1. indique pour plus de clarté le terme que I'on dérive (écrire « v = » sous le
terme) et que I'on primitive (écrire « u' = » sous le terme).

2. Lors de I'écriture de la formule d’intégration par parties, on rappelle les hy-
pothéses de classe 6" sur les fonctions u, v.

Toute intégration par parties doit étre justifiée.

Exemple 11 Calculer les intégrales suivantes (o1 x € R).

X
1 f tel dr,
0

4
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1
2. f (> =t +3)e! dt.
0

3. fxtln(t2+ 1) dt.

1
4, f arctan(t) dt.
0

4

5. f *tan®(¢)dt. Indication : On reviendra a la définition de la fonction tan-

0
gente...

4

Exemple 12 Calculer une primitive de ¢ —
effectuant une intégration par parties.

R4

Int
t2

sur un domaine a préciser, en
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Exemple 13 Parmi les intégrales ci-dessous, expliquer la ou lesquelles vous

Vous noterez ici que l'on peut effectuer un « nettoyage » a posteriori des

Note .
constantes apparaissant.

semblent calculables. La calculer le cas échéant.

R4

1 2 1 2 1 2
Il :f e 2 dt, 12 :f e 2z dt, 13 :f e 2 dt.
0 0 0

Nous avions déja montré la proposition qui suit (en dérivant I'expression donnée).
Il s’agit ici de la retrouver via une autre méthode.

Proposition 5 | Primitive du logarithme
La fonction x € R** — xInx — x est 'unique primitive de In qui s’annule en e.

Preuve  (Point clef— intégration par parties)

4

On aurait pu également simplement dériver l'expression, et constater

Note 5 5
quelle sannuleene.

CHANGEMENT DE VARIABLE. Voici a présent une technique ressemblant assez
fortement a celle de changement d’indice vue pour les sommes et produits dans le
Chapitre (ALG) 4. Autant nous étions assez contraints pour les changements d’in-
dices (seuls quelques changements étaient autorisés), autant pour les intégrales la
plupart des fonctions €' conviendront. Voici la formule.

— Théoréme 4 | Formule du changement de variable
Soient f : I — R une fonction définie et continue sur un intervalle I, et ¢ :

[a,b] — 1 une fonction de classe €' appelée fonction de changement de va-
riable. Alors :

" = [ e,
\_V

¢(a) «Onpose x = (P(t) »

Contrairement aux changements d’indices dans les sommes, on vous donnera tou-
jours le changement de variable a réaliser. En revanche, vous devez savoir le mettre
en place, et le justifier.
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o Attention

Tout changement de variable doit étre justifié, en rappelant que la fonction as-
sociée est de classe €.

Dans la pratique, on réalise assez peu souvent un changement de variable en es-
sayant de « coller » a cette formule. On utilise plutot les calculs formels ci-apres, qui
correspondant a la formule de changement de variable « non-intégrée » ' : ainsi, si

Preuve  (Point clef— Intégrer la formule de dérivation d’'une composée.)

Notons que f et fo.¢' sont continues sur I et sur [a, b] respectivement, ce qui assure I'exis-
tence des intégrales. Introduisons une primitive F de f sur I (il en existe puisque f est conti-
nue). Alors F o ¢ est dérivable de dérivée F' o @ x ' = f o @ x ¢¢'. Autrement dit :

Viela,b], (Feq) (¢)=f(())e'(1).

7

on pose x = ¢(t), on écriera

«f(x)dx = f(e(2))d(@(1)) = f(@(£))¢'(£)dz.»

Ainsi, pour réaliser le changement x = @(f), on commence par écrire formelle-

ment :

ddip(r) _

« dx:d((p(t))ch’(t)dt — —(p’(t)».

ddz

Méthode (AN) 2.6 (Changement explicite — Nouvelle variable en fonction de
b
Pancienne) Pour répondre a une question de type « Calculer f f(r)dt alaide
a

du changement de variable u = () », il faut :
1.
2.
3.

vérifier que f est continue sur [a, b] et que ¢ est de classe €’ sur [a, b].
Calculer les nouvelles bornes de I'intégrale ¢(a) et ¢(b).

Poser u = @(t) etcalculer: du=¢'(t)dt < dr = ﬁdu. Dans certains
contextes il peut étre donc nécessaire que ¢’ ne s'annule pas, les calculs for-
mels réalisés a cette étape justifient indirectement cela.

. Etavec des gros guillemets, car cette version sans intégrale n'a aucun sens mathématique.

I 4. «Remplacer» les t par des u dans I'intégrale.

Exemple 14 (Changement de variable explicite)

4 el+\/f
® (Calculer /
1 t

¢ enposant u = \/;

R4

dt.

o Retrouver le résultat précédent par primitivation directe.

11
® Calculer f ———dtenposantx = ve! +1.
0 Vel+1

4
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Méthode (AN) 2.7 (Changement implicite - Ancienne variable en fonction de

b
lanouvelle) Pour répondre a une question de type « Calculer f f(r)dtalaide
a

du changement de variable ¢ = @(u) », il faut :

1.
2.

vérifier que f est continue sur [a, b].

Calculer les nouvelles bornes de I'intégrale c’est-a-dire trouver deux réels a’
etb' telsquea=g(a')etb=q¢(b).

Vérifier que ¢ est de classe € sur le segment d’extrémités a’ et b'.

Poser t = ¢(u) et calculer: dt=¢'(u)du < du= m dz. Dans certains
contextes il peut étre donc nécessaire que ¢’ ne s'annule pas, les calculs for-
mels réalisés a cette étape justifient indirectement cela.

«Remplacer » les ¢ par des u dans l'intégrale.

Exemple 15 (Changement de variable implicite)

1.

1 V1-12
Calculer ————dt enposant f = cosu.
12 t?
7

1
2. Calculer f V' 1-x? dx en posant x = sin?.
-1

7

LY n

3. Soient: I= fi cos’xdx et J= fi sin? x dx.
0 0
31) Montrer quel=]en posant u = 5 —x.

4

3.2) Calculer I+], puis déterminer la valeur de I.
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s X s
Exemple 16 Calculer une primitive de x — T: sur un domaine a préciser, en
X

effectuant le changement de variable u = \/E

4

— Corollaire 1| Intégrale & Parité/Périodicité

touta € R,

f:”f(t)dt = fOTf(t)dt.

® Soit a € R} et soit f une fonction continue et paire sur [—a, a], alors :

0 a a 0 a
f(t)dt:f f(r)de, flt)de=2 f(t)dtsz f(r)dz.
—a 0 —-a —-a 0

® Soit a € R} et soit f une fonction continue et impaire sur [—a, a], alors :

0 a a
F(t)dt = —f fode, [ fyde=o.
—a 0 -a

® Soit T € R} et soit f une fonction continue et T-périodique sur R, alors pour

Remarque 3 Ces formules trouveront une interprétation simple dans le 22,
lorsque nous aurons revu 'intégrale comme aire sous la courbe représentative
de l'intégrande. Représentons déja la 1ere sur un dessin.

7

Preuve
o

® Méme preuve que précédemment, avec le méme changement de variable a opérer dans
0
f(e)de.
—a

® Commengons par décomposer I'intégrale comme ci-dessous (grace a la relation de
CHASLES) :

fa“”f(t)dt=faof(t)dmf:f(t)dt+fT“+Tf(t)dt.
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n EQUATIONS DIFFERENTIELLES

@ Cadre

Dans toute cette section,

® [ désignera un intervalle réel, qui sera appelé le domaine sde définition de
lVéquation différentielle.

® Lentier n désigneral'ordre de 'équation différentielle, le plus souvent n =
1,2.

Conformément au programme, nous étudierons mathématiquement uniquement
les équations différentielles linéaires. En Informatique, nous nous intéresserons a
la résolution numérique d’équations différentielles plus générales.

m Généralités

— Définition 3
Soit n € N*.
® Une équation différentielle d'ordre n sur R toute équation en une fonction in-

connue y € 2"(I,R), et portant sur y, y’, ..., y\".
® Résoudre une équation différentielle consiste a déterminer une solution du
probleme.

— Définition 4 | Linéaire
Soit n € N*. On appelle équation différentielle linéaire d'ordre n surR toute équa-
tion de la forme

Y+ a,  ()y"D + e+ ay ()Y + ag(2)y = b(2) (E,)
ot a; € €°(I,R) pour tout i € [1, n—1]. La fonction y € 2"(I,R) est appelée
inconnue de (E,, ). On appelle solution de (E,,) toute fonction y : I — R dérivable

telle que :
veel, y () +a,,(Oy" V() + -+ @y (0)y (1) +ag(1)y (1) = b(2).
® Elle est dite a coefficients constants si les fonctions a ..,a; sont
constantes.
® Résoudre une équation différentielle consiste a trouver une solution.
® On appelle courbe intégrale toute courbe représentative d'une solution.

n-1-

Il est trés important de comprendre que 'on résout ici le probleme en une fonction
y : cest 'inconnue de notre équation. Vous étiez habitués jusque la a résoudre des
équations portant sur des réels ou complexes.

— Définition 5| Homogéne
® ['équation (E,,) est dite homogene, ou sans second membre, si b est la fonction
nulle. (il n'y a donc que les termes en'y)
® Onappelle équation homogene associée a (E,,) ou encore équation sans second
membre associée a (E,)) I'équation suivante :

veel, y™+a, ()y"V++a(t)y +ay(t)y=0.

(H,)

Notation

Dans la suite, nous noterons . 'ensemble des solutions de (E,,), et #° I'en-
semble des solutions de (H,,).

Remarque 4 (Forme normalisée < Forme générale) Une équation de la
forme

ay ()Y +a, (YD 4+ @ (1)y + ag(2)y = (1)

est encore appelée une équation différentielle linéaire d’ordre n. La forme fai-
sant intervenir un coefficient 1 devant la dérivée s’appelle la forme normalisée
de I'équation différentielle, elle s'obtient en divisant les deux membres par la
fonction a,, sur tout intervalle ] ou a,, ne s'annule pas,
An-1(8) (n-1 a(t) ,  ao(t)  b(r)

a, (1) a0 " a,0" " @,
Danslasuite tous les résultats seront énoncés pour la forme normalisée, i.e. celle
des équations (E,) et (H,,).

vieln], y"™+

Exemple 17 Préciser les caractéristiques des équations différentielles ci-aprées;
nom de la fonction inconnue, nom de la variable, ordre, ce que signifie qu'une
fonction f est solution, homogeéne ou pas, etc.

1 y'+ty=0.

R4
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dg _
2 T 3q
4 STRUCTURE DE L'ENSEMBLE DES SOLUTIONS DE (E”). Mais pourquoi intro-
duire une version « homogeéne » d'une équation différentielle? Nous allons constater
que les ensembles des solutions de (E,,) et (H,,) possédent un lien fort.
Théoréme 5 | Structure des solutions de 'équation compléte
Siy, :1— R est une solution particuliere de I'équation complete (E,, ), alors les
solutions de (E,,) sont les éléments de :
S ={u+yp| €S} ouS estl'ensemble des solutions de (H,,).
En résumé :
3. 2—xz' =x%7". Solution
ys Solution générale Solution générale N
2 oA q —_— s 2 . 4 PARTICULIERE (= une
del'équation — de I'équation .
R R solution quelconque de
COMPLETE HOMOGENE

I'équation compléte)

La preuve ci-dessous exploite tres largement la linéarité de ’équation, ce résultat est
faux dans le cas contraire.

Preuve  Faisons par exemple la preuve dans le cas n = 1, elle est complétement similaire
dans les autres cas.

4

4, 3x3y" +2x%y" +y =m.

7

Les étapes de résolution d’'une équation différentielle homogéene sont maintenant
claires :
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1. calculer explicitement 'ensemble .#}, des solutions de ’homogene,

2. déterminer une solution particuliére y, de I'équation compléte. Pour l'ordre 1,
nous aurons une méthode systématique appelée variation de la constante, pour
l'autre 2 une forme a tester vous sera toujours donnée.

m Equations différentielles linéaires du 1°* ordre

— Définition 6 | Définition pour n =1
® On appelle équation différentielle linéaire du premier ordre sur 1 toute équa-
tion de la forme (E, ), c’est-a-dire une équation de la forme :

y'=a(t)y +b(2), (E1)
otta,b e €°(I,R).
® [équation homogene associée ou encore équation sans second membre asso-
ciée a (E,) est'équation suivante :

2.21

rect I'ensemble des solutions de I'équation (H,).

y'=a(t)y. (H,)

Exemple 18

® 2y’ =3ty esthomogene d’'inconnue y : t — y(t),

® y'+e*y=x%cos(x) dinconnue y : x — y(x) Léquation homogene associée
esty' +e*y=0.

® Pour E, 1 deux réels, dv

Ty, + v = E d’'inconnue v : t — v(t) a coefficients
constants et second membre constant. La fonction v, : t — E (1 —e !/ T) est

une solution de cette équation car :

4

@ Cadre

Dans la suite de cette sous-section, on se fixe une équation différentielle y’ =
a(t)y +b(t),avec a, b € €°(I,R).

Résolution de 'équation homogéne On connait par un calcul di-

Théoréme 6 | Résolution de 'équation homogene
Lensemble ., des solutions de (H;) est :

S, = {t — Cer® ‘ Ce [R} oUA :T— R est une primitive de a.

Preuve  (Point clef— Multiplier pare™, méthode du « facteur intégrant »)
La fonction a étant continue sur I, elle admet une primitive A sur cet intervalle.
® Siy est dérivable, calculons tout d’abord (e ™y)'.

4

Remarque 5
® Lorsquea = 1,onobtient]’équation différentielle y’ = y etle théoréme précé-
dentaffirme que y(¢) = Ce’ pour tout 7 € R. On retrouve notre brave fonction
exponentielle! En effet, étant donné que exp(0) =1, onaalors Cx 1 =1 donc
C=1,etdeslors: y=exp.
® ]| arrive parfois dans les sujets que I’équation différentielle homogene soit
donnée (pour l'ordre 1) sous cette forme :
y' +a(t)y=0.
On se rameénera alors a la forme du cours, puisque :
y+a()y=0=y'=-a)y.
Dans ce cas, 'ensemble des solutions est alors :
S = {t — Ce~A() ‘ Ce [R} ou A :] — R est une primitive de a.
Bref, dans tous les cas, on essaie de mettre y’ a gauche, seule, et le terme en y
adroite, puis on applique le théoréme du cours qui a le mérite de ne pas faire
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apparaitre de signe « — » dans 'exponentielle.

Exemple 19 (Homogenes d’ordre 1)
1. Résoudre: y'+ty=0.

7
2.2.2 Resolution de I'équation compléte On applique simplement le
théoreme déja démontré dans les généralités : toute solution est obtenue en som-
mant les solutions de ’homogene et une solution particuliere.
Théoréme 7 | Résolution de I'équation compléte
Lensemble .# des solutions sur R de (E,) est :
2 dg e els
2. Résoudre: = =3q. A :T— R est une primitive de a
’ d .V:{tel—»CeA(t)+yp(t)’C€lR}, ol _7p
) ¥p est une solution de (E, ).
Pour résoudre completement I’équation différentielle (E, ), il reste donc a déterminer
une solution particuliere y,, de ().
CAS DE COEFFICIENTS ¢, b CONSTANTS. Lorsque second membre et coeffi-
4 . Lo . . S
3. Résoudre: y'— 75y =0. cients sont constants, on peut rechercher une solution particuliére simplement sous
7 forme d'une constante; c’est ce cas qui arrive le plus souvent en Physique-Chimie et
S.V.T. notamment. Voyons plusieurs exemples.
Exemple 20
® Résoudre: y' =-3y-1.
Résolution de 'homogéne.
S
4. Résoudre : (1+1t?)y' +4ty =0.
S

Recherche d’une solution particuliére.
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dv

® Résoudre: 13, +v=E ouE,1sontdeuxréels fixés tels que T # 0.

Résolution de 'homogéne.

4

Recherche d’une solution particuliére.

Exemple 21 Soit k € R**. Résoudre :
Résolution de 'homogéne.

4

Recherche d’une solution particuliére.

Y +ky=2.

Exemple 22 (Généralisation) Soient (a,b) € R* x R. Résoudre: y' =ay+b.
Résolution de 'homogéne.

4

Recherche d’une solution particuliére.

On retrouve alors ici une formule qui vous aviez peut-étre déja vue au lycée :

b
VieR, y(t)=Ce?—-— avecCeR.
a

Cette formule n’est plus a apprendre par coeur, mais a retrouver a chaque fois.

CAS GENERAL : VARIATION DE LA CONSTANTE. Il s’agit de chercher une solution
particuliere de la forme des solutions de (H,), ol1 la constante C est remplacée par
une fonction dérivable t € I — C(t). Nous faisons donc varier la constante C au
sens propre du terme. Et ce procédé de recherche de solution particuliére a le bon
gott de fonctionner pour n'importe quelles fonctions continues a, b.

Méthode (AN) 2.8 (Variation de la constante) Chercher Vp sous la forme ¢ €
I— C(1)e*™®, oula fonction C : 1 — R est dérivable et est a déterminer.
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Justifions tout d’abord que cette méthode fonctionne toujours.

Preuve  Sil'on pose y,(t) = C(t)e*r®, pour tout ¢ € 1, oi1 C est une fonction dérivable sur I,
alors:

yp solutionde (E,) < y, =ay, +b < (Ce")' =aCe* +b
— Cef+CAe*=aCe*+b
< Ce* +Cat™=a€e™+D
— Ce*=b <= C =be™
< C est une primitive de be ™ sur L.

Puisque be™ est continue, une telle primitive existe. Une fois C déterminée (2 une constante
additive pres!), une solution particuliére est donnée par: Vtel, y,(t)= C(t)e™®),

Exemple 23 Résoudre: y'+3x%y = e
Résolution de 'homogéne.

4

Recherche d’une solution particuliére.

1
1+el”

Exemple 24 Résoudre: y'+y=
Résolution de 'homogéne.

4

Recherche d’une solution particuliére.

Parfois I'énoncé (alors sympathique) vous donnera aussi directement une forme sous
laquelle chercher une solution particuliére.
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Exemple 25 Résoudre: 3 +y=e %2 En résumé, sans condition initiale on a une infinité de solutions. Avec une condition
. . . initiale il y a unicité.
Résolution de 'homogéne. y

p’ Preuve
® Commencons par chercher une expression de y, soit A une primitive de a.
o On sait déja que toute solution y;; de 'homogene est de la forme yy; : £ € 1— C eA(®),
¢ On sait aussi d’apres la méthode de variation de la constante qu'une solution particu-
liere est de la forme y,, : t € I — C(r)e*") ou1 C est dérivable et vérifie C' = be™. La
t
fonction C définie par C(t) = f b(u)e™ ™ du convient. (unique primitive de be™
tp
sannulanten t,)
o Il existe donc Ce R, tel que:
, . . les . L e .
Recherche d’une solution patrf;jcullere. On cherchera une solution particuliere Viel, y(r)=Cet®+ f b(1)e™® du x MO,
sous la forme y, : t — ae“’"” ol a, a et b seront des réels. fo
P Or, y(t,) = Cer™ +0 =y, par hypothése, donc: C=e 2@y, +0.
2 o On déduit alors :

t
Veel, y(t)=e2@erD 4 | p(u)e ™A™ dy x eA®)
tp

t
= AWy f MO () du.
fo
® Ilreste tout de méme a vérifier que 'expression précédente ne dépend pas du choix d'une
primitive, ce qui garantiral'unicité. En effet, si B = A+ c est une autre primitive, avec c € R,
ona:

t
Vrel, eB(‘)'B('O)y0+f eBO-B p(y)du
tp

= eA(t)+/'A(”°)'/y0 + ft eA(t“/‘A(“)'/b(u) du

fo

t
= ADAGO) 4 f MDA (1) du.
tp

Exemple 26 Résoudre: y'—3y=5, y(0)=2.

Résolution de 'homogéne.

7

Nous savons donc a présent résoudre compléetement une équation différentielle li-

néaire d'ordre 1. Lorsque I'on ajoute en plus une condition initiale, alors il existe une

unique solution. Recherche d’une solution particuliére.
7

Théeoréme 8 | Résolution avec condition initiale
Soient ¢, €I et y, € R. Il existe une et une seule solution au « probleme de CAu-

y' = a(t)y+b(t),
() = weR.

CHY » :
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Exemple 27 Onreprend I'Exemple 21, déterminer 'unique solution vérifiant :
® y(0)=0

PRINCIPE DE SUPERPOSITION. Ce principe s'applique aux équations différen-
tielles lorsque le second membre s’écrit sous forme d'une combinaison linéaire.

Proposition 6 | Principe de superposition pour l'ordre 1
Soient a, by, b, € €°(I,R), A, p € R, et y;, , dérivables solutions de :
yi=an+b(1), y;=a(t)y,+b(1).
Alors y = Ay, + uy, estsolutionde: y' =a(t)y+[Ab,(t) + ub,(1)].

Le principe de superposition est donc utile lorsque le second membre fait apparaitre
une combinaison linéaire de seconds membres plus simples. Ce principe est cepen-
dant assez peu utile pour 'ordre 1, puisque I'on dispose de la méthode de variation
de la constante.

Preuve

4

Exemple 28 Déterminer une solution particuliere sur R de I'’équation différen-

tielle: y'—2y =3e’ +e*’.

® On commence par chercher une solution particuliere de y’ — 2y = e. On
trouve par variation de la constante:  VreR, y,(r)=—e’.

® Ensuite on cherche une solution particuliere de y’ — 2y = e?’. On trouve par
variation dela constante: VteR, y,(t) = te*.

® Par superposition: y, 1t — te?’ —3e’ est une solution particuliére de
I’équation différentielle de départ.

m Equations différentielles linéaires du 2"¢ ordre a coefficients constants

— Définition 7 | Définition pour n =2

® On appelle équation différentielle linéaire du second ordre surl a coefficients

constants toute équation de la forme (E,) cest-a-dire une équation de la
forme:

ay"+by' +cy=d(t)

ot (a,b,c) € R* xR? etde €°(I,R).

® ['équation homogene associée ou encore équation sans second membre asso-

ciée a (E,) est'équation suivante :

(Ey)

ay"+ by +cy=0. (H,)
— Définition 8 | Equation caractéristique
On introduit également I équation caractéristique de (E,) :
ar’+br+c=0, dinconnuereC. (EC)
Exemple 29
® 2y" =3y est homogene d’'inconnue y : t — y(t). Son équation caractéris-
tiques est :
7

® 2y"+y'—3y = e’ n'est pas homogene, d’homogene 2y” +y’ -3y = 0, d’incon-
nue y : t — y(t). Son équation caractéristiques est :

4
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) @ d .
® Pour E, T deuxréels, 5+ 2w, + 0j i = 0 d'inconnue ug : t — uc(t)

est a coefficients constants et homogene. La fonction ug : t — (¢ + 1)e™“0!
est une solution de cette équation car :

4

Son équation caractéristiques est :

Cadre

Dans la suite de cette sous-section, on se fixe une équation différentielle
ay"+by' +cy=d(t),avecd:1 — R continue, et a, b, c € R.

2.31 Resolution de 'équation homogéne Nous savons la encore déter-
miner facilement 'ensemble des solutions de I’équation homogeéne. Nous admet-
tons le résultat.

— Théoréme 9 | Résolution de I'équation homogene
Soit une équation différentielle de la forme (,) et (EC) son équation caractéris-
tique. On suppose que a # 0. On note A le discriminant de (EC).
® Si A > 0, c'est-a-dire si (EC) possede deux racines réelles distinctes o € R et

B eR,alors:
S ={t — Ae™ +BeP' | (A, B) € R?}.
® SiA =0, c'est-a-dire si (EC) possede une racine double a € R, alors :
F =1{r— e (At +B)|(A,B) e R?}.

v/

eta—ip avec (a,p) € R x R*, alors:
F = {t — e (Acos(pt) + Bsin(pt)) | (A, B) € R?}
={t — e™Ccos(pt +¢) | (C,) e R* x [0,27[}
(Dans la pratique, retenir la premiére forme, et savoir passer de l'une a l'autre en mettant en
place une transformation de FRESNEL)

® SiA <0, c'est-a-dire (EC) possede deux racines complexes conjuguées a +if

Preuve  Nous admettons I'ensemble du théoréme, mais prouvons dans le cas ol1 (EC) pos-
seéde deux racines complexes conjuguées a+ip et a —ip avec («,p) € R x R* que &# = &'
avec:

& ={r — e*(Acos(pr) +Bsin(pt)) | (A,B) e R?}

&' ={t— e*Acos(pt +¢) | (A, @) eR* x [0,27[}.

4
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Exemple 30 Résoudre les équations différentielles suivantes.
1 y'+y'-2y=0

4

2. y'-2y'+y=0

7
2.3.2 Resolution de l'équation compléte On applique encore une fois le
théoréme déja démontré sur le sujet : toute solution est obtenue en sommet les so-
lutions de ’homogeéne et une solution particuliére.
Théoréeme 10 | Résolution de 'équation compleéte
3. )" =y +y=0 Lensemble .# des solutions sur R de (E,) est :
4 S ={y+y,|y €S} oy, estune solution de (E, ).

DETERMINATION DE Yp : CAS DE SECONDS MEMBRES CONSTANTS. Pour ré-
soudre complétement I'équation différentielle (E,), il reste donc a déterminer une
solution particuliere y, de (E,). Le résultat au programme est celui ou le second

) ) membre d est constant.
4 Résoudre: y"'—w°y=0 et y"+w’y=0 (ol w estunréel non nul).

4 — Théoréme 11| Solution particuliére pour c € R une constante
On suppose que le second membre de (E,) est de la forme :
VieR, d(t)=deR. Alors:

® si 0 n’est pas racine de (EC) : on cherche une solution particuliére sous la
forme t—A (AeR),

® si 0 est racine simple de (EC) : on cherche une solution particuliére sous la
forme t— At (AeR),

® si 0 est racine double de (EC) : on cherche une solution particuliére sous la
forme t—At> (AeR).

Remarque 6 Dansl'immense majorité des cas, I’équation différentielle rentrera

dans le cadre « 0 n'est pas racine de (EC) ». En effet :

® ( est racine double de (EC) correspond a une équation caractéristique a(r —
0)?=r?=r?+0xr+0=0, donc al'équation différentielle ay” = 0. Le cours
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est bien entendu inutile pour la résoudre! en effet, si a # 0, il suffit de primi-
tiver deux fois, pour avoir: VteR, y(t)=Ar+BavecA,BeR.

® (estracine simple de (EC), si on note « la deuxiéme racine, correspond a une
équation caractéristique ar(r—a) = 0, doncsia # 0 al’équation différentielle
y" —ay’ = 0; elle est « faussement d’ordre 2 », car si on note z = y’ on obtient
z' —az = 0, une équation différentielle d’ordre 1 donc.

Exemple 31 Déterminer une solution particuliere réelle des équations différen-
tielles linéaires d’ordre 2 a coefficients constants suivantes :

1 y'—-y' -2y=2.

4

2. y'=2y'=1.

d2uc du, 2 _ N R R tel )
3. g 2wyt twpuc=Eol: wyeR, etEcRtelque: E#-w,.
4

DETERMINATION DE , : CAS DE SECONDS MEMBRES PLUS GENERAUX. Pour
des seconds membres plus généraux, I’énoncé vous donnera toujours une forme de
solution particuliere.

Exemple 32 Déterminer une solution particuliére des équations différentielles

ci-apres.

1. 2y"—y'—y =3cos(2t). Indication : Onrecherchera une solution particuliére
sous la formey,, : t — acos(2t) + bsin(2t) avec a, b des réels a déterminer

P4
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2. y"—y=te'. Indication: On recherchera une solution particuliére sous la
formey,:t — (a 2+ bt)e' avec a, b des réels a déterminer On commence
par calculer les dérivées. Pour toutt eR,ona:

yp() =(ar®+(b+2a)t +(b+c))e’
yp(£) =(at®+(b+4a)t + (2a+2b+c))e’.
Ainsi, Vp est solution si, et seulementsi,: ViteR,
(at?+(b+4a)t+(2a+2b+c)—at?—bt—c)g = te’.
Ou encore, de maniére équivalente :

a =1 )
4 = = = —
sa+2h =0 — @=wb

Il 'y a pas de condition sur c, donc on peut prendre ¢ = 0.

VieR, 4at+(2a+b)=1t+0 = {

Ainsi: |y, teER— @e‘t est une solution particuliére.

Admettant I'existence d'une solution particuliére avec un second membre continu
d, on peut démontrer 'existence et 'unicité ci-apres.

Théoréme 12 | Résolution avec condition initiale
Soient £, € I, (3p,4) € R%. 1l existe une et une seule solution au « probléeme de

y'+ay' +by = c(t),
CAUCHY » : y(to) = Yo
y'(t) J/(;-

Nous admettons ce résultat d’existence et unicité dans le cas de 'ordre 2.

Exemple 33 Résoudre: y"—2y'—3y=9t*avecy(0)=0ety'(0)=1.

Résolution de 'homogéne.

7

Recherche d'une solution particuliére. On recherchera une solution particuliére
sous la forme d’'une fonction polynomiale de degré 2.

4

Condition initiale.



BCPST1 (€9 2025-2026

27

W/ Lycée Michel MONTAIGNE — Bordeaux

PRINCIPE DE SUPERPOSITION. Le principe de superposition s’applique encore
pour les équations différentielles linéaires du second ordre a coefficients constants
admettant un second membre somme de plusieurs fonctions simples.

Technique du changement de fonction inconnue

® Le cadre de résolution des équations différentielles de ce cours est finalement as-
sez restreint; les coefficients doivent étre constants pour l'ordre 2, et de maniere
générale les équations différentielles doivent étre linéaires.

® Il est cependant parfois possible de s’y ramener a I'aide d’'un « changement de
fonction inconnue ».

Exemple 34 (Non linéaire alinéaire) Résoudre I'équation différentielle :
y'=ylny (E).

Cela revient donc a trouver I'ensemble des fonctions y, dérivables a valeurs

strictement positives, telles que :

VteR, y'(t)=y(t)Iny(t).
Indication : On pourra réaliser le changement de fonction inconnue y(t) =
e*) pour tout t.

4

o Résumé

Soit y une solution de (E). Alors posons z = Inoy. On a vérifié que z
est solution d'une équation différentielle (E’) que I'on sait résoudre.

Soit z une solution de (E'), alors y = exp oz est une solution de (E).
En d’autres termes, il y a une correspondance bijective entre les solutions de
(E) et (E') — il suffit donc de résoudre 'une ou 'autre pour toutes les avoir.

Exemple 35 (Non constants a constants) Résoudre :
T T
(1+x?fPy"+2x(1+x?)y'+4y=0 sur [

)

Indication : On pourra réaliser le changement de fonction inconnue z(x) =
y(tanx) pour tout x

4



FICHE METHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.
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(Résolution par changement de fonction inconnue) Soit
(E) une équation différentielle en une fonction y que 'on ne sait pas résoudre a
priori.
1. Soit une fonction z dépendant de y donnée par I'exercice (généralement « de
la forme z(t) =y o @(t) »).
2. Calculer les dérivées successives z,z',z”, ... (en fonction de I'ordre de I'équa-
tion différentielle en y).
3. Evaluer (E) en () pour tout € R.
4. Combiner 2) et 3) pour trouver une équation différentielle en z.

(Justifier I’existence d’une primitive) Il suffit de montrer la
continuité de la fonction, le plus souvent en utilisant des théoremes d’opéra-
tions élémentaires sur les fonctions continues.

(Primitiver une fonction en utilisant une inté-
grale) Lorsque vous avez besoin d’'une technique d’intégration (intégration par
parties ou changement de variable par exemple) pour primitiver une fonction

X

f :1— R continue sur I, choisir a € I, puis calculer f f pour tout x € 1. Si la

a
fonction f n'est pas définie en un point, on prendre garde a bien effectuer ces
calculs pour les x ou c’est possible.

(Primitives de fractions rationnelles) On sait déterminer
1

) ) ax®+bx+ -
constantes réelles et a # 0. Il suffit de discuter selon la valeur du discriminant
A

1. si A > 0, alors on factorise le dénominateur pour se ramener a x —
1

(x-)(x—P) SO
serez toujours guidés a cette étape dans les exercices) qui se primitivent avec un loga-
rithme.

une primitive des fonctions de la forme x — ou a, b et ¢ sont des

, puis on écrit la fraction comme somme de deux autres (vous

2. SiA =0, alors on factorise le dénominateur pour se ramener a x — ﬁ,
3. siA <0, alors on met le dénominateur sous forme canonique et on effectue
un changement de variable pour se ramener a u — u21+ T
(Primitive de cos” sin?, avec p, g € N)
1. Sip =1, une primitive directe de cos x sin? est : “;Tq?.
2. Si g =1, une primitive directe de cos” x sin est : —C‘;Tplﬂ.

3. Dans tous les autres cas : commencer par linéariser I'expression (si elle com-
porte des produits/puissances), a 'aide de nombres complexes si besoin,
puis primitiver.
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(Quand utiliser l'intégration par parties? et mise en
place) Pour intégrer un produit de deux fonctions, dont 1'une est facile a pri-
mitiver et 'autre est facile a dériver. Exemple : une exponentielle multipliée par
un polyndéme. Lorsque 'on effectue une intégration par parties, on :

1. indique pour plus de clarté le terme que I'on dérive (écrire « v =» sous le
terme) et que I'on primitive (écrire « u' = » sous le terme).

2. Lors de I'écriture de la formule d’intégration par parties, on rappelle les hy-
pothéses de classe € sur les fonctions u, v.

Toute intégration par parties doit étre justifiée.

(Changement explicite - Nouvelle variable en fonction de
b
Pancienne) Pour répondre a une question de type « Calculer f f(t)deralaide
a

du changement de variable u = ¢(t) », il faut :

1. vérifier que f est continue sur [a, b] et que ¢ est de classe € sur [a, b].

2. Calculer les nouvelles bornes de l'intégrale ¢(a) et @(b).

3. Poser u = @(t) etcalculer: du=¢'(t)dt < dt = ﬁdu. Dans certains
contextes il peut étre donc nécessaire que ¢’ ne s'annule pas, les calculs for-
mels réalisés a cette étape justifient indirectement cela.

4. «Remplacer » les t par des u dans I'intégrale.

(Changement implicite — Ancienne variable en fonction de
b
lanouvelle) Pourrépondre a une question de type « Calculer f f(r)dtalaide
a

du changement de variable ¢ = ¢(u) », il faut :

1. vérifier que f est continue sur [a, b].

2. Calculer les nouvelles bornes de I'intégrale c’est-a-dire trouver deux réels a’
etb' telsquea=g(a’)etb=q¢(b).

3. Vérifier que o est de classe €' sur le segment d’extrémités a’ et b’.

4. Posert = @(u)etcalculer: dt=¢'(u)du < du= ﬁ dz. Dans certains
contextes il peut étre donc nécessaire que ¢’ ne s'annule pas, les calculs for-
mels réalisés a cette étape justifient indirectement cela.

5. «Remplacer» les ¢ par des u dans 'intégrale.

(Variation de la constante) Chercher Yp sous la forme ¢ €
I — C(t)e*®, ou11a fonction C : 1 — R est dérivable et est 2 déterminer.

(Résolution par changement de fonction inconnue) Soit
(E) une équation différentielle en une fonction y que 'on ne sait pas résoudre a
priori.
1. Soit une fonction z dépendant de y donnée par I'exercice (généralement «de

la forme z(t) =y o @(t)»).

. Calculer les dérivées successives z,z’, z", ... (en fonction de l'ordre de I'équa-

tion différentielle en y).

. Evaluer (E) en ¢(¢) pour tout ¢ € R.
. Combiner 2) et 3) pour trouver une équation différentielle en z.
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QUESTIONS DE COURS POSEES AU CONCOURS AGRO—VETO

Question

Si f est la fonction définie sur
10,1[ par: f(x)=+/1—xsur
I'intervalle ]0, 1[, déterminer
I'expression d'une de ses

Réponse
Vv1-x=(1-x)"? se primitive en
X — a-x*2 _ —2(1—x)¥2

32 T 3

Commentaire ‘

Se ramener a des
fonctions
puissances permet
de ne retenir
qu'une seule

Soit (a, b) € R?. Donner
I’ensemble des solutions de
I’équation différentielle :
y'+ay' +by=0

(Considérer I'équation
caractéristique x> + ax + b =0,
distinguer les cas A = a? — 4b positif,
nul ou négatif)

Montrer
simplement que
vous connaissez le
résultat (donner
des noms
génériques pour
les racines réelles
ou complexes)

primitives sur |0, 1] formule de
primitivation/dé-
rivation
Donner la dérivée et une La fonction se primitive en Se ramener a des
. o, -2 .
primitive de t€]0,+o0[ — 5 =-54 fonctions
puissances

t — =5 sur ]0, +oo]

1 _ (-3
5 =17 permet de
ne retenir qu'une

seule formule de
primitivation/dé-
rivation
Si a € R, déterminer 2 = x™% se primitive en Ne pas oublier de
. . o, —a+1 . . . .
I'expression d'une primitive S x' " sia#1L.Sia=1, cas particulier sur

1 + %
dexﬁx—usurﬂ%

—a+1
alors x — In | x| est une primitive

o, et la valeur
absolue dans le cas

particulier
Enoncer le théoréeme u,v:[a,b] — R deuxfonctionsde | Ne pas oublier les
Ve oz . . b 3

d’intégration par parties sur classe €*. Alors f u(r)v'(r)dr = hypotheses €",
une intégrale B a aussi importantes

—f u’(t)v(t)dt+[uv]’;, que la formule
Enoncer le théoréme de f :1— R définie et continue surun | Ne pas oublier les
changement de variable intervalle I, et ¢ : [a,b] — 1 €. hypotheses €',

Alors : aussi importantes
«(b) b
flx)dx = f flo(0)@/(t)de. | quelaformule
¢(a) a
Quelles sont les solutions de {x — Ce™®, CeR}ouAestune | Direégalement

I'équation différentielle
y' +a(t)y=0?

primitive de a

que A existe des
que a est continue,
bien mentionner
un ensemble de
solutions (donc
avec des
accolades).
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n EXERCICES

La liste ci-dessous représente les éléments a maitriser absolument. Pour les travailler,
il sagit de refaire les exemples du cours et les exercices associés a chaque item.

Savoir-faire

1. Connaitre la définition de 'intégrale de fonctions continues sur un segment
2. Concernant les primitives :

® connaitre les primitives usuelles.......... ...t O

® savoir déterminer des primitives dans les cas de dérivation classique.......... O

® connaitre les opérations sur les primitives............. ... oo ([
3. Connaitre les différentes propriétés de I'intégrale :

® Jinéarité etrelation de CHASLES . ... ....uvutntntnt it eiaeenenns O

® positivité et croissance de l'intégrale............. ... ... ]
4. Concernant les méthodes de calcul d’intégrales :

® 'intégration Par PAIties ... ......ounutttnt ettt (I

® lechangementdevariable.......... ... .. i ([

5. Concernant les équations différentielles :
® savoir résoudre ’homogene d'une équation différentielle linéaire d’ordre 1 ou 2

® savoir effectuer une variation de la constante pourl'ordre 1.................. O
® savoir trouver une solution particuliere pour l'ordre 2 lorsque le second membre
EST COMSTANE .« . ..ttt ettt ettt ettt e et e e (I
® savoir que lorsqu’'aucune condition initiale n'est imposée, on a une infinité de so-
lution, on conclut en donnantunensemble ...............coviiiiiiiiii... O
® savoir que lorsqu’une condition initiale est imposée, on conclut en donnant une
fonction SOIUtION . . ... ..t (I
Signalétique du TD

® Lelogo B désigne les exercices que vous traiterez en devoir 2 la maison. Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précede un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

® Lelogo @ désigne les exercices un peu plus difficiles; a aborder une fois le reste du
TD bien maitrisé.

Cahier de calculs

Fiche(s) a travailler : 11,12,13, 14, 27,28

m Calculs de primitives et d’intégrales

Exercice 1 | Primitives par calcul direct solution Calculer les primitives des
fonctions suivantes en indiquant I'ensemble de validité :

1. x — cos(3x) 2.  x— cos?(x)sin?(x)
sin (x
3. x— cos(x)sin?(x) 4 _, sin(x)
cos? (x)
5 1 6. al
X — —— . X —
xIn(x) 2+1
1 1
72 x— 8 x——
ex + 1 X — 1
x+1

x»—»z—
xX°+2x—-3

Exercice 2 | Primitivesavecarctan solution Calculer les primitives des fonctions
suivantes en indiquant 'ensemble de validité :

; 1 , e*
) x2+3 1+e2x
cos(x) 1
3. T oo o X— —.
1 +sin® (x) (1+x)y/x

Exercice 3 | Intégrales par calcul direct <olution Calculer les intégrales sui-
vantes :

3 1
[
2 1—x

pLg

3. f: sin(x)cos(x)dx

=

31 q
2, —_—
fz (1-x)? o
4, fnlcos(x)|dx
0

2lnx 1 x?
5. —dx 6. f
1 X o 1+x

Exercice 4 | Intégrales avec intégration par parties  Solution Calculer les inté-

grales suivantes :

bl 1
1 f xcos(x)dx 2. f xe?* dx
0 0

t
4, f x"In(x)dx,neN, >0

1
3. f x(1-x)"dx,neN
0 1
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Exercice 5 | Primitives avec intégration par parties  solution Calculer les pri-
mitives des fonctions suivantes en indiquant 'ensemble de validité :

1. x— x3cos(6x) 2. x— xcos®(x)

_ _ 42
3. x— x%e” 4 x— x3e*

Exercice 6 | Intégrales par changement de variable sowtion Calculer les inté-

grales suivantes par changement de variable :

1 fg(tan(x) + tan®(x))dx
0

(v =tanx)

1
3. f V1+x3dx (r=1+x°)
0

2. fn sin® (x) cos? (x)dx (u =cosx)
0

'€y (r=eY)
4, x (t=e").
fol+e2x

Exercice 7 | Primitive par changement de variable solution A l'aide du chan-
gement de variable indiqué entre parenthéses, calculer une primitive des fonctions
d’'une variable réelle suivantes.

1
— :2 — =
1. x T o (u=1t") 2. X 2+ /e (u=2+/1)
3. x—e*sin(e”) (u=e) 4, x—»—'czisn(i];) (u=+/sin(1))
1 t
5 x—)ex+e‘x (u=¢"

Exercice 8 | Intégrales de fractions rationnelles (1) solution Calculer les inté-

grales suivantes :

1 2x+1 1 X
1. f—dx 2. f—dx
0 X2+x+1 o (x+1)2

Solution

Exercice 9 | Intégrales de fractions rationnelles (2)

1. Montrer que :

x+1 1 2x+4 1
_ ==X —_ R
x2+4x+5 2 x244x+5 x%2+4+4x+5
En déduire

vxe[-1,1],

: . 1 _ 1
pulsque:  Zr s T (x+2)2+1°"

1 x+1
[
-1 x2+4x+5
2 2x+1

2. Avec la méme méthode, calculer f —dx.
0 2x—x%2-4

Solution

Exercice 10 |

1. Soit f continue sur [a, b]. Montrer que

fabf(x)dx: fahf(a+b—x)dx.

oo T xsinx
2. En déduire la valeur de f -
o 1+cos“x

m Equations différentielles du premier ordre

Exercice 11 |
tervalle indiqué.

Solution Résoudre les équations différentielles suivantes sur I'in-

1. Yy -2y=x+x*surR 2. (1+x¥)y +2xy=1surR

3. X%y -y= e+ surR™* 4  y' -2xy=—-(2x-1)e*surR
5. y +cos®(x)y=0surR 6. Yy + 45y =xsur]l,+oof

7. Yy -y=x*(e"+e™) 8. Xy +4(1-x>)y=0

9. x*)y'-y=x*-x+1.

affine.

Indication : On pourra chercher une solution particuliére

Exercice 12| Avecconditionsinitiales solution Résoudre les problemes de CAu-
CHY suivants en précisant a chaque fois I'intervalle de résolution.

1. y'cosx—ysinx=0, avecy(0)=1
2. y'+xy=2x, avecy(0)=1
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Exercice 13 | Loide Fick solution Une cellule est plongé dans une solution de
potassium de concentration ¢,. On note ¢(t) la concentration de potassium dans
la cellule a I'instant ¢, et on suppose que c(0) = 0. D’apres la loi de Fick, la vitesse
de variation de la concentration de potassium dans la cellule est proportionnelle au

gradient de concentration ¢, — c(), c'est-a-dire qu'il existe une constante T homo-

cp—c(t)

gene aun temps telle que:  ¢'(¢) = +—.

Déterminer c(t) et tracer le graphe de c.

Exercice 14 | Datation au carbone 14 solution La vitesse de désintégration du
carbone 14 est proportionnelle a sa quantité présente dans le matériau considéré.
Ainsi, sionnote y(t) le nombre d’atomes de carbone 14 présents dans un échantillon
de matiére organique a I'anné ¢, y vérifie I'équation différentielle

y'(1)=—ky(t),
ol1 k = 1.238 x 10~*an"! est la constante de désintégration du carbone 14.

1. Calculer I'expression explicite de y(¢) en fonction du nombre N, d’atomes de car-
bone 14 al'instant ¢ = 0.

2. On appelle demi-vie d'un élément radioactif le temps au bout duquel la moitié
de ses atomes se sont désintégrés. Déterminer la demi-vie du carbone 14.

3. Lors de fouilles, on a découvert un fragment d’os dont la teneur en carbone 14
vaut 70% de celle d'un os actuel de méme masse. Estimer I’age de ces fragments.

m Equations différentielles du second ordre

Exercice 15|  soltion Résoudre les équations différentielles suivantes, puis dé-

terminer 'unique solution vérifiant y(0) =0 et y'(0) = 1.
1. y'"+8y/+15y=5 2. 4y"-4y'+y=4

3. y'-2y/+5y=5 4 y'-2y'=2.

Exercice 16 | Recherche de solution particuliére solution Déterminer une so-
lution particuliere des équations différentielles suivantes.

1.y -y +y=t*+6
2.y +4y =€

sous la forme y, (1) = at? + bt + c avec a, b, c trois réels.
sous la forme y, (1) = ae®’ avec a € R.

3. y"+y = cos(t)+sin(t)
deux réls.
4 y"+y' -2y =2e"

sous la forme y,(¢) = t(acos(t) + bsin(t)), avec a, b

sous la forme y, (1) = ate’ avec a € R.

Exercice 17 | Avec conditions initiales
CHY suivants :

Solution. Résoudre les problemes de Cau-

1 y'—-4y'+5y=1
2. y'—4y' +5y=2

avec y(0)=1ety’(0)=0
avec y(0)=0ety'(0) =1

Techniques particuliéres

Exercice 18 | @ Changement de fonction inconnue <olution Résoudre

x?y" +3xy' +y =2 sur R** en posant z(t) = y(e") pour tout ¢ € R.

Exercice 19 | @ Changement de fonction inconnue

tion différentielle  x?y”

Solution. Résoudre I’équa-
+4xy' +(2-x%)y = 1 sur R** en posant z(x) = x*y(x).

m Devoir-maison tﬂ,

Exercice 20 |  solution Soit a > 0. Calculer :
al
I(a) = fl n(x) dx

L 14x2
a

al'aide du changement de variable t = i

Probléme 1| Equation différentielle linéaire d’ordre 3
R les fonctions ci-apres :

Solution On définit sur

g :x—e", g:ix—e*cos(x), g :x— e *sin(x).

Et on définit 'ensemble des « combinaisons linéaires de g, g,, g3 » comme étant :
&= {)\18'1 +A28 +A38; | (A1, A2, A5) € Rs}-
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On s’'intéresse dans ce probléme a la résolution de I'équation différentielle linéaire
d’ordre 3 suivante :

y" +5y" +9y' +5y =0 (H)
et on note . I'ensemble des solutions de (H).

1. 11) Vérifier que g est solution de (H).

12) Vérifier que g, estsolution de (H). On admet par la suite que g, est également
solution de (H)

1.3) Justifier 'inclusion: & < &.

2. Dans cette question, on souhaite démontrer que: & < &. Pour cela, on consi-

dere une fonction f solution de (H).

21) Onpose g = f" +4f"+5f. Montrer que g est solution de 1'équation diffé-
rentielle: (H1) y'+y=0.

2.2) Résoudre I'équation différentielle (H1).

2.3) Résoudre I'équation différentielle: (H2) y” +4y’+5y =0.

2.4) Soit A € R. Résoudre I'équation différentielle: (H3) y” +4y’ +5y = Ae™™.
Indication : On cherchera une solution particuliere sous la forme x — Ce™
avec C € R a choisir

2.5) Conclure.

3. Déterminer 'unique solution du probléme :

y"+5y"+9y'+5y = 0
y(0) =0 n
y(3) = €2
y'(0) = L
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SOLUTIONS DES EXERCICES

Solution (exercice 1) (tnonce' On rappelle que les primitives sont toutes
définies a une constante pres. Ici je ne fais pas apparaitre les constantes que je
prends toujours égales a 0.
1. Lafonction est continue sur R donc il existe F une primitive sur R et pour tout

xeR:|F(x) = smé_Bx) : Primitive usuelle.
2. 1l s'agit ici de linéariser, puis primitiver. D’apres les formules d’'EULER, on a

apres développements :

_e4ix + zeZix _ ezix +4-— e—2ix + 2e—2ix _ e—4ix
16

cos?(x)sin?(x) =

En réutilisant les formules, on déduit :
—-2cos(4x)+4 1 cos(4x
cos?(x)sin?(x) = (x)+4 1 _ cos( ).
16 8 8

On peut alors primitiver :

x sin(4x 1 sin(4x
vxeR, F(x)=r-SnUn) _|1f  sin(dx))|
8 32 8 4

3. Lafonction est continue sur R donc il existe F une primitive sur R et pour tout

5
xeR:|F(x)= SIDSJ : Reconnaitre la forme ' u*.

4. Lafonction est continue sur R~ {E + k7, | k € Z}. Il existe donc par exemple F

une primitive sur |- %, X[ et pour tout x € ]—5, 2| (par exemple) m
on reconnait une primitive de la forme — u—

5. La fonction est continue sur R™™ ~ {1}. 1l existe donc F une primi-
tive sur ]0,1[ et sur ]1,+oo[ et pour tout x €]l,+oo[ (par exemple) :
|F(x) =In|lnx|=In (lnx)| : on reconnait une primitive de la forme ”7'

6. La fonction est continue sur R car 1 + x? > 0. Il existe donc F une primitive

sur R et pour toutx eR: |F(x) =vV1+ xz‘ : on reconnait une primitive de la
forme

f

7. La fonction est continue sur R car son dénominateur est non nul comme
somme de deux termes strictements positifs. Il existe donc F une primitive
sur R et pour tout x € R : |F(x) =x—Inle*+1|=x—-In(e* + 1)| : On utilise
l'astuce 1 = 1+ e* — e* puis on coupe en deux et on reconnait sur I'un des
deux bouts : *-

8. Lafonction est continue sur |1, +oo[. Il existe donc F une primitive sur |1, +oo[

et pour tout x €]1, +oo] : ‘F(x) =2vx- 1|: on reconnait la forme %
9. La fonction est continue sur R ~ {-3,1}. Il existe donc par exemple
F une primitive sur ]-3,1[ et pour tout x € ]|-3,1[ (par exemple) :

‘F(x) =2In|x*+2x-3| = -In(-x*-2x + 3)‘ : on reconnait une primitive de

la forme 3%

Solution (exercice 2) tnonce

1.

La fonction est continue sur R car son dénominateur est non nul comme
somme de deux termes positifs dont I'un est strictement positif. Il existe donc

F une primitive sur Ret pourtout x € R:|F(x) = ﬁ arctan (\/ig) :onreconnait

une primitive de la forme ; f;z en mettant le 3 en facteur au dénominateur.
La fonction est continue sur R car le dénominateur ne s'annule pas comme
somme de deux termes strictement positifs. Il existe donc F une primitive sur
R et pour tout x € R : |F(x) = arctan (ex)| : on reconnait la forme

La fonction est continue sur R car son dénominateur est non nul comme
somme de deux termes positifs dont1'un est strictement positif. Il existe donc
F une primitive sur R et pour toutxeR: |F(x) = arctan (sinx)| : on reconnait

une primitive de la forme .
La fonction est continue sur |0, +oo[. Il existe donc F une primitive sur ]0, +oo[

et pour tout x €]0, +oo| : ‘F(x) = 2arctan ( ﬁ) ‘ :onreconnait la forme lf;z en
écrivant que:x = (\/})2 et en remarquant que la dérivé de la racine carré est
bien ﬁ

Solution (exercice 3) tnonce

1

La fonction f : x — ﬁ est continue sur [2,3] comme somme et quotient de
. . . P . A U . .
fonctions continues donc I'intégrale I existe. On reconnait la forme - etainsi

[[=-In2]

La fonction f : x — )2 est continue sur [2,3] comme somme et quotlent

(1-x
de fonctlons continues donc I'intégrale I existe. On reconnait la forme 5 et

ainsi .

La fonction f : x — sin(x)cos(x) est continue sur [0,2] comme produit
de fonctions continues donc l'intégrale I existe. On reconnait la forme ' u et
ainsi .

La fonction f : x — |cos(x)| est continue sur [0, 1] comme composé de
fonctions donc I'intégrale I existe. On utilise le théoreme de CHASLES pour
couper en deux I'intégrale et ainsi pouvoir enlever la valeur absolue. Ainsi on
a:

I= fi cos(x)dx—fncos(x)dxzz.
0 I

2
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5. Lafonction f:x — 1“7" est continue sur |0, +oo[ donc sur [1,2] comme quo-

tient de fonctions continues donc l'intégrale I existe. On reconnait la forme

_ (In2)?
I=2

u' u et ainsi

6. Lafonctionf:x — % est continue sur R~{-1} donc sur [0, 1] comme quo-
tient de fonctions continues donc I'intégrale I existe. On utilise alors 'astuce
"—1+1” et on obtient que :

x* x*-1+1
= =x—-1+—-.
1+x 1+x 1+x
Une primitive est alors F(x) = %2 —x+In|l+x|etdonc: |I= —% +In(2)|.
Solution (exercice 4) fnoncé Je ne donne la encore que les idés de la

méthode et le résultat mais toute intégration par parties doit étre correctement

rédigé, en particulier il faut a chaque fois justifier que les fonctions sont de classe

%', comme nous l'avons fait dans les exemples du cours.

1. Lafonction f : x — x cos(x) est continue sur R donc sur [0, 1] comme pro-
duit de fonctions continues donc I'intégrale I existe. On dérive le polynéme
et on obtient par intégration par parties que : [ = —2|.

2. La fonction f : x — xe®* est continue sur R dont sur [0, 1] comme produit
de fonctions continues donc l'intégrale I existe. On dérive le polyn6me et on
obtient par intégration par parties que : |I = 62:1

3. La fonction f : x — x(1 — x)" est continue sur R donc sur [0,1] comme
produit de fonctions continues donc l'intégrale I existe. On dérive le poly-

néme de degré 1 et on integre la fonction x — (1 — x)" dont une primi-

n+l1
tive est de la forme F : x — —1=3"" On obtient alors par intégration par
1 n+l 1
arties : I = 0 + L[ 1-x)""'dx = ———————— car une primitive de
P e J, 179 (n+D(n+2) P
n+1 . (1-x)"*?
x— (1-x)""est|Fix— ——"5—

4, La fonction f : x — x"In(x) est continue sur R** donc sur [1,¢] ou [1, ¢]
car ¢ > 0 comme produit de fonctions continues donc l'intégrale I existe. On

dérive la fonction logarithme népérien et on integre la fonction x — x” dont

xn+1
n+l°

t"Int
n+1 (n+1)?]

une primitive est de la forme F: x —

On obtient alors par intégration

: t"*int 1 L on " -1
par parties : [I="—>=+ - —= | x"dx=
1

n+1 n+1

Solution (exercice 5) Enoncé. Dans tous ces exemples, on ne peut pas
calculer directement une primitive... L'idé alors d’exprimer cette primitive sous
la forme d’une intégrale pour pouvoir la calculer plus facilement. On ne détaille

pas tous les calculs, seulement des indications pour guider I'intégration par par-

ties.

1. Lafonction est continue sur R donc il existe F une primitive sur R et pour tout
xeR:

x3sin(6x) x%cos(6x) xsin(6x) cos(6x)
6 i 12 36 63 |
Trois intégration par parties en dérivant le polyndme.
2. Lafonction est continue sur R donc il existe F une primitive sur R et pour tout
xeR:

F(x) = fox t3cos(6t)dt =

x*  xsin(2x)

1 [x B 5
2 0 4

4 8 4
Linéarisation du cosinus carré puis une intégration par parties.

3. La fonction est continue sur R. Il existe donc F une primitive sur R et pour
toutx €R:

x 1
F(x) =f arctan (¢)dt =xarctanx—§ln(1+x2).
0

1 intégration par parties en dérivant la fonction arctangente et en intégrant 1
puis on reconnait la forme .

4. La fonction est continue sur R. Il existe donc F une primitive sur R et pour
toutx € R:

X
F(x) = f t?e7tdt = —x?e™* —2xe™* —2e7".
0

2 intégration par parties en dérivant le polynome.
5. La fonction est continue sur R. Il existe donc F une primitive sur R et pour

toutx eR:
2 .2
F(x) = fx P dp = X tDeT

0 2

1 intégration par parties en dérivantle polynome ¢t — ¢ eten intégrant t —
te™"" ot on reconnait u'e" (ici on commence par écrire que t* = t? x t). Puis
dans la nouvelle intégrale de I'intégration par parties, on reconnait encore la
forme u'e".

Solution (exercice 6) tnonce
1. La fonction x — tan (x) + tan® (x) est continue sur [0, ¥ | comme composé
et somme de fonctions continues. Donc I existe.
Calculons I grace a un changement de variable : on pose u = tanx, du = (1 +
tan? (x))dx =. Donc:
(tan(x) + tan® (x))dx = tan(x)(1 + tan? (x)) dx.

De plus ¢ : x — tan(x) est € sur [0,%] comme fonction usuelle.
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. La fonction x —

Ainsi d’apres le théoréeme de changement de variable, on obtient que :

1 1
I:fuduz—.
0 2

. Lafonction x — sin® (x) cos® (x) est continue sur [0, 1] comme composé et

produit de fonctions continues. Donc I existe.
Calculons I grace a un changement de variable : u = cosx, du = —sin (x) dx.
Donc:

sin® (x) cos? (x)dx = —u?(1 — u?) du.
Onax=0= u=cos(0)=1,etx=m1 = u=cos(n)=-1.Deplusp:x —
cos (x) est €' sur [0, 1] comme fonction usuelle.
Ainsi d’aprés le théoréeme de changement de variable, on obtient que :

1 4
I= f —?(1-u?)dt = —.
1 15

. La fonction x — x%1/1 + x3 est continue sur [0, 1] comme composé et pro-

duit de fonctions continues. Donc I existe.
Calculons I grace a un changement de variable : t = 1 + x3, dr = 3x%dx,

x2V1+x3dx = %;dt. Onax=0= t=1,etx =1 — t = 2. La fonction

@ : x — +/x est €' sur |0, 1] comme fonction usuelle.
Ainsi d’aprés le théoreme de changement de variable, on obtient que :

2\t 4\/2 -2
I:f —dt: \/_—.
1 3 9

ex

——= est continue sur [0,1] comme composé, somme et
produit de fonctions continues. Donc I existe.

Calculons I grace a un changement de variable. On pose ¢ = e*, dt = e* dx,
%dx = 1j‘};Z.Onax =0=t=1,etx=1=t =e.Lafonctiongp:x — e*
est €' sur [0,1] comme fonction usuelle.

Ainsi d’aprés le théoreme de changement de variable, on obtient que :

e dt T
I:f = arctane — —|.
1 1412 4

Solution (exercice7) itnonce
1. ® Existence:lafonction x — ;7 est continue sur R comme somme et quo-

tient de fonctions continues. Donc il existe une primitive F de f sur R et :

x
VxeR, F(x) = f dr.
() o 1+14
® (Calcul de F grace a un changement de variable :

u = t?
o On pose: du = 2tdt
t dr = du
1+¢4 2(1+u?)"
o Onat=0= u=0,ett=x = u=x>

¢ Ona:
— @:t— t? est ¢! sur [0, x] comme fonction usuelle.
- u— m est continue sur [0, x*] comme somme et quotient de
fonctions continues.
Ainsi d’apres le théoreme de changement de variable, on obtient que :

2 2
F(x) = f du _ arctan (x°)
o 2(1+u?) 2

1
2+/x

quotient de fonctions continues. Donc il existe une primitive F de f sur R*
x 1
et: VxeR" F(x)= f dr.

0 2+\/t

Calcul de F grace a un changement de variable :

u=2+\/?

o On pose: du

Existence : la fonction x — est continue sur R* comme somme et

_ dt _ _ 1
= o <:>2(u—2)du—dt(car t—u—2)2+\/;

de = 224y,
o Onat=0= u=2ett=x = u=2+,/x.
o Ona:
- @:t—2+ \/E est €' sur [0, x] comme fonction usuelle.
z(”—u'z) est continue sur [2,2 + y/x] comme somme et quotient
de fonctions continues.
Ainsi d’aprés le théoreme de changement de variable, on obtient que :

F(x)=2f22+‘/}(1—§)du:2\/}—4ln(1+\/7}).

Existence : la fonction x — e?* sin (e*) est continue sur R comme com-
posé et produit de fonctions continues. Donc il existe une primitive F de

X
fsurRet:Vx eR, F(x) = f e’ sin (e') dt.
0

- u—

Calcul de F grace a un changement de variable :
u = e
¢ On pose: 2 du = e'dr
") e*'sin(e’)

dt = wusin(u)du.
o Onat=0= u=1l,ett=x = u=ce".
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4, ® Existence : la fonction x —

o Ona:
— @:t— e’ est €' sur [0, x] comme fonction usuelle.
— u — usin(u) est continue sur [1, e*] comme somme et quotient de
fonctions continues.
Ainsi d’aprés le théoreme de changement de variable, on obtient que :

ex
F(x) = f usinudu = —xcosx +sinx + cos (1) —sin (1)),
1

en faisant une intégration par parties.

V/sin(x)

3 1Y
tos() ©st continue sur par exemple [0, 2]
comme composé et quotient de fonctions continues. Donc il existe
une primitive F de f sur lintervalle [0, et : VX € [0,%[, F(x) =

fm

cos(t)
Calcul de F grace a un changement de variable :

u = +/sin(t)
dy = Ces()dt
T2 sin ()
¢ Onpose: mdt _ 2sin(#) cos(t)
cos (1) ~ cos?(t) 2y/sin(1)
— 2sin(t)  cos(t) du

1-sin?(t) 2,/sin(z)
o Onat=0=—= u=0,ett=x = u—\/sm(x).
¢ Ona:
— @:t— /sin(t) est €' sur [0, x] comme fonction usuelle.
- u— 12_“:4 est continue sur [0, y/sin (x)].
Ainsi d’apres le théoreme de changement de variable, on obtient que :

Vst 20 B 1-+/sin(x)
F(x)—fo T du ——arctan(\/smx)+—ln(m)

puis en écrivant

2
- W2 _ _A B _1,_ 1 _1
enecnvantque i e R e Al R e R R v
encore

=L 4D
Existence : la fOHCthH X — m est continue sur R comme Compose,

1- u2 1+u”
somme et quotient de fonctions continues. Donc il existe une primitive F
1
defsurRet: VxeR, F(x)= f —dr.
0o ef+e!
Calcul de F grace a un changement de variable :
u = €
du = e'dr
_ _du

t+e‘t dr = 1+u?"
o Onat=0=u=1lett=x = u=e".
o Ona:

— @:t— el est €' sur [0, x] comme fonction usuelle.

¢ On pose:

T3 est continue sur [1,e*].

Ainsi d’aprés le théoreme de changement de variable, on obtient que :

e* du
Fx)= | —
(x) fl 1+ u?

-_ U —

T
= arctan(e*) — n:

Solution (exercice 8) tnonce

1. ©

La fonction x — xff;il est continue sur [0, 1] comme quotient de fonc-

tions polynomiales dont le dénominateur ne s’'annule jamais sur R (discri-
minant strictement négatif). Ainsi I existe.

® On reconnait une forme £ en posant u(x) = x* +x + 1.
® Calcul: ‘I =[In|x*+x+1|]; = ln(S)‘

La fonction x — = +1)2 est continue sur [0, 1] comme quotient de fonc-
tions polynomiales dont le dénominateur ne s’annule pas. Ainsi I existe
bien.

x+1-1 1 1

¢ On utilise I'astuce du +1-1: (x+1)2 = Gl = o IR

ln(2)——.

o Ainsi,ona:|I=[ln|x+1|+

x+1]1

Solution (exercice 9) (cnonce
1. Les égalités sur les fractions se prouvent simplement par calculs directs. Pas-
sons au calcul des intégrales.

Lafonction x — —*— est continue sur [-1, 1] comme quotient de fonc-
X2+4x+5

tions polynomiales dont le dénominateur ne s'annule pas (discriminant
négatif). Ainsi I emste bien.
On fait apparaitre <

11 2x + 4 1 1
I= - X - dx=In - f _
[1(2 x2+4x+5 x?+4x+5 (v5) x2+4x+5
On fait apparaitre la forme canonique au denomlnateur
1
1=1n(v/5)- f

1 (x+ 2)2 + 1
On fait apparaitre la forme ——

A1n31I=ln(\/_) —ln(\/—)+——arctan(3).
2x+1

La fonction x — == est continue sur [0,2] comme quotient de fonc-
tions polynomiales et car A = -12 < 0 donc le dénominateur ne s’annule
jamais sur R. Ainsi I existe.

On applique alors la methode suivante.

¢ On fait apparaitre -

2 —-2x + 2 3 2 1
I:f (— + )dx:0—3f —dx
o\ —x2+2x—-4 —x?>+2x-4 0 x2-2x+4
¢ On fait apparaitre la forme canonique au dénominateur :

T17, enposant u(x) = x +2.

[arctan (x +2)]L
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. La fonction x —

=3 [f—L g4
T fo x—12+3°"

¢ On fait apparaitre la forme

2 1
I__fo (%)2+1

e

1+u2 :

=-V3 i

arctan( \/51)](): —Z

Solution (exercice 10) (cnonce
1. Lafonction f est continue sur [a, b] par hypothese et ainsi les fonctions x —

f(x)etx — f(a+b—x)sontelles aussi continues sur [a, b] comme composé
de fonctions continues pour la deuxieme. Ainsi les deux intégrales existent
bien.

b
Partons par exemple de [ f(a+b—x)dx et vérifions en faisant un change-
a

b
ment de variable que cette intégrale vaut bien f f(y)dy.

Onposey =a+b—-x,dy = —dx, donc f(a+ l;l—x)dx = —f(y)dy.Etx =
a= y=betx=b = y=a,lafonction@:x — a+b-xest € sur
[a, b] comme fonction usuelle. Ainsi d’apres le théoréeme de changement de
variable, on obtient que :

fabf(a+b—x)dx= f:(—f(y))dy: fabf(y)dy'

On obtient bien le résultat cherché.

i) est bien continue sur [0,71] comme composé,
1+cos? (x)

somme, produit et quotient de fonctions continues dont le dénominateur ne
xsinx

s‘annule pas. Ainsi I'intégrale I = f ———— dx existe bien et on est bien
o 1+cos?x

sous '’hypothese du résultat de la question précédente. Ainsi, on obtient en
utilisant la question précédente que :

n (71— x)sin (- x) m (1 —x)sin(x) n sin(x) .
I= dx=| —————dx=n| ——dx-i
o 1+cos?(m—x) o 1+cos?(x) 0o 1+cos?(x)
- . . . . . sin(x)
en utilisant le cercle trigonométrique. Ainsi,ona:2i =n | —————
o 1+cos?(x)

et on reconnait alors une primitive usuelle et on obtient donc :

2i = —m[arctan(cos(x))]g =

SR

Ainsi, on vient de montrer que |l =

|

Solution (exercice 11) ¢nonce Je ne détaille pas tous les calculs.
1. Résolution de 'lhomogéne. Résolution de I'équation homogene associé: y' =

2y.0n en déduit : # = {x — Ce** | Ce R}
Recherche d’une solution particuliére. Par variation de la constante, on ob-
tient que: yP(x) = —-1x*-x -1

Conclusion. |5” ={x—Ce*-ix*-x—-3|Ce [R%H

. On reconnait une équation différentielle linéaire du premier ordre. Comme

_1
1+x2 y 1+x2 '

Résolution de 'homogéne. La fonction a : x — a(x) = —
sur R car 1+x? > 0 comme somme de deux termes positifs dont I'un est stric-
tement positif et ainsi on a toujours 1 + x? # 0. Donc il existe une primitive A
de a sur R et pour tout x € R, A(x) = —ln|1 +x%| = -In(1+x?). On ade plus
~In(i+x®) - —{x—» — CeR}
Recherche d’une solution particuliére. On utilise la méthode de la variation
de la constante : on cherche une solution particuliere sous la forme yP(x) =
fjjg avec C une fonction dérivable sur R. Ainsi yP est bien dérivable sur R**
comme composé et produit de fonctions dérivables. Et pour tout x € R**, on
obtient : )
, 2x 1 Cx) 1
Py + 1+x2yp(x) C14x2 - 1+x2 1+x2

ainsi on peut prendre C(x) = x, et donc y?(x) =

onal+x?#0surR, il est équivalent de résoudre y’ +

e

= (C(x)=1,

1+x2

Conclusion. |.& = {x — C”

CEIR}

. On reconnait une équatlon dlfferentlelle linéaire du premier ordre. Comme

on la résout sur R**, on a: x* # 0 et ainsi il est équivalent de résoudre :
_1
y’ = l + e
x?  x?

Résolution de 'homogéne. La fonction a : x — a(x) = # est continue sur
R** donc il existe une primitive A de a sur R** et pour tout x € R**, A(x) = 1.
Onadonc:yi):{xEIRJr — Ce™% CeIR}

Recherche d'une solution particuliére. En utilisant la méthode de la variation
de la constante, on cherche une solution particuliere sous la forme : y(x) =

C(x)e‘% avec C fonction dérivable sur R**. Ainsi y; est bien dérivable sur R**
comme composé et produit de fonctions dérivables. Et pour tout x € R**, on
obtient :
1
y»P(x) _ex 1
PY(x)— - M) = —

en simplifiant par e™* # 0. Ainsi pour tout x > 0:C(x) = —%. Ainsi: yP(x) =
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1 . . 3N
—%e‘i est une solution particuliere.
Conclusion. La solution générale de I'équation différentielle avec second

1
membre est alors : [ = {x — (C-1)ex ‘ Ce IR%}

&4, yz{x—»Cex2+ex

CE[R}

5. | = {x — Ce~ 12 sm(Sx)—fsmx

CER}

6. |.¥ = {xe]l +o0[— (C+——2x+21n(x+1)) x4l ‘CER}.

7. Résolution de 'homogéne. La fonction a : x — a(x) = 1 est continue sur
R donc il existe une primitive A de a sur R et pour tout x € R, A(x) = x. La
solution générale de I’équation homogene associé est alors : x — Ce” avec
C € R constante.

Recherche d’une solution particuliére. A l'aide de la méthode de variation de
la constante et d’intégrations par parties, on trouve une solution particuliére

x? X 1 X
(7+§+Z)e

3 2
xT o x _[x X, 1) ,x
X — 5€ (2+2+4)e.

Conclusion. |.& = {x — Ce* + %ex -

8. | = {x €]0, +oo[— Cx'ex

CER}.

9. 5”:{x€]0,+oo[_»Ce‘%+x—1|Ce[R}

Solution (exercice12) Enoncé

1. Onrésout sur ] -2,z [ un intervalle contenant 0 sur lequel la fonction cosinus
ne s'annule pas. Il est alors équivalent de résoudre :
, sinx 0
cosx”

On obtient puisque l’équation différentielle est déja homogeéne
’5” {xe]-%,2 |C€R}‘

—_—
2’2 cosx

Condition initiale. Ona y(0)=1= donc on a C = 1. On en déduit que

)

cosO’

I'unique solution vérifiant y(0) =1 est|y XE€ ]—5, 3l ok

2. Résolution de 'homogéne. La fonction a : x — a(x) = x est continuze sur R
donc il existe une primitive A de a sur R et pour tout x € R, A(x) = %-.Ona

xZ
donc: ¥ = {x —Ce 2z |Ce [R}.

Recherche d'une solution particuliére. En utilisant la méthode de la variation
de la constante, on cherche une solution particuliere sous la forme : y?(x) =

x2
C(x)e™ 7 avec C fonction dérivable sur R. Ainsi yP est bien dérivable sur R

comme composé et produit de fonctions dérivables. Et pour tout x € R, on
x2
obtient : (yP)'(x) + xyP(x) = 2x < C'(x) =2xez. Ainsi pour tout x e R :
x2
C(x)=2e7, et y?(x) = 2 est une solution particuliére.

x2
Conclusion. ¥ = {x —Ce 2 +2 ‘ Ce [R}.

Condition initiale. Comme y(0) =1,0ona:y(0)=Ce’+2=C+2=1 <= C=
2

X

—1. Ainsi il existe une unique solution quiest:|y:x —2—-e~ 2 |

Solution (exercice 13) tnonce On doit résoudre ’équation différentielle :
'+ %c = %cp. C’est une équation différentielle linéaire, du premier ordre, a co-
efficients constants.

Résolution de 'homogéne. On commence par étudier I'équation homogene as-
SOCié: c’+%c = 0.Lensemble des solutions est ., = {ch teRY — Ce™r, ’ Ce IR{}.
Recherche d’une solution particuliére. f(7) = a.Onaalors f'(t) = 0, donc on doit
avoir 0+ *a = 1¢,, soita = c,,.

Conclusion. On en déduit que l'ensemble des solutions est S =
{t eR* — Ce ™7 + Cp | Ce R}. Comme de plusona c¢(0) =0,onaC+c, =0, soit

C = —c,,. Finalement, la solution est donné par|c:t € R* — (o (1 - e‘g) . Pour

tracer la courbe, il suffit d’étudier les variations de la fonctions ¢, en supposant
que T et ¢, sont des constantes strictement positives. On constate que la
concentration tend vers ¢, : les concentrations en potassium s’équilibrent entre
le milieu extérieur et la cellule.

y
Cp
--2__ .................
1__
0 % % % % R
0 1 2 3 4 5 %
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Solution (exercice 14) (enonce
1. On doit résoudre I'équation différentielle y’ + ky = 0. C’est une équation dif-
férentielle linéaire, du premier ordre, a coefficients constants et homogene.
On connait donc I'ensemble des solutions :
S={y:teR* — Ce™*|CeR}.

De plus, on a y(0) = Ny, donc Ce™¥*® = N, soit C = N,. On en déduit que y a
—kt‘

pour expression ‘y it eRY — Nye
2. On cherche ¢, 5 tel que:

1 1 1 1
Y(tos) = ENO < Nye *los = ENO = e s = 5= —ktys = ln(E)

par stricte croissance de la fonction logarithme. On en déduit . Lap-
plication numérique donne ¢, 5 = 5599 ans.

3. On cherche ¢, tel que:
y(t;) =0.7N, < Nye k1 =0.7N, = e *1 =0.7 = —kt, =In(0.7)
. . . . cqiie s — _In07
a par stricte croissance de la fonction logarithme. On en déduit .
Lapplication numérique donne comme estimation ¢, =~ 2881 ans pour ces
fragments.

Solution (exercice 15) ¢nonce Résoudre les équations différentielles

suivantes, puis déterminer 'unique solution vérifiant y(0) =0 et y'(0) = 1.

1. Résolution de U'homogéne. On étudie I'équation caractéristique as-
socié : r> +8r +15 = 0. Ses solutions sont réelles distinctes, don-
nés par = -5 et , = —3. Les solutions sont donc donnés par
Sy =1y reR— Ae > +Be | (A,B) e R?}.
Recherche d'une solution particuliére. yP(¢) = o. On a alors (yP) (t) =
(¥®)"(t) = 0, donc on doit avoir 0 + 15a = 5, soit a = % On en déduit que
I'ensemble des solutions est ‘S ={y:t—Ae™ +Be™" +1|(A,B) e R?} ‘

Condition initiale. On a y(0) = 0, soit A+ B + % = 0. De plus, on doit avoir
y'(0)=0.0rona: q'(t) = —-5Ae™>" —3Be™*, donc ¢'(0) = -5A —3B = 1. On
doit donc résoudre :
{ A+B = -1 (:){A:O
-5A-3B =1 B = -1

w

La solution est donc donné par ‘y tr—3(1-e7) ‘

2. Résolution de Uhomogéne. On étudie 1'équation caractéristique

associé : 4r? — 4r + 1 = 0. Cette équation admet une solution
double, donné par r = % Les solutions sont donc donnés par
%:{y:te[R{-—»(A+Bt)e5 (A,B)ERZ}.

Recherche d'une solution particuliére. yP(t) = «o. On a alors (yP) (t) =
(¥®)" (t) =0, donc on doit avoir 0 + a = 4, soit a = 4.
On en déduit que I’ensemble des solutions est

y:{y:te[Ri—»(A+Bt)e%+4‘(A,B)€IR22}.

Condition initiale. On a y(0) = 0, soit A = 0. De plus, on doit avoir y'(0) = 0.
t t t
Orona:y'(t) = 4ez+Bez +3tez,donc y’(0) = 442 =1, s0it B = 2. Lasolution

est donc donné parly reR— 2te? +4|.

. On doit résoudre une équation différentielle linéaire, du second ordre, a co-

efficients constants.

Résolution de 'homogéne. On étudie 1'équation caractéristique associé :
r? —2r +5 = 0. Ses solutions sont complexes conjugués, donnés par
n =1+2i etr, = 1—2i. Les solutions sont donc donnés par %, =
{y:teR— e (Acos(2t) +Bsin(21))| (A, B) e R?}.

Recherche d'une solution particuliére. yP(¢) = o. On a alors (yP) (t) =
(¥®)"(t) =0, donc on doit avoir 0 + 5a = 5, soit a = 1.

On en déduit que I'ensemble des solutions est
‘5” ={y:teR— e'(Acos(2r) +Bsin(2t))+1|(A,B) € RZ}‘.

Condition initiale. Ona y(0) =0, soitA+1 =0, donc A = —1. De plus, on doit
avoir y'(0) = 0. Oron a: y'(r) = e’(Acos(2t) + Bsin(2t)) + e’ (—2A sin(2¢) +
2Bcos(2t)), donc y'(0) = A+ 2B = 1. On en déduit B = 1%‘ = 1. La solution
est donc donné par’y it € R— e’(—cos(2t) +sin(2¢)) + 1 |

. On doit résoudre une équation différentielle linéaire, du second ordre, a co-

efficients constants. Cependant, ici le coefficient du terme y est nul : on se
rameéne a une équation du premier ordre, en z = y'. On commence donc par
résoudre I'équation z’ — 2z = 2. La solution de I’équation homogene associé
sont de la forme z,(t) = Ce*!, avec C € R. On cherche une solution particu-
liere constante : z,,(#) = a. On obtient a = —1. Les solutions générales sont
donc de la forme z(¢) = Ce?’ — 1, avec C € R.

Revenons a présent a y : on a y' = z, donc y est une primitive de z. On en
déduit que y s’écrit sous la forme :|S ={y:teR— $e* -1 +K|(A,B) € |R22}|.
On utilise les conditions initiales pour déterminer C et K : on a y(0) = 0, soit
% +K =0.De plus, ona y'(t) = Ce*’ — 1, donc y'(0) = 1 donne C— 1 = 1, soit
C =2. Enrevenant a I'’équation % +K =0, on obtient alors K= —1. On a donc

finalement |y :t e R— e*’ -1 - 1|

Solution (exercice 16) Enoncé Je ne donne pas tous les détails.
1 y,(t)=1*+2t+6.
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2. y,(r)=—-3e* avecacR.
3. yp(t) = t(—35cos(t) + 3 sin(r)).
4. y,(r)=35te’.

Solution (exercice 17) tnonce

1. Résolution de lhomogéne. L équation caractéristique associé est : r> —4r +
5 = 0 dont le discriminant est A = —4 < 0. L'équation caractéristique a donc
deux solutions complexes conjugués r, =2+ietr, =2 —1.
Ainsi % = {x — e**(Acos(x) + Bsin(x)) | (A, B) € R?}.
Recherche d’une solution particuliére. En remplagant par une constante K
dans’équation, on obtient : K = % Ainsi une solution particuliere de I'équa-
tion est: yP(x) = 1.
Conclusion. . = {x — e**(Acos(x) +Bsin(x)) + £ | (A,B) e R?}.
Condition initiale. Ona y(0) =1 et y'(0) = 0. Or on sait que y(0) = A+ %, et
d’autre part, on a y'(x) = e**(2A cos(x) + 2Bsin(x) —Asinx + Bcosx) + %ex.
On en déduit que y'(0) =2A + B+ % On doit donc résoudre :

A+l =1 { A =1

—

2
{2A+B+l =0 B = -3,

2 2
Ainsi, l'unique solution vérifiant les conditions initiales donnés est

yix— ezTJc(cos(x) —3sin(x)) + 3e*|.

2. Résolution de l'homogéne. D’apres la question précédente : & =
{x — e**(Acos(x) +Bsin(x)) | (A,B) e R?}.
Recherche d’une solution particuliére. En remplagant par une constante K
dans’équation, on obtient : K = % Ainsi une solution particuliere de I'équa-
tion est: yP(x) = 2.
Conclusion. . = {x — e**(Acos(x) +Bsin(x) +1) | (A, B) € R?}.
Condition initiale. Ona y(0) =0 et y'(0) = 1. Or on sait que y(0) = A +1, et
d’autre part, on a y'(x) = e**(2A cos(x) + 2Bsin(x) +2—Asinx + Bcosx). On
en déduit que y'(0) = 2A + 2 + B. On doit donc résoudre :

A+1 =0 A= -1
2A+B+2 =1 B = 1.

Ainsi, 'unique solution vérifiant les conditions initiales donnés est
‘y i x — e?*(—cos(x) +sin(x) + 1).‘

Solution (exercice 18) (tnonce

® [Recherche d’'une équation différentielle en z] On commence par calcu-

ler les dérivées de z. Pour tout t € R,
2(1)=e'y'(e"),
Z"(t)=e'y'(e")+(e')y"(e")
=z2'(t)+(e'Fy"(e").
Or, pour tout ¢ € R, on a en utilisant I'équation différentielle de départ :
(e')?y"(e") = —3e'y'(e") - y(e") -2,
donc:
(e'Vy"(e") = -32'(t) - z(r) - 2.
Donc z vérifie :
VieR, 2z'(t)=2'(t)-32'(t)-z(t)-2,
donc: zZ"+2zZ'+z=2.
® [Résolution en z] C’est cette fois-ci une équation différentielle linéaire a
coefficients constants, I’équation caractéristique est x2+2x+1=0, et une

solution particuliere peut étre cherchée sous la forme y, = K avec K € R. En
remplagant, on trouve K = 2. Donc :

JA,BeR, VteR, z(t)=(At+B)e'+2.
® [Solutions y]
VieR, z(t)=y(e'") < Vx>0, y(x)=z(nx).

Donc:

Constatons que :

Alnx +B
Vx>0, yx)=—"—7—4+2

Solution (exercice 19) tnoncé On calcule les dérivés successives de z. On
az'(x)=2xy(x)+x*y'(x), et
2"(x) =2y(x) +2xy'(x) +2xy' (x) + x%y"(x) = 2y(x) + 4xy' (x) + x*y" (x).

On en déduit quel'on a:

2" —z=x*y"+4xy' +(2-x*)y=1.

Donc z vérifie une équation différentielle linéaire d'ordre 2 a coefficients
constants.

Résolution de 'homogéne. z”—z = 0. On résout I’équation caractéristique asso-
cié : 2 — 1 = 0. On a deux racines réelles distinctes r; = 1 et r, = —1. La solution
générale de I'équation homogene est donc donné par z;,(x) = Ae* + Be™, avec
(A,B) € R?.

Recherche d’une solution particuliéere. Le second membre est une constante, on
cherche donc une solution sous la forme z,,(¢) = a. En remplagant dans I'équa-

tion, on obtient o = —1.

Conclusion. Lasolution générale del’équation en z estdonc z(x) = Ae*+Be™ —
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1, avec (A, B) € R?,
Onrevientay:onay(x) =

z(x)
x2

soit

y(x)=

Ae*+Be *-1

x2

, avec (A,B) € R%.
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Correction Devoir-maison fﬁ (Chapitre (AN) 2)

Solution (exercice 20) ¢nonce La fonction inverse est de classe €' sur
R** donc en particulier sur |1, a]. De plus, dr = -9, donc dx = - dt, d'or:
1 In( 1 ~Int
n(x) () (__dt):_( ne)
1+ x? 1+ (AP0 22 2+1
Par formule de changement de variable, on déduit donc :
z Int
I(a) = dt =-I(a).
(@)= [* = dr=-1(a)

On déduit alors que 2I(a) = 0 soit[I(a) = 0].

Solution (probléme 1) Enoncé
1. 11) Lafonction g; : x — e™* est de classe €™ sur R (théoremes généraux).
Pour toutréel x,ona: g/(x)=-e* = g/'(x)=e* = g/"(x) =-e7*
Ainsi, pour toutréel x : g/"(x)+5g] (x)+9g{(x)+58,(x) = —e™*+5e™* —
9e™* +5e™* = 0. Donc g est solution de (H).
12) Lafonction g, : x — e ?* cos(x) est de classe €™ sur R (théorémes

généraux). Pour tout réel x, on a:

2Xsin(x)

g (x) = —2e**cos(x) —e”
= g)'(x) =3e"** cos(x) + 4e"** sin(x)

—-2x

= g}’(x) = —2e"** cos(x) — 11e** sin(x).

Ainsi, pour toutréel x,on a:
&' (x) +58 (x) +9g;(x) +58(x)
= —2e * cos(x) — 11e > sin(x) + 5 [3e7>* cos(x) + 4e ** sin(x)]
+9[—2e * cos(x) — e **sin(x)] + 57> cos(x)
=e 2 cos(x)(—2+15-18+5) + e >*sin(x)(-11+20-9)
=0.
Donc g, est solution de (H).

1.3) Puisque g;, g, et g; sont solutions de la méme équation différentielle
homogene linéaire (H) alors (par linéarité de la dérivation) toute com-
binaison linéaire de g,, g, et g; est encore solution de (H) (d’apres le
cours).

Ainsi: Vfeé&,feS. Cequisécritencore: [&§c.F|

2.21) Ona:g=f"+4f"+5f=g' =f"+4f"+5f . Alors: g'+g=f"+
Af" +5f + f"+4Af' +5f = f"+5f"+9f' +5f =0 car f est solution
de (H).

Ainsi : g est solution de (H1)y' +y = 0.
2.2) D’apresle cours, I'ensemble des solutions est|{x eER—Ce™|Ce IR}|.
2.3) Léquation caractéristique associée a (H2) est r +4r +5 = 0. Ses solu-
tions sont les complexes conjugués —2 +i. Lensemble des solutions de
(H2) est alors :
‘{x € R— (Acos(x) +Bsin(x))e ™| (A,B) € [REZ}I.
2.4) On cherche une solution particuliere de (H3) sous la forme y, : x —
Ce *avecCeR.Onadeplus:

Jo solutionde (Hy) <= VxeR, ;' (x)+4y(x)+5)(x)=Ae™™
car

<— VxeR, Ce™*—-4Ce*+5Ce*=Ae"" 2 Vx €

<— C-4C+5C=A 0

A
— VxeR,y(x)= Ee‘x

Lensemble des solutions de (H3) est donc :

A
{x € R— (Acos(x) +Bsin(x))e ** + Ee_x

(A,B)EIRZ}.

2.5) D’apresce quiprécede, si f € &, c’est-a-dire si f est solution de H, alors
f est solution de (H3), c’est-a-dire : I(A, o, f) € R® tel que :

VxeR, f(x)=(acos(x)+psin(x))e > +Ae ™ =g (x)+ag(x)+pg(x).

Ainsi f estune combinaison linéaire de g;, g,, g; donc f € £&.Onadonc:

(7 cél

3. D’apres ce qui précede, ona:
I aP) e, VreR, f(x)=Ag(x)+ag(x)+pg(x).
Autrement dit :
AN aP)eR?, VxeR, f(x)=((p-2a)cos(x)—(a+2p)sin(x))e > —Ae ™.
Il reste a traduire le systeme de conditions initiales.

f(0) =0 =i+« a = -\
r(3) —e 2 :ﬁe‘“+)\e_g = ; p=1-A
f0) =1 =p-2a-A (1-Ne2+A = 1

= A=1L,a=-1,=0.

Finalement, 'unique solution de (E) est : |x eR— e —cos(x)e™?* ‘

R,e ™ #



