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Chapitre (AN) 2
Calculs de primitives, intégrales &
Équations différentielles

1 Calculs de primitives. . . . . . . . . . . .

2 Équations différentielles . . . . . . . .

3 Exercices . . . . . . . . . . . . . . . . . . . . . . .
D’après un théorème de
LIOUVILLE, la fonction
𝑥⟼ e−𝑥

2
ne possède pas de

primitive qui puisse
s’exprimer à l’aide des
fonctions usuelles (ln, exp,
cos, sin etc.).

—Le saviez-vous?

Résumé & Plan
Nous allons voir dans une chapitre
un outil clef qui va nous permettre
de modéliser divers phénomènes :
la notiond’équationsdifférentielles.
Ce type d’objet apparait naturelle-
ment dans de nombres domaines :
enélectricité, enmécanique, enbio-
logie (dynamiques de population)
etc.

Parmi toutes les disciplines mathématiques, la théorie des
équations différentielles est la plus importante. Elle fournit
l’explication de toutes les manifestations élémentaires de la
nature où le temps est impliqué.

—Sophus LIE

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

Un objet central nous servira pour la résolution d’équations différentielles : les pri-
mitives. On commence donc par des révisions & compléments sur le sujet.

1 CALCULS DE PRIMITIVES

1.1 Généralités

Définition 1 | Primitives
Soit 𝑓 ∶ I⟶ℝ une fonction définie sur un intervalle I deℝ. On appelle primitive
de 𝑓 sur I toute fonction F ∶ I⟶ℝ dérivable telle que F′ = 𝑓.

Une primitive réalise l’opération inverse de la dérivation : on part d’une fonction, et
on cherche à savoir si elle s’écrit sous forme d’une dérivée.

Exemple 1
• 𝑥⟼ 𝑥2

2 et 𝑥⟼ 𝑥2
2 −6 sont des primitives de 𝑥⟼𝑥 sur ℝ,

• 𝑥⟼ e𝑥− ln(𝑥) est une primitive de 𝑥⟼ e𝑥− 1
𝑥 sur ℝ∗+.

Proposition 1 | Ensemble des primitives
Soit 𝑓 ∶ I ⟶ ℝ une fonction définie sur un intervalle I. Si F ∶ I ⟶ ℝ est une
primitive de 𝑓 sur l’intervalle I, alors les primitives de 𝑓 sur I sont les fonctions
de la forme F+𝑐, où 𝑐 ∈ ℝ.

𝑥

𝑦

F

F+
𝑐

On retiendra notamment que si 𝑓 admet
une primitive, alors elle en admetmême
une infinité : puisque si F est une pri-
mitive, toutes les fonctions F+ 𝑐 avec 𝑐
une constante en sont aussi. Il n’est donc
pas question de parler de la primitive de
𝑓. Nous admettons le théorèmeci-après,
difficile à démontrer.
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Preuve
PEN-FANCY

Théorème 1 | Existence de primitives pour les fonctions continues ♥

Soit 𝑓 ∶ I⟶ℝ une fonction continue sur un intervalle I. Alors :
• 𝑓 possède une primitive sur I.
• Pour tout 𝑥0 ∈ I et 𝑦0 ∈ ℝ, il existe une unique primitive F telle que F(𝑥0) = 𝑦0.

Graphiquement, parmi toutes les primitives de f, il n’en existe qu’une seule F dont
la courbe représentative 𝒞F passe par le point (𝑥0,𝑦0). Ce théorème est admis, la
démonstration (peu importe laquelle) dépasse très largement le programmede 1ère
année.

Preuve Nous admettons l’existence. Démontrons l’unicité avec condition initiale.
PEN-FANCY

Enfin, la propriété de linéarité de la dérivation se transmet alors automatiquement
aux primitives.

Proposition 2 | Linéarité de la primitivation
Soient 𝑓 ∶ I ⟶ ℝ ,𝑔 ∶ I ⟶ ℝ deux fonctions, F une primitive de 𝑓 et G une
primitive de g. Alors : pour tout (λ,μ) ∈ ℝ2, λF+μG est une primitive de λ𝑓+μ𝑔.

Preuve Immédiat par linéarité de la dérivation : (λF+μG)′ = λF′+μG′ = λ𝑓+μ𝑔.

Méthode (AN) 2.1 (Justifier l’existence d’une primitive) Il suffit de montrer la
continuité de la fonction, le plus souvent en utilisant des théorèmes d’opéra-
tions élémentaires sur les fonctions continues.

Exemple 2 Déterminer, sur un domaine à préciser, une primitive des fonctions
ci-après.

𝑥⟼2𝑥
PEN-FANCY

1. 𝑥⟼𝑥2−3𝑥+1
PEN-FANCY

2.

𝑥⟼ e𝑥

PEN-FANCY

3. 𝑥⟼ 1
𝑥

PEN-FANCY

4.

𝑥⟼ cos𝑥
PEN-FANCY

5. 𝑥⟼ sin𝑥
PEN-FANCY

6.

𝑥⟼3𝑥+ 1
√𝑥

.

PEN-FANCY

7.

♥ Exemple 3
• Pour 𝑥 > 0, on pose F(𝑥) = 𝑥 ln(𝑥)−𝑥. Montrer que F est dérivable sur ℝ+⋆,

et calculer la dérivée, ainsi que F(e). Que remarque-t-on?
PEN-FANCY

• En déduire l’unique primitive de ln qui s’annule en 1.
PEN-FANCY

2
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1.2 Primitive & Intégrale sur un segment

Nous allons introduire une notation qui sera étudiée plus en détail plus tard dans
l’année (??).Nousnemotivonspas encore outremesure son introduction, pour l’ins-
tant il faudra juste comprendre son utilité pour le calcul de primitives.

Cadre
Ô

Dans toute cette sous-section, la notation [𝑎,𝑏] désignera toujours un seg-
ment, avec 𝑎,𝑏 ∈ ℝ.

Définition/Proposition 1 | Intégrale d’une fonction continue sur un segment
Soit 𝑓 ∶ [𝑎,𝑏]⟶ℝ une fonction continue sur [𝑎,𝑏].

• On appelle intégrale de 𝑓 sur le segment [𝑎,𝑏] le réel noté ∫
𝑏

𝑎
𝑓 ( ou encore

∫
𝑏

𝑎
𝑓(𝑥)d𝑥, ∫

[𝑎,𝑏]
𝑓(𝑥)d𝑥 ) défini par :

∫
𝑏

𝑎
𝑓(𝑥)d𝑥 =

(défi.)
[F(𝑥)]𝑏𝑎 =

(défi.)
F(𝑏)−F(𝑎),

(où F désigne une primitive de 𝑓).

• On appelle intégrande de ∫
𝑏

𝑎
𝑓 la fonction 𝑓.

Preuve La quantité ∫
𝑏

𝑎
𝑓(𝑥)d𝑥 ne dépend pas de la primitive choisie. La définition de l’in-

tégrale sera donc bien posée.
PEN-FANCY

Remarque 1
• Si 𝑎 = 𝑏, alors avec les notations de la définition précédente, on a :

∫
𝑎

𝑎
𝑓 = [F]𝑎𝑎 = F(𝑎)−F(𝑎) = 0.

• Si 𝑓 = K ∈ ℝ est constante, alors : ∫
𝑏

𝑎
𝑓(𝑥)d𝑥 = [K𝑥]𝑏𝑎 = K(𝑏−𝑎) .

• La variable utilisée dans l’intégrale est, comme dans les sommes et produits,
muette.

Exemple 4 Calculer les intégrales ci-après.

∫
1

0
(−4𝑥3+𝑥2−1)d𝑥,

PEN-FANCY

1.

∫
2

1

d𝑡
2𝑡 −1

,

PEN-FANCY

2.

3
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∫
T

0
I0e−𝑡/τ d𝑡 avec I0,T,τ ∈ ℝ+.

PEN-FANCY

3.

Propriétés calculatoires de l’intégrale. L’idée est ici seulement d’éta-
blir les propriétés qui vont nous servir pour le calcul de primitives. Nous viendrons
compléter cette liste plus tard, dans le ?? dédié à l’intégration.

Proposition 3 | Propriétés de l’intégrale
Soient I un intervalle et (𝑎,𝑏) ∈ I2. Alors :
• [Linéarité] Pour tout (𝑓,𝑔) ∈ (𝒞0(I,ℝ))2 et (λ,μ) ∈ ℝ2, on a :

∫
𝑏

𝑎
(λ𝑓+μ𝑔) = λ ∫

𝑏

𝑎
𝑓+μ ∫

𝑏

𝑎
𝑔.

• [Positivité] Si 𝑓 ∈𝒞0(I,ℝ) et 𝑎 ⩽ 𝑏 , alors :

𝑓 ⩾ 0 ⟹ ∫
𝑏

𝑎
𝑓 ⩾ 0.

• [Croissance] Si (𝑓,𝑔) ∈ (𝒞0(I,ℝ))2 et 𝑎 ⩽ 𝑏 , alors :

𝑓 ⩽ 𝑔 ⟹ ∫
𝑏

𝑎
𝑓 ⩽ ∫

𝑏

𝑎
𝑔.

• [Relation de CHASLES] Soient 𝑓 ∈𝒞0(I,ℝ) et 𝑐 ∈ I. Alors :

∫
𝑐

𝑎
𝑓 = ∫

𝑏

𝑎
𝑓+ ∫

𝑐

𝑏
𝑓.

• [Ordre des bornes] Si 𝑓 ∈𝒞0(I,ℝ), alors :

∫
𝑏

𝑎
𝑓 = − ∫

𝑎

𝑏
𝑓.

Preuve
• PEN-FANCY

• SiF est uneprimitive de𝑓, alors l’hypothèsenous donneF′ ⩾ 0, donc queF est croissante.

On obtient immédiatement ∫
𝑏

𝑎
𝑓 = F(𝑏)−F(𝑎) ⩾ 0 puisque 𝑎 ⩽ 𝑏.

• PEN-FANCY

• PEN-FANCY

• PEN-FANCY

Citons également deux propriétés parfois utiles dans les calculs, qui concernent le
crochet, et qui ont déjà été justifiées dans la preuve précédente.

Proposition 4 | Propriétés du crochet
Soient I un intervalle et (𝑎,𝑏) ∈ I2.
• [Linéarité] Soient F,G ∶ I⟶ℝ deux fonctions, et (λ,μ) ∈ ℝ2, on a :

[λF+μG]𝑏𝑎 = λ[F]𝑏𝑎+μ[G]𝑏𝑎 .
• [Ordre des bornes] Si F ∶ I⟶ℝ est une fonction, alors :

[F]𝑏𝑎 =−[F]𝑎𝑏 .

La relation de CHASLES permet de calculer notamment des intégrales dont l’inté-
grande est définie par morceaux, voyons un exemple avec la valeur absolue.

Exemple 5

1. Calculer ∫
π
2

− π
2

|sin(𝑥)|d𝑥.

4
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PEN-FANCY

2. Calculer ∫
1

0
min(

1
2
,𝑥)d𝑥.

PEN-FANCY

Lien entre primitive et intégrale. Par définition de l’intégrale, il est néces-
saire de connaître une primitive pour la calculer, il existe donc un fort lien entre les
deux notions. Voyons lequel.

Théorème 2 | Lien primitive & Intégrale ♥

Soient Iun intervalle,𝑎 ∈ I et𝑓 ∶ I⟶ℝ une fonction continue. Alors la fonction :

F ∶
|

|

I ⟶ ℝ
𝑥 ⟼ ∫

𝑥

𝑎
𝑓(𝑡)d𝑡

est l’unique primitive de 𝑓 sur I qui s’annule en 𝑎.

Notation
Σ

Soient I un intervalle, 𝑓 ∶ I⟶ℝ une fonction continue. Le théorème précédent
justifie la notation ci-dessous parfois utilisée :
• ∫𝑓(𝑡)d𝑡 ou ∫𝑓 désigne une primitive de 𝑓, c’est une fonction, et

• ∫
𝑥
𝑓(𝑡)d𝑡 ou ∫

𝑥
𝑓 désigne la valeur en 𝑥 ∈ ℝ d’une primitive de 𝑓, c’est un

Σ
réel.

Note Je n’utiliserai pas ces notations.

Preuve
PEN-FANCY

Le théorème précédent nous montre tout l’intérêt de calculer des intégrales pour
obtenir une primitive.

Méthode (AN) 2.2 (Primitiver une fonction en utilisant une inté-
grale) Lorsque vous avez besoin d’une technique d’intégration (intégration par
parties ou changement de variable par exemple) pour primitiver une fonction
𝑓 ∶ I⟶ ℝ continue sur I, choisir 𝑎 ∈ I, puis calculer ∫

𝑥

𝑎
𝑓 pour tout 𝑥 ∈ I. Si la

fonction 𝑓 n’est pas définie en un point, on prendre garde à bien effectuer ces
calculs pour les 𝑥 où c’est possible.

Exemple 6 Donner la primitive sur ℝ qui s’annule en 0 de 𝑥⟼2𝑥.
PEN-FANCY

1.3 Primitives usuelles

Dans les tableaux suivants, pour chaque fonction𝑓définie surun intervalle Iprécisé,
on donne une primitive F. Les primitives suivantes doivent être connues par cœur,
ou a minima être retrouvées rapidement.

𝑓(𝑥) = ... F(𝑥) = ... 𝑥 ∈ I ⊂ ... Condition

𝑥α
𝑥α+1

α+1
]0,∞[ α ≠ −1

5
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1
𝑥

ln |𝑥| ℝ∖ {𝑎} 𝑎 ∈ ℝ

e𝑥 e𝑥 ℝ 𝑎 ∈ ℝ∗

ln |𝑥| 𝑥 ln |𝑥|−𝑥 ℝ∗

sin(𝑥) −cos(𝑥) ℝ 𝑎 ∈ ℝ⋆

cos(𝑥) sin𝑥 ℝ 𝑎 ∈ ℝ∗

tan(𝑥) − ln |cos(𝑥)| cos(𝑥) ≠ 0

À l’aide des formules du tableau et de la dérivation d’une composée, on peut calculer
une primitive de 𝑢′𝑢𝑛, 𝑢

′

𝑢𝑛 ,
𝑢′
𝑢 ,𝑢

′ cos𝑢,𝑢′ sin𝑢,𝑢′e𝑢 etc. lorsque 𝑢 est dérivable.

𝑓 = ... F = ...

𝑢′×𝑢𝑎,𝑎 ≠ −1 1
𝑎+1𝑢

𝑎+1

𝑢′×exp(𝑢) exp(𝑢)
𝑢′
𝑢 ln(|𝑢|)

𝑢′×cos(𝑢) sin(𝑢)

𝑢′× sin(𝑢) −cos(𝑢)
𝑢′

cos2(𝑢) =𝑢′ (1+ tan2(𝑢)) tan(𝑢)
𝑢′

1+𝑢2 arctan(𝑢)

On a donc par conséquent (lorsque 𝑢(𝑥) = 𝑎𝑥+𝑏 et 𝑢′(𝑥) = 𝑎.

𝑓(𝑥) = ... F(𝑥) = ... 𝑥 ∈ I ⊂ ... Condition

(𝑎𝑥+𝑏)α
(𝑎𝑥+𝑏)α+1

α+1
⋅ 1𝑎 ]0,∞[ α ≠ −1

1
𝑎𝑥+𝑏

ln|𝑎𝑥+𝑏|
𝑎 ℝ∖{𝑎} 𝑎 ∈ ℝ

e𝑎𝑥+𝑏
e𝑎𝑥+𝑏

𝑎
ℝ 𝑎 ∈ ℝ∗

sin(𝑎𝑥+𝑏)
−cos(𝑎𝑥)

𝑎
ℝ 𝑎 ∈ ℝ⋆

cos(𝑎𝑥+𝑏)
sin(𝑎𝑥)

𝑎
ℝ 𝑎 ∈ ℝ∗

tan(𝑎𝑥+𝑏)
− ln |cos(𝑎𝑥+𝑏)|

𝑎
cos(𝑥) ≠ 0

Exemple 7 (Puissances) Déterminer, sur unensemble àpréciser, uneprimitive
des fonctions suivantes.
1. 𝑓 ∶ 𝑥⟼ 1

√1−3𝑥
.

PEN-FANCY

2. 𝑔 ∶ 𝑥⟼𝑥(√1+𝑥2)
3
.

PEN-FANCY

Exemple 8 Déterminer, sur un ensemble à préciser, une primitive des fonctions
suivantes.
1. 𝑓 ∶ 𝑥⟼ 𝑥2

1+𝑥3 .
PEN-FANCY

2. 𝑔 ∶ 𝑥⟼ sin(𝑥)
cos3(𝑥) .

PEN-FANCY

6
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3. ℎ = tan. (Cela justifie la formule énoncée dans le tableau)

PEN-FANCY

Cas de fractions rationnelles. On s’intéresse ici aux inverses de fonctions
trinôme.

Méthode (AN) 2.3 (Primitives de fractions rationnelles) On sait déterminer
une primitive des fonctions de la forme 𝑥⟼

1
𝑎𝑥2+𝑏𝑥+𝑐

où 𝑎, 𝑏 et 𝑐 sont des
constantes réelles et 𝑎 ≠ 0. Il suffit de discuter selon la valeur du discriminant
Δ :
1. si Δ > 0, alors on factorise le dénominateur pour se ramener à 𝑥 ⟼

1
(𝑥−α)(𝑥−β)

, puis on écrit la fraction comme somme de deux autres (vous

serez toujours guidés à cette étape dans les exercices) qui se primitivent avec un loga-
rithme.

2. SiΔ= 0, alors on factorise le dénominateur pour se ramener à𝑥⟼
1

(𝑥−α)2
,

3. siΔ< 0, alors on met le dénominateur sous forme canonique et on effectue

un changement de variable pour se ramener à 𝑢⟼
1

𝑢2+1
.

Exemple 9 Déterminer une primitive des fonctions suivantes sur un domaine à
préciser.

• 𝑓 ∶ 𝑥⟼
1

𝑥2+𝑥−2
.

⋄ [Domaine] Cherchons le domaine de continuité𝒟 de la fraction.
PEN-FANCY

⋄ [Décomposition en éléments simples] Déterminer A,B ∈ ℝ deux
constantes de sorte que :

∀𝑥 ∈𝒟,
1

𝑥2+𝑥−2
=

A
𝑥−1

+
B

𝑥+2
.

PEN-FANCY

⋄ [Primitivation]
PEN-FANCY

• 𝑔 ∶ 𝑥⟼
1

4𝑥2−4𝑥+1
PEN-FANCY

7
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• ℎ ∶ 𝑥⟼
1

𝑥2+𝑥+1
PEN-FANCY

Remarque 2 Dans les exemples précédents, le numérateur était égal à 1. N’im-
porte quelle fraction rationnelle peut se « ramener » à une telle fraction; c’est
le théorème de « décomposition en éléments simples » complètement [H.P] en
BCPST. Vous serez donc toujours guidés sur ce sujet.

Cas de fonctions trigonométriques.

Méthode (AN) 2.4 (Primitive de cos𝑝 sin𝑞, avec 𝑝,𝑞 ∈ ℕ)
1. Si 𝑝 = 1, une primitive directe de cos×sin𝑞 est : sin𝑞+1

𝑞+1 .

2. Si 𝑞 = 1, une primitive directe de cos𝑝×sin est : − cos𝑝+1
𝑝+1 .

3. Dans tous les autres cas : commencer par linéariser l’expression (si elle com-
porte des produits/puissances), à l’aide de nombres complexes si besoin,
puis primitiver.

Exemple 10
1. Déterminer, sur un ensemble à préciser, une primitive de 𝑥⟼ sin2𝑥.

PEN-FANCY

2. Déterminer, sur un ensemble à préciser, une primitive de 𝑥⟼ cos3𝑥.
PEN-FANCY

3. Déterminer, sur un ensemble à préciser, une primitive de 𝑥⟼ cos3𝑥sin𝑥.
PEN-FANCY

8
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1.4 Techniques de calculs d’intégrales

Nous avons vu précédemment que calculer une primitive revient à un calcul d’in-
tégrale. Pour ces dernières nous disposons de deux techniques principales de cal-
cul : l’intégration par parties et le changement de variable. Ces techniques doivent
être envisagées naturellement lorsque l’intégrande ne se primitive pas de manière
évidente. Introduisons au préalable une notation qui nous permettra de décrire les
hypothèses portant sur les fonctions avec lesquelles nous allons travailler.

Définition 2 | Fonctions de classe𝒞1

Soit I un intervalle. On dit qu’une fonction 𝑓 définie sur I est de classe𝒞1 si :
⎧
⎨
⎩

(i) 𝑓 est dérivable sur I,
(ii) 𝑓′ est continue sur I.

On note𝒞1(I) l’ensemble des fonctions de classe𝒞1 sur I à valeurs réelles.

Note
On dit parfois, lorsque 𝑓 est de classe𝒞1, que «𝑓 est continûment
dérivable »

Il existe des fonctions dérivables non forcément 𝒞1 ; en revanche, de tels exemples
seront étudiés plus tard dans l’année (ils ne sont pas à chercher parmi les fonctions
usuelles en tout état de cause).

Intégration par parties. Cette formule sert dès que l’on souhaite intégrer un
produit dont l’un des termes devient plus simple en le dérivant.

Théorème 3 | Intégration par parties ♥

Soient 𝑢,𝑣 ∶ [𝑎,𝑏]⟶ℝ deux fonctions de classe𝒞1. Alors :

∫
𝑏

𝑎
𝑢′(𝑡)𝑣(𝑡)d𝑡 = − ∫

𝑏

𝑎
𝑢(𝑡)𝑣′(𝑡)d𝑡 + [𝑢𝑣]𝑏𝑎.

Onutilise une intégrationparparties dèsque ∫
𝑏

𝑎
𝑢(𝑡)𝑣′(𝑡)d𝑡 est plus simple à calcu-

ler que ∫
𝑏

𝑎
𝑢′(𝑡)𝑣(𝑡)d𝑡 : on ne s’occupe pas trop du crochet, puisque c’est un terme

qui se calculera de toute façon.

Attention
,

Toute intégration par parties doit être justifiée, en rappelant convenablement
l’hypothèse𝒞1 sur des fonctions appropriées.

Preuve (Point clef — Intégrer la formule de dérivation d’un produit)
Puisque𝑢,𝑣 sont supposées𝒞1, les fonctions𝑢,𝑣 sont continues car dérivables, et𝑢′,𝑣′ sont
continues. Ainsi, 𝑢𝑣′ et 𝑢′𝑣) sont continues, donc leur intégrale sur [𝑎,𝑏] existe.
PEN-FANCY

Méthode (AN) 2.5 (Quand utiliser l’intégration par parties? et mise en
place) Pour intégrer un produit de deux fonctions, dont l’une est facile à pri-
mitiver et l’autre est facile à dériver. Exemple : une exponentielle multipliée par
un polynôme. Lorsque l’on effectue une intégration par parties, on :
1. indique pour plus de clarté le terme que l’on dérive (écrire « 𝑣 = » sous le

terme) et que l’on primitive (écrire «𝑢′ = » sous le terme).
2. Lors de l’écriture de la formule d’intégration par parties, on rappelle les hy-

pothèses de classe𝒞1 sur les fonctions 𝑢,𝑣.
Toute intégration par parties doit être justifiée.

Exemple 11 Calculer les intégrales suivantes (où 𝑥 ∈ ℝ).
1. ∫

𝑥

0
𝑡e𝑡 d𝑡,

PEN-FANCY
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2. ∫
1

0
(𝑡2−𝑡+3)e𝑡 d𝑡.

PEN-FANCY

3. ∫
𝑥

0
𝑡 ln(𝑡2+1) d𝑡.

PEN-FANCY

4. ∫
1

0
arctan(𝑡)d𝑡.

PEN-FANCY

5. ∫
π
3

0
tan2(𝑡)d𝑡. Indication : On reviendra à la définition de la fonction tan-

gente...
PEN-FANCY

Exemple 12 Calculer une primitive de 𝑡 ⟼ ln𝑡
𝑡2 sur un domaine à préciser, en

effectuant une intégration par parties.
PEN-FANCY

10
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Note
Vous noterez ici que l’on peut effectuer un « nettoyage » a posteriori des
constantes apparaissant.

♥ Exemple 13 Parmi les intégrales ci-dessous, expliquer la ou lesquelles vous
semblent calculables. La calculer le cas échéant.

I1 =∫
1

0
e−

𝑡2
2 d𝑡, I2 =∫

1

0
e−

𝑡2
2 d𝑡, I3 =∫

1

0
e−

𝑡2
2 d𝑡.

PEN-FANCY

Nous avions déjà montré la proposition qui suit (en dérivant l’expression donnée).
Il s’agit ici de la retrouver via une autre méthode.

Proposition 5 | Primitive du logarithme
La fonction 𝑥 ∈ ℝ+⋆ ⟼𝑥 ln𝑥−𝑥 est l’unique primitive de ln qui s’annule en e.

Preuve (Point clef — intégration par parties)

PEN-FANCY

Note
On aurait pu également simplement dériver l’expression, et constater
qu’elle s’annule en e.

Changement de variable. Voici à présent une technique ressemblant assez
fortement à celle de changement d’indice vue pour les sommes et produits dans le
Chapitre (ALG) 4. Autant nous étions assez contraints pour les changements d’in-
dices (seuls quelques changements étaient autorisés), autant pour les intégrales la
plupart des fonctions𝒞1 conviendront. Voici la formule.

Théorème 4 | Formule du changement de variable
Soient 𝑓 ∶ I ⟶ ℝ une fonction définie et continue sur un intervalle I, et φ ∶
[𝑎,𝑏] ⟶ I une fonction de classe 𝒞1 appelée fonction de changement de va-
riable. Alors :

∫
φ(𝑏)

φ(𝑎)
𝑓(𝑥)d𝑥 = ∫

𝑏

𝑎
𝑓(φ(𝑡))φ′(𝑡)d𝑡.

«On pose 𝑥 =φ(𝑡) »

Contrairement aux changements d’indices dans les sommes, on vous donnera tou-
jours le changement de variable à réaliser. En revanche, vous devez savoir le mettre
en place, et le justifier.

11
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Attention
,

Tout changement de variable doit être justifié, en rappelant que la fonction as-
sociée est de classe𝒞1.

Preuve (Point clef — Intégrer la formule de dérivation d’une composée.)
Notons que 𝑓 et 𝑓∘φ.φ′ sont continues sur I et sur [𝑎,𝑏] respectivement, ce qui assure l’exis-
tence des intégrales. Introduisons une primitive F de 𝑓 sur I (il en existe puisque 𝑓 est conti-
nue). Alors F∘φ est dérivable de dérivée F′ ∘φ×φ′ = 𝑓 ∘φ×φ′. Autrement dit :

∀𝑡 ∈ [𝑎,𝑏], (F ∘φ)′ (𝑡) = 𝑓(φ(𝑡))φ′(𝑡).

PEN-FANCY

Dans la pratique, on réalise assez peu souvent un changement de variable en es-
sayant de « coller » à cette formule. On utilise plutôt les calculs formels ci-après, qui
correspondant à la formule de changement de variable « non-intégrée »¹ : ainsi, si
on pose 𝑥 =φ(𝑡), on écriera

« 𝑓(𝑥)d𝑥 = 𝑓(φ(𝑡))d(φ(𝑡)) = 𝑓(φ(𝑡))φ′(𝑡)d𝑡. »
Ainsi, pour réaliser le changement 𝑥 = φ(𝑡), on commence par écrire formelle-
ment :

« d𝑥 = d(φ(𝑡)) = φ′(𝑡)d𝑡 ⟺
d𝑑φ(𝑡)
dd𝑡

= φ′(𝑡) » .

Méthode (AN) 2.6 (Changement explicite – Nouvelle variable en fonction de

l’ancienne) Pour répondre à une question de type «Calculer ∫
𝑏

𝑎
𝑓(𝑡)d𝑡 à l’aide

du changement de variable 𝑢 =φ(𝑡) », il faut :
1. vérifier que 𝑓 est continue sur [𝑎,𝑏] et que φ est de classe𝒞1 sur [𝑎,𝑏].
2. Calculer les nouvelles bornes de l’intégrale φ(𝑎) et φ(𝑏).
3. Poser 𝑢 = φ(𝑡) et calculer : d𝑢 = φ′(𝑡)d𝑡 ⟺ d𝑡 = 1

φ′(𝑡)d𝑢. Dans certains
contextes il peut être donc nécessaire que φ′ ne s’annule pas, les calculs for-
mels réalisés à cette étape justifient indirectement cela.

1. Et avec des gros guillemets, car cette version sans intégrale n’a aucun sens mathématique.

4. « Remplacer » les 𝑡 par des 𝑢 dans l’intégrale.

Exemple 14 (Changement de variable explicite)

• Calculer ∫
4

1

e1+√𝑡

√𝑡
d𝑡.

⋄ en posant 𝑢 =√𝑡.
PEN-FANCY

⋄ Retrouver le résultat précédent par primitivation directe.
PEN-FANCY

• Calculer ∫
1

0

1
√e𝑡+1

d𝑡 en posant 𝑥 =√e𝑡+1.

PEN-FANCY

12
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Méthode (AN) 2.7 (Changement implicite – Ancienne variable en fonction de

la nouvelle) Pour répondre à une question de type «Calculer ∫
𝑏

𝑎
𝑓(𝑡)d𝑡 à l’aide

du changement de variable 𝑡 = φ(𝑢) », il faut :
1. vérifier que 𝑓 est continue sur [𝑎,𝑏].
2. Calculer les nouvelles bornes de l’intégrale c’est-à-dire trouver deux réels 𝑎′

et 𝑏′ tels que 𝑎 =φ(𝑎′) et 𝑏 =φ(𝑏′).
3. Vérifier que φ est de classe𝒞1 sur le segment d’extrémités 𝑎′ et 𝑏′.
4. Poser 𝑡 = φ(𝑢) et calculer : d𝑡 = φ′(𝑢)d𝑢 ⟺ d𝑢 = 1

φ′(𝑢) d𝑡. Dans certains
contextes il peut être donc nécessaire que φ′ ne s’annule pas, les calculs for-
mels réalisés à cette étape justifient indirectement cela.

5. « Remplacer » les 𝑡 par des 𝑢 dans l’intégrale.

Exemple 15 (Changement de variable implicite)

1. Calculer ∫
1

1/2

√1−𝑡2

𝑡2
d𝑡 en posant 𝑡 = cos𝑢.

PEN-FANCY

2. Calculer ∫
1

−1
√1−𝑥2 d𝑥 en posant 𝑥 = sin𝑡.

PEN-FANCY

3. Soient : I = ∫
π
2

0
cos2𝑥 d𝑥 et J = ∫

π
2

0
sin2𝑥 d𝑥.

3.1) Montrer que I = J en posant 𝑢 = π
2 −𝑥.

PEN-FANCY

3.2) Calculer I+ J, puis déterminer la valeur de I.
PEN-FANCY

13
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Exemple 16 Calculer une primitive de 𝑥⟼
√𝑥
1+𝑥

sur un domaine à préciser, en

effectuant le changement de variable 𝑢 =√𝑡.
PEN-FANCY

Corollaire 1 | Intégrale & Parité/Périodicité
• Soit 𝑎 ∈ ℝ∗+ et soit 𝑓 une fonction continue et paire sur [−𝑎,𝑎], alors :

∫
0

−𝑎
𝑓(𝑡)d𝑡 = ∫

𝑎

0
𝑓(𝑡)d𝑡, ∫

𝑎

−𝑎
𝑓(𝑡)d𝑡 = 2 ∫

0

−𝑎
𝑓(𝑡)d𝑡 = 2 ∫

𝑎

0
𝑓(𝑡)d𝑡.

• Soit 𝑎 ∈ ℝ∗+ et soit 𝑓 une fonction continue et impaire sur [−𝑎,𝑎], alors :

∫
0

−𝑎
𝑓(𝑡)d𝑡 = − ∫

𝑎

0
𝑓(𝑡)d𝑡, ∫

𝑎

−𝑎
𝑓(𝑡)d𝑡 = 0.

• Soit T ∈ ℝ∗+ et soit 𝑓 une fonction continue et T-périodique sur ℝ, alors pour

tout a ∈ ℝ,

∫
𝑎+T

𝑎
𝑓(𝑡)d𝑡 = ∫

T

0
𝑓(𝑡)d𝑡.

Remarque 3 Ces formules trouveront une interprétation simple dans le ??,
lorsque nous aurons revu l’intégrale comme aire sous la courbe représentative
de l’intégrande. Représentons déjà la 1ère sur un dessin.
PEN-FANCY

Preuve
• PEN-FANCY

• Même preuve que précédemment, avec le même changement de variable à opérer dans
∫

0

−𝑎
𝑓(𝑡)d𝑡.

• Commençons par décomposer l’intégrale comme ci-dessous (grâce à la relation de
CHASLES) :

∫
𝑎+T

𝑎
𝑓(𝑡)d𝑡 =∫

0

𝑎
𝑓(𝑡)d𝑡 +∫

T

0
𝑓(𝑡)d𝑡 +∫

𝑎+T

T
𝑓(𝑡)d𝑡.

PEN-FANCY

14
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2 ÉQUATIONS DIFFÉRENTIELLES

Cadre
Ô

Dans toute cette section,
• I désignera un intervalle réel, qui sera appelé le domaine sde définition de

l’équation différentielle.
• L’entier𝑛désignera l’ordrede l’équationdifférentielle, le plus souvent𝑛 =

1,2.

Conformément au programme, nous étudierons mathématiquement uniquement
les équations différentielles linéaires. En Informatique, nous nous intéresserons à
la résolution numérique d’équations différentielles plus générales.

2.1 Généralités

Définition 3
Soit 𝑛 ∈ℕ⋆.
• Une équation différentielle d’ordre 𝑛 sur ℝ toute équation en une fonction in-

connue 𝑦 ∈𝒟𝑛(I,ℝ), et portant sur 𝑦,𝑦′,…,𝑦(𝑛).
• Résoudre une équation différentielle consiste à déterminer une solution du

problème.

Définition 4 | Linéaire
Soit𝑛 ∈ℕ⋆. On appelle équation différentielle linéaire d’ordre𝑛 surℝ toute équa-
tion de la forme

𝑦(𝑛)+𝑎𝑛−1(𝑡)𝑦(𝑛−1)+⋯+𝑎1(𝑡)𝑦′+𝑎0(𝑡)𝑦 = 𝑏(𝑡) (E𝑛)
où 𝑎𝑖 ∈ 𝒞0(I,ℝ) pour tout 𝑖 ∈ J1 , 𝑛 − 1K. La fonction 𝑦 ∈ 𝒟𝑛(I,ℝ) est appelée
inconnue de (E𝑛).Onappelle solution de (E𝑛) toute fonction𝑦 ∶ I⟶ℝ dérivable

telle que :
∀𝑡 ∈ I, 𝑦(𝑛)(𝑡)+𝑎𝑛−1(𝑡)𝑦(𝑛−1)(𝑡)+⋯+𝑎1(𝑡)𝑦′(𝑡)+𝑎0(𝑡)𝑦(𝑡) = 𝑏(𝑡).

• Elle est dite à coefficients constants si les fonctions 𝑎𝑛−1,…,𝑎1 sont
constantes.

• Résoudre une équation différentielle consiste à trouver une solution.
• On appelle courbe intégrale toute courbe représentative d’une solution.

Il est très important de comprendre que l’on résout ici le problème en une fonction
𝑦 : c’est l’inconnue de notre équation. Vous étiez habitués jusque là à résoudre des
équations portant sur des réels ou complexes.

Définition 5 | Homogène
• L’équation (E𝑛) est dite homogène, ou sans secondmembre, si 𝑏 est la fonction

nulle. (il n’y a donc que les termes en 𝑦)
• Onappelle équationhomogène associée à (E𝑛) ou encore équation sans second

membre associée à (E𝑛) l’équation suivante :
∀𝑡 ∈ I, 𝑦(𝑛)+𝑎𝑛−1(𝑡)𝑦(𝑛−1)+⋯+𝑎1(𝑡)𝑦′+𝑎0(𝑡)𝑦= 0 . (H𝑛)

Notation
Σ

Dans la suite, nous noterons 𝒮 l’ensemble des solutions de (E𝑛), et 𝒮0 l’en-
semble des solutions de (H𝑛).

Remarque 4 (Forme normalisée ⟺ Forme générale) Une équation de la
forme

𝑎𝑛(𝑡)𝑦(𝑛)+𝑎𝑛−1(𝑡)𝑦(𝑛−1)+⋯+𝑎1(𝑡)𝑦′+𝑎0(𝑡)𝑦 = 𝑐(𝑡)
est encore appelée une équation différentielle linéaire d’ordre 𝑛. La forme fai-
sant intervenir un coefficient 1 devant la dérivée s’appelle la forme normalisée
de l’équation différentielle, elle s’obtient en divisant les deux membres par la
fonction 𝑎𝑛 sur tout intervalle J où 𝑎𝑛 ne s’annule pas,

∀𝑡 ∈ I∩ J, 𝑦(𝑛)+
𝑎𝑛−1(𝑡)
𝑎𝑛(𝑡)

𝑦(𝑛−1)+⋯+
𝑎1(𝑡)
𝑎𝑛(𝑡)

𝑦′+
𝑎0(𝑡)
𝑎𝑛(𝑡)

𝑦 =
𝑏(𝑡)
𝑎𝑛(𝑡)

.

Dans la suite tous les résultats seront énoncéspour la formenormalisée, i.e. celle
des équations (E𝑛) et (H𝑛).

Exemple 17 Préciser les caractéristiques des équations différentielles ci-après ;
nom de la fonction inconnue, nom de la variable, ordre, ce que signifie qu’une
fonction 𝑓 est solution, homogène ou pas, etc.
1. 𝑦′+𝑡𝑦 = 0.

PEN-FANCY
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2. d𝑞
d𝑡 = 3𝑞.
PEN-FANCY

3. 2−𝑥𝑧′ = 𝑥2𝑧″.
PEN-FANCY

4. 3𝑥3𝑦‴+2𝑥2𝑦″+𝑦= π.
PEN-FANCY

Structure de l’ensemble des solutions de (E𝑛). Mais pourquoi intro-
duire une version «homogène » d’une équation différentielle? Nous allons constater
que les ensembles des solutions de (E𝑛) et (H𝑛) possèdent un lien fort.

Théorème 5 | Structure des solutions de l’équation complète ♥

Si 𝑦p ∶ I⟶ℝ est une solution particulière de l’équation complète (E𝑛), alors les
solutions de (E𝑛) sont les éléments de :

𝒮= {𝑦H+𝑦p | 𝑦H ∈𝒮ℎ} où𝒮ℎ est l’ensemble des solutions de (H𝑛).

En résumé :

Solution générale
de l’équation

COMPLÈTE
= Solution générale

de l’équation
HOMOGÈNE

+
Solution
PARTICULIÈRE (= une
solution quelconque de
l’équation complète)

La preuve ci-dessous exploite très largement la linéarité de l’équation, ce résultat est
faux dans le cas contraire.

Preuve Faisons par exemple la preuve dans le cas 𝑛 = 1, elle est complètement similaire
dans les autres cas.
PEN-FANCY

Les étapes de résolution d’une équation différentielle homogène sont maintenant
claires :

16
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1. calculer explicitement l’ensemble𝒮ℎ des solutions de l’homogène,
2. déterminer une solution particulière 𝑦p de l’équation complète. Pour l’ordre 1,

nous aurons une méthode systématique appelée variation de la constante, pour
l’autre 2 une forme à tester vous sera toujours donnée.

2.2 Équations différentielles linéaires du 1er ordre

Définition 6 | Définition pour 𝑛 = 1
• On appelle équation différentielle linéaire du premier ordre sur I toute équa-

tion de la forme (E1), c’est-à-dire une équation de la forme :
𝑦′ = 𝑎(𝑡)𝑦+𝑏(𝑡), (E1)

où 𝑎,𝑏 ∈𝒞0(I,ℝ).
• L’équation homogène associée ou encore équation sans second membre asso-

ciée à (E1) est l’équation suivante :
𝑦′ = 𝑎(𝑡)𝑦. (H1)

Exemple 18
• 2𝑦′ = 3𝑡𝑦 est homogène d’inconnue 𝑦 ∶ 𝑡⟼𝑦(𝑡),
• 𝑦′+e𝑥𝑦 = 𝑥2 cos(𝑥) d’inconnue 𝑦 ∶ 𝑥⟼𝑦(𝑥) L’équation homogène associée

est 𝑦′+e𝑥𝑦 = 0.
• Pour E,τ deux réels, τd𝑣

d𝑡 +𝑣 = E d’inconnue 𝑣 ∶ 𝑡 ⟼ 𝑣(𝑡) à coefficients
constants et second membre constant. La fonction 𝑣𝑠 ∶ 𝑡⟼ E(1−e−𝑡/τ) est
une solution de cette équation car :
PEN-FANCY

Cadre
Ô

Dans la suite de cette sous-section,on se fixe une équation différentielle 𝑦′ =
𝑎(𝑡)𝑦+𝑏(𝑡), avec 𝑎,𝑏 ∈𝒞0(I,ℝ).

2.2.1 Résolution de l’équation homogène On connaît par un calcul di-
rect l’ensemble des solutions de l’équation (H1).

Théorème 6 | Résolution de l’équation homogène ♥

L’ensemble𝒮ℎ des solutions de (H1) est :
𝒮ℎ = {𝑡⟼CeA(𝑡) |C ∈ ℝ} où A ∶ I⟶ℝ est une primitive de 𝑎.

Preuve (Point clef —Multiplier par e−A,méthode du « facteur intégrant »)
La fonction 𝑎 étant continue sur I, elle admet une primitive A sur cet intervalle.
• Si 𝑦 est dérivable, calculons tout d’abord (e−A𝑦)′.

PEN-FANCY

• PEN-FANCY

Remarque 5
• Lorsque𝑎 = 1, onobtient l’équationdifférentielle𝑦′ = 𝑦et le théorèmeprécé-

dent affirme que 𝑦(𝑡) = Ce𝑡 pour tout 𝑡 ∈ ℝ. On retrouve notre brave fonction
exponentielle ! En effet, étant donné que exp(0) = 1, on a alorsC×1 = 1 donc
C= 1, et dès lors : 𝑦 = exp.

• Il arrive parfois dans les sujets que l’équation différentielle homogène soit
donnée (pour l’ordre 1) sous cette forme :

𝑦′+𝑎̃(𝑡)𝑦 = 0.
On se ramènera alors à la forme du cours, puisque :

𝑦′+𝑎̃(𝑡)𝑦 = 0 ⟺ 𝑦′ = −𝑎̃(𝑡)⏟⏟⏟⏟⏟⏟⏟
=𝑎(𝑡)

𝑦.

Dans ce cas, l’ensemble des solutions est alors :
𝒮ℎ = {𝑡⟼Ce−A(𝑡) |C ∈ ℝ} où A ∶ I⟶ℝ est une primitive de 𝑎.

Bref, dans tous les cas, on essaie de mettre 𝑦′ à gauche, seule, et le terme en 𝑦
à droite, puis on applique le théorème du cours qui a lemérite de ne pas faire

17



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

18
BC
PS
T1

Creative-Commons
20
25
-2
02
6

apparaitre de signe «− » dans l’exponentielle.

Exemple 19 (Homogènes d’ordre 1)
1. Résoudre : 𝑦′+𝑡𝑦 = 0.

PEN-FANCY

2. Résoudre : d𝑞
d𝑡 = 3𝑞.

PEN-FANCY

3. Résoudre : 𝑦′− 𝑡
𝑡2−1𝑦 = 0.

PEN-FANCY

4. Résoudre : (1+𝑡2)𝑦′+4𝑡𝑦 = 0.
PEN-FANCY

2.2.2 Résolution de l’équation complète On applique simplement le
théorème déjà démontré dans les généralités : toute solution est obtenue en som-
mant les solutions de l’homogène et une solution particulière.

Théorème 7 | Résolution de l’équation complète
L’ensemble𝒮 des solutions sur ℝ de (E1) est :

𝒮= {𝑡 ∈ I⟼CeA(𝑡)+𝑦p(𝑡) |C ∈ ℝ}, où
⎧
⎨
⎩

A ∶ I⟶ℝ est une primitive de 𝑎
𝑦p est une solution de (E1).

Pour résoudre complètement l’équationdifférentielle (E1), il restedoncàdéterminer
une solution particulière 𝑦p de (E1).

Cas de coefficients 𝑎,𝑏 constants. Lorsque second membre et coeffi-
cients sont constants, on peut rechercher une solution particulière simplement sous
forme d’une constante ; c’est ce cas qui arrive le plus souvent en Physique-Chimie et
S.V.T. notamment. Voyons plusieurs exemples.

Exemple 20
• Résoudre : 𝑦′ =−3𝑦−1.

Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY

18
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• Résoudre : τd𝑣
d𝑡 +𝑣 = E où E,τ sont deux réels fixés tels que τ ≠ 0.

Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY

Exemple 21 Soit 𝑘 ∈ ℝ+⋆. Résoudre : 𝑦′+𝑘𝑦 = 2.
Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY

Exemple 22 (Généralisation) Soient (𝑎,𝑏) ∈ ℝ⋆×ℝ. Résoudre : 𝑦′ = 𝑎𝑦+𝑏.
Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY

On retrouve alors ici une formule qui vous aviez peut-être déjà vue au lycée :

∀𝑡 ∈ ℝ, 𝑦(𝑡) = Ce𝑎𝑡−
𝑏
𝑎

avec C ∈ ℝ.

Cette formule n’est plus à apprendre par coeur, mais à retrouver à chaque fois.

Cas général : variation de la constante. Il s’agit de chercher une solution
particulière de la forme des solutions de (H1), où la constante C est remplacée par
une fonction dérivable 𝑡 ∈ I ⟼ C(𝑡). Nous faisons donc varier la constante C au
sens propre du terme. Et ce procédé de recherche de solution particulière a le bon
goût de fonctionner pour n’importe quelles fonctions continues 𝑎,𝑏.

Méthode (AN) 2.8 (Variation de la constante) Chercher 𝑦p sous la forme 𝑡 ∈
I⟼C(𝑡)eA(𝑡), où la fonction C ∶ I⟶ℝ est dérivable et est à déterminer.

19
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Justifions tout d’abord que cette méthode fonctionne toujours.

Preuve Si l’on pose 𝑦p(𝑡) = C(𝑡)eA(𝑡), pour tout 𝑡 ∈ I, où C est une fonction dérivable sur I,
alors :

𝑦p solution de (E1) ⟺ 𝑦′p = 𝑎𝑦p+𝑏 ⟺ (CeA)′ = 𝑎CeA+𝑏
⟺ C′eA+CA′eA = 𝑎CeA+𝑏
⟺ C′eA+���C𝑎eA =���𝑎CeA+𝑏
⟺ C′eA = 𝑏 ⟺ C′ = 𝑏e−A

⟺ C est une primitive de 𝑏e−A sur I.
Puisque𝑏e−A est continue, une telle primitive existe. Une foisCdéterminée (à une constante
additive près !), une solution particulière est donnée par : ∀𝑡 ∈ I, 𝑦p(𝑡) = C(𝑡)e−A(𝑡).

Exemple 23 Résoudre : 𝑦′+3𝑥2𝑦 = e𝑥−𝑥
3
.

Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY

Exemple 24 Résoudre : 𝑦′+𝑦= 1
1+e𝑡 .

Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY

Parfois l’énoncé (alors sympathique) vous donnera aussi directement une forme sous
laquelle chercher une solution particulière.

20



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

21
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Exemple 25 Résoudre : 𝑦′+𝑦= e−
𝑡
2+2.

Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière. On cherchera une solution particulière
sous la forme 𝑦p ∶ 𝑡⟼αe𝑎𝑡+𝑏 où α,𝑎 et 𝑏 seront des réels.
PEN-FANCY

Nous savons donc à présent résoudre complètement une équation différentielle li-
néaire d’ordre 1. Lorsque l’on ajoute en plus une condition initiale, alors il existe une
unique solution.

Théorème 8 | Résolution avec condition initiale
Soient 𝑡0 ∈ I et 𝑦0 ∈ ℝ. Il existe une et une seule solution au « problème de CAU-

CHY » : { 𝑦′ = 𝑎(𝑡)𝑦+𝑏(𝑡),
𝑦(𝑡0) = 𝑦0 ∈ ℝ.

En résumé, sans condition initiale on a une infinité de solutions. Avec une condition
initiale il y a unicité.

Preuve
• Commençons par chercher une expression de 𝑦, soit A une primitive de 𝑎.

⋄ On sait déjà que toute solution 𝑦H de l’homogène est de la forme 𝑦H ∶ 𝑡 ∈ I⟼C eA(𝑡).
⋄ On sait aussi d’après la méthode de variation de la constante qu’une solution particu-

lière est de la forme 𝑦p ∶ 𝑡 ∈ I⟼ C(𝑡)eA(𝑡) où C est dérivable et vérifie C′ = 𝑏e−A. La

fonction C définie par C(𝑡) = ∫
𝑡

𝑡0
𝑏(𝑢)e−A(𝑢) d𝑢 convient. (unique primitive de 𝑏e−A

s’annulant en 𝑡0)
⋄ Il existe donc C ∈ ℝ, tel que :

∀𝑡 ∈ I, 𝑦(𝑡) = CeA(𝑡)+ ∫
𝑡

𝑡0
𝑏(𝑢)e−A(𝑢) d𝑢×eA(𝑡).

Or, 𝑦(𝑡0) = CeA(𝑡0)+0 = 𝑦0 par hypothèse, donc : C= e−A(𝑡0)𝑦0+0.
⋄ On déduit alors :

∀𝑡 ∈ I, 𝑦(𝑡) = e−A(𝑡0)eA(𝑡)+ ∫
𝑡

𝑡0
𝑏(𝑢)e−A(𝑢) d𝑢×eA(𝑡)

= eA(𝑡)−A(𝑡0)𝑦0+ ∫
𝑡

𝑡0
eA(𝑡)−A(𝑢)𝑏(𝑢)d𝑢.

• Il reste tout demêmeà vérifier que l’expressionprécédentenedépendpas du choix d’une
primitive, cequi garantira l’unicité. Eneffet, siB= A+𝑐estuneautreprimitive, avec𝑐 ∈ ℝ,
on a :

∀𝑡 ∈ I, eB(𝑡)−B(𝑡0)𝑦0+ ∫
𝑡

𝑡0
eB(𝑡)−B(𝑢)𝑏(𝑢)d𝑢

= eA(𝑡)+�𝑐−A(𝑡0)−�𝑐𝑦0+ ∫
𝑡

𝑡0
eA(𝑡)+�𝑐−A(𝑢)−�𝑐𝑏(𝑢)d𝑢

= eA(𝑡)−A(𝑡0)𝑦0+ ∫
𝑡

𝑡0
eA(𝑡)−A(𝑢)𝑏(𝑢)d𝑢.

Exemple 26 Résoudre : 𝑦′−3𝑦 = 5, 𝑦(0) = 2.
Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière.
PEN-FANCY
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Exemple 27 On reprend l’Exemple 21, déterminer l’unique solution vérifiant :
• 𝑦(0) = 0

PEN-FANCY

• 𝑦(0) = −1
PEN-FANCY

• 𝑦(1) = 1
PEN-FANCY

Principe de superposition. Ce principe s’applique aux équations différen-
tielles lorsque le second membre s’écrit sous forme d’une combinaison linéaire.

Proposition 6 | Principe de superposition pour l’ordre 1
Soient 𝑎,𝑏1,𝑏2 ∈𝒞0(I,ℝ), λ,μ ∈ ℝ, et 𝑦1,𝑦2 dérivables solutions de :

𝑦′1 = 𝑎(𝑡)𝑦1+𝑏1(𝑡), 𝑦′2 = 𝑎(𝑡)𝑦2+𝑏2(𝑡).
Alors 𝑦 = λ𝑦1+μ𝑦2 est solution de : 𝑦′ = 𝑎(𝑡)𝑦+[λ𝑏1(𝑡)+μ𝑏2(𝑡)] .

Le principe de superposition est donc utile lorsque le secondmembre fait apparaître
une combinaison linéaire de seconds membres plus simples. Ce principe est cepen-
dant assez peu utile pour l’ordre 1, puisque l’on dispose de la méthode de variation
de la constante.

Preuve
PEN-FANCY

Exemple 28 Déterminer une solution particulière sur ℝ de l’équation différen-
tielle : 𝑦′−2𝑦 = 3e𝑡+e2𝑡.
• On commence par chercher une solution particulière de 𝑦′ − 2𝑦 = e𝑡. On

trouve par variation de la constante : ∀𝑡 ∈ ℝ, 𝑦1(𝑡) = −e𝑡.
• Ensuite on cherche une solution particulière de 𝑦′ −2𝑦 = e2𝑡. On trouve par

variation de la constante : ∀𝑡 ∈ ℝ, 𝑦2(𝑡) = 𝑡e2𝑡.
• Par superposition : 𝑦p ∶ 𝑡 ⟼ 𝑡e2𝑡 − 3e𝑡 est une solution particulière de

l’équation différentielle de départ.

2.3 Équations différentielles linéaires du 2nd ordre à coefficients constants

Définition 7 | Définition pour 𝑛 = 2
• On appelle équation différentielle linéaire du second ordre sur I à coefficients

constants toute équation de la forme (E2) c’est-à-dire une équation de la
forme :

𝑎𝑦″+𝑏𝑦′+𝑐𝑦 = 𝑑(𝑡) (E2)
où (𝑎,𝑏,𝑐) ∈ ℝ⋆ ×ℝ2, et 𝑑 ∈𝒞0(I,ℝ).

• L’équation homogène associée ou encore équation sans second membre asso-
ciée à (E2) est l’équation suivante :

𝑎𝑦″+𝑏𝑦′+𝑐𝑦 = 0. (H2)

Définition 8 | Équation caractéristique
On introduit également l’équation caractéristique de (E2) :

𝑎𝑟2+𝑏𝑟 +𝑐 = 0, d’inconnue 𝑟 ∈ ℂ. (EC)

Exemple 29
• 2𝑦′′ = 3𝑦 est homogène d’inconnue 𝑦 ∶ 𝑡 ⟼ 𝑦(𝑡). Son équation caractéris-

tiques est :
PEN-FANCY

• 2𝑦′′+𝑦′−3𝑦 = e𝑡 n’est pas homogène, d’homogène 2𝑦′′+𝑦′−3𝑦 = 0, d’incon-
nue 𝑦 ∶ 𝑡⟼𝑦(𝑡). Son équation caractéristiques est :
PEN-FANCY
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• Pour E,τ deux réels, d2𝑢𝑐
d𝑡2 +2ω0

d𝑢𝑐
d𝑡 +ω

2
0𝑢C = 0 d’inconnue 𝑢C ∶ 𝑡⟼𝑢C(𝑡)

est à coefficients constants et homogène. La fonction 𝑢C ∶ 𝑡 ⟼ (𝑡 +1)e−ω0𝑡

est une solution de cette équation car :
PEN-FANCY

Son équation caractéristiques est :
PEN-FANCY

Cadre
Ô

Dans la suite de cette sous-section, on se fixe une équation différentielle
𝑎𝑦″+𝑏𝑦′+𝑐𝑦 = 𝑑(𝑡), avec 𝑑 ∶ I⟶ℝ continue, et 𝑎,𝑏,𝑐 ∈ ℝ.

2.3.1 Résolution de l’équation homogène Nous savons là encore déter-
miner facilement l’ensemble des solutions de l’équation homogène. Nous admet-
tons le résultat.

Théorème 9 | Résolution de l’équation homogène ♥

Soit une équation différentielle de la forme (H2) et (EC) son équation caractéris-
tique. On suppose que 𝑎 ≠ 0. On note Δ le discriminant de (EC).
• Si Δ > 0, c’est-à-dire si (EC) possède deux racines réelles distinctes α ∈ ℝ et

β ∈ ℝ, alors :
𝒮ℎ = {𝑡⟼Aeα𝑡+Beβ𝑡 | (A,B) ∈ ℝ2}.

• Si Δ= 0, c’est-à-dire si (EC) possède une racine double α ∈ ℝ, alors :
𝒮ℎ = {𝑡⟼ eα𝑡(A𝑡 +B) | (A,B) ∈ ℝ2}.

• Si Δ< 0, c’est-à-dire (EC) possède deux racines complexes conjuguées α+ iβ

♥

et α− iβ avec (α,β) ∈ ℝ×ℝ∗, alors :
𝒮ℎ = {𝑡⟼ eα𝑡(Acos(β𝑡)+Bsin(β𝑡)) | (A,B) ∈ ℝ2}

= {𝑡⟼ eα𝑡Ccos(β𝑡 +φ) | (C,φ) ∈ ℝ+×[0,2π[}
(Dans la pratique, retenir la première forme, et savoir passer de l’une à l’autre en mettant en
place une transformation de FRESNEL)

Preuve Nous admettons l’ensemble du théorème, mais prouvons dans le cas où (EC) pos-
sède deux racines complexes conjuguées α+ i β et α− i β avec (α,β) ∈ ℝ×ℝ∗ que 𝒮 = 𝒮′

avec :
𝒮= {𝑡⟼ eα𝑡(Acos(β𝑡)+Bsin(β𝑡)) | (A,B) ∈ ℝ2}
𝒮′ = {𝑡⟼ eα𝑡Acos(β𝑡 +φ) | (A,φ) ∈ ℝ+×[0,2π[}.

⊃

PEN-FANCY

⊂

PEN-FANCY

23



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

24
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Exemple 30 Résoudre les équations différentielles suivantes.
1. 𝑦′′+𝑦′−2𝑦 = 0

PEN-FANCY

2. 𝑦′′−2𝑦′+𝑦= 0
PEN-FANCY

3. 𝑦′′−𝑦′+𝑦= 0
PEN-FANCY

4. Résoudre : 𝑦″−ω2𝑦 = 0 et 𝑦″+ω2𝑦 = 0 (oùω est un réel non nul).
PEN-FANCY

2.3.2 Résolution de l’équation complète On applique encore une fois le
théorème déjà démontré sur le sujet : toute solution est obtenue en sommet les so-
lutions de l’homogène et une solution particulière.

Théorème 10 | Résolution de l’équation complète
L’ensemble𝒮 des solutions sur ℝ de (E2) est :

𝒮= {𝑦+𝑦p | 𝑦 ∈𝒮ℎ} où 𝑦p est une solution de (E1).

Détermination de 𝑦p : cas de seconds membres constants. Pour ré-
soudre complètement l’équation différentielle (E2), il reste donc à déterminer une
solution particulière 𝑦p de (E2). Le résultat au programme est celui où le second
membre 𝑑 est constant.

Théorème 11 | Solution particulière pour 𝑐 ∈ ℝ une constante
On suppose que le second membre de (E2) est de la forme :

∀𝑡 ∈ ℝ, 𝑑(𝑡) = 𝑑 ∈ ℝ. Alors :
• si 0 n’est pas racine de (EC) : on cherche une solution particulière sous la

forme 𝑡⟼λ (λ ∈ ℝ),
• si 0 est racine simple de (EC) : on cherche une solution particulière sous la

forme 𝑡⟼λ𝑡 (λ ∈ ℝ),
• si 0 est racine double de (EC) : on cherche une solution particulière sous la

forme 𝑡⟼λ𝑡2 (λ ∈ ℝ).

Remarque 6 Dans l’immense majorité des cas, l’équation différentielle rentrera
dans le cadre « 0 n’est pas racine de (EC) ». En effet :
• 0 est racine double de (EC) correspond à une équation caractéristique 𝑎(𝑟 −

0)2 = 𝑟2 = 𝑟2+0×𝑟 +0 = 0, donc à l’équation différentielle 𝑎𝑦″ = 0. Le cours
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est bien entendu inutile pour la résoudre ! en effet, si 𝑎 ≠ 0, il suffit de primi-
tiver deux fois, pour avoir : ∀𝑡 ∈ ℝ, 𝑦(𝑡) = A𝑡 +B avec A,B ∈ ℝ.

• 0 est racine simple de (EC), si on noteα la deuxième racine, correspond à une
équation caractéristique𝑎𝑟(𝑟−α) = 0, donc si𝑎 ≠ 0 à l’équationdifférentielle
𝑦″−α𝑦′ = 0 ; elle est « faussement d’ordre 2 », car si on note 𝑧 = 𝑦′ on obtient
𝑧′−α𝑧 = 0, une équation différentielle d’ordre 1 donc.

Exemple 31 Déterminer une solution particulière réelle des équations différen-
tielles linéaires d’ordre 2 à coefficients constants suivantes :
1. 𝑦′′−𝑦′−2𝑦 = 2.

PEN-FANCY

2. 𝑦′′−2𝑦′ = 1.
PEN-FANCY

3. d2𝑢𝑐
d𝑡2 +2ω0

d𝑢𝑐
d𝑡 +ω

2
0𝑢C = E où : ω0 ∈ ℝ, et E ∈ ℝ tel que : E ≠−ω0.

PEN-FANCY

Détermination de 𝑦p : cas de seconds membres plus généraux. Pour
des seconds membres plus généraux, l’énoncé vous donnera toujours une forme de
solution particulière.

Exemple 32 Déterminer une solution particulière des équations différentielles
ci-après.
1. 2𝑦′′−𝑦′−𝑦= 3cos(2𝑡). Indication :On rechercheraune solutionparticulière

sous la forme 𝑦p ∶ 𝑡⟼𝑎cos(2𝑡)+𝑏sin(2𝑡) avec 𝑎,𝑏 des réels à déterminer
PEN-FANCY
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2. 𝑦′′ −𝑦 = 𝑡e𝑡. Indication : On recherchera une solution particulière sous la
forme 𝑦p ∶ 𝑡 ⟼ (𝑎𝑡2+𝑏𝑡)e𝑡 avec 𝑎,𝑏 des réels à déterminer On commence
par calculer les dérivées. Pour tout 𝑡 ∈ ℝ, on a :

𝑦′p(𝑡) = (𝑎𝑡2+(𝑏+2𝑎)𝑡 +(𝑏 +𝑐))e𝑡

𝑦″p(𝑡) = (𝑎𝑡2+(𝑏+4𝑎)𝑡 +(2𝑎+2𝑏+𝑐))e𝑡.
Ainsi, 𝑦p est solution si, et seulement si, : ∀𝑡 ∈ ℝ,

(𝑎𝑡2+(𝑏+4𝑎)𝑡 +(2𝑎+2𝑏+𝑐)−𝑎𝑡2−𝑏𝑡 −𝑐)��e𝑡 = 𝑡��e𝑡.
Ou encore, de manière équivalente :

∀𝑡 ∈ ℝ, 4𝑎𝑡+(2𝑎+𝑏) = 1𝑡+0 ⟺ { 𝑎 = 1
4

2𝑎+2𝑏 = 0 ⟺ 𝑎 = 1
4 , 𝑏 = − 1

4 .

Il n’y a pas de condition sur 𝑐, donc on peut prendre 𝑐 = 0.
Ainsi : 𝑦p ∶ 𝑡 ∈ ℝ⟼

𝑡(𝑡−1)
4 e−𝑡 est une solution particulière.

Admettant l’existence d’une solution particulière avec un second membre continu
𝑑, on peut démontrer l’existence et l’unicité ci-après.

Théorème 12 | Résolution avec condition initiale
Soient 𝑡0 ∈ I, (𝑦0,𝑦′0) ∈ ℝ

2. Il existe une et une seule solution au « problème de

CAUCHY » :
⎧⎪
⎨⎪
⎩

𝑦″+𝑎𝑦′+𝑏𝑦 = 𝑐(𝑡),
𝑦(𝑡0) = 𝑦0,
𝑦′(𝑡0) = 𝑦′0.

Nous admettons ce résultat d’existence et unicité dans le cas de l’ordre 2.

Exemple 33 Résoudre : 𝑦′′−2𝑦′−3𝑦 = 9𝑡2 avec 𝑦(0) = 0 et 𝑦′(0) = 1.
Résolution de l’homogène.
PEN-FANCY

Recherche d’une solution particulière. On recherchera une solution particulière
sous la forme d’une fonction polynomiale de degré 2.
PEN-FANCY

Condition initiale.
PEN-FANCY
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Principe de superposition. Le principe de superposition s’applique encore
pour les équations différentielles linéaires du second ordre à coefficients constants
admettant un second membre somme de plusieurs fonctions simples.

2.4 Technique du changement de fonction inconnue

• Le cadre de résolution des équations différentielles de ce cours est finalement as-
sez restreint ; les coefficients doivent être constants pour l’ordre 2, et de manière
générale les équations différentielles doivent être linéaires.

• Il est cependant parfois possible de s’y ramener à l’aide d’un « changement de
fonction inconnue ».

Exemple 34 (Non linéaire à linéaire) Résoudre l’équation différentielle :
𝑦′ = 𝑦 ln𝑦 (E).

Cela revient donc à trouver l’ensemble des fonctions 𝑦, dérivables à valeurs
strictement positives, telles que :

∀𝑡 ∈ ℝ, 𝑦′(𝑡) = 𝑦(𝑡) ln𝑦(𝑡).
Indication : On pourra réaliser le changement de fonction inconnue 𝑦(𝑡) =

e𝑧(𝑡) pour tout 𝑡.
PEN-FANCY

Résumé
♥

⟹ Soit 𝑦 une solution de (E). Alors posons 𝑧 = ln∘𝑦. On a vérifié que 𝑧
est solution d’une équation différentielle (E′) que l’on sait résoudre.
⟸ Soit 𝑧 une solution de (E′), alors 𝑦 = exp∘𝑧 est une solution de (E).
En d’autres termes, il y a une correspondance bijective entre les solutions de
(E) et (E′)— il suffit donc de résoudre l’une ou l’autre pour toutes les avoir.

Exemple 35 (Non constants à constants) Résoudre :

(1+𝑥2)2𝑦′′+2𝑥(1+𝑥2)𝑦′+4𝑦 = 0 sur ]−
π
2
,
π
2
[.

Indication : On pourra réaliser le changement de fonction inconnue 𝑧(𝑥) =
𝑦(tan𝑥) pour tout 𝑥
PEN-FANCY
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Méthode (AN) 2.9 (Résolution par changement de fonction inconnue) Soit
(E) une équation différentielle en une fonction 𝑦 que l’on ne sait pas résoudre a
priori.
1. Soit une fonction 𝑧 dépendant de 𝑦 donnée par l’exercice (généralement «de

la forme 𝑧(𝑡) = 𝑦∘φ(𝑡) »).
2. Calculer les dérivées successives 𝑧,𝑧′,𝑧″, ... (en fonction de l’ordre de l’équa-

tion différentielle en 𝑦).
3. Évaluer (E) en φ(𝑡) pour tout 𝑡 ∈ ℝ.
4. Combiner 2) et 3) pour trouver une équation différentielle en 𝑧.

FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (AN) 2.1 (Justifier l’existence d’une primitive) Il suffit de montrer la
continuité de la fonction, le plus souvent en utilisant des théorèmes d’opéra-
tions élémentaires sur les fonctions continues.

Méthode (AN) 2.2 (Primitiver une fonction en utilisant une inté-
grale) Lorsque vous avez besoin d’une technique d’intégration (intégration par
parties ou changement de variable par exemple) pour primitiver une fonction
𝑓 ∶ I⟶ ℝ continue sur I, choisir 𝑎 ∈ I, puis calculer ∫

𝑥

𝑎
𝑓 pour tout 𝑥 ∈ I. Si la

fonction 𝑓 n’est pas définie en un point, on prendre garde à bien effectuer ces
calculs pour les 𝑥 où c’est possible.

Méthode (AN) 2.3 (Primitives de fractions rationnelles) On sait déterminer
une primitive des fonctions de la forme 𝑥⟼

1
𝑎𝑥2+𝑏𝑥+𝑐

où 𝑎, 𝑏 et 𝑐 sont des
constantes réelles et 𝑎 ≠ 0. Il suffit de discuter selon la valeur du discriminant
Δ :
1. si Δ > 0, alors on factorise le dénominateur pour se ramener à 𝑥 ⟼

1
(𝑥−α)(𝑥−β)

, puis on écrit la fraction comme somme de deux autres (vous

serez toujours guidés à cette étape dans les exercices) qui se primitivent avec un loga-
rithme.

2. SiΔ= 0, alors on factorise le dénominateur pour se ramener à𝑥⟼
1

(𝑥−α)2
,

3. siΔ< 0, alors on met le dénominateur sous forme canonique et on effectue

un changement de variable pour se ramener à 𝑢⟼
1

𝑢2+1
.

Méthode (AN) 2.4 (Primitive de cos𝑝 sin𝑞, avec 𝑝,𝑞 ∈ ℕ)
1. Si 𝑝 = 1, une primitive directe de cos×sin𝑞 est : sin𝑞+1

𝑞+1 .

2. Si 𝑞 = 1, une primitive directe de cos𝑝×sin est : − cos𝑝+1
𝑝+1 .

3. Dans tous les autres cas : commencer par linéariser l’expression (si elle com-
porte des produits/puissances), à l’aide de nombres complexes si besoin,
puis primitiver.
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Méthode (AN) 2.5 (Quand utiliser l’intégration par parties? et mise en
place) Pour intégrer un produit de deux fonctions, dont l’une est facile à pri-
mitiver et l’autre est facile à dériver. Exemple : une exponentielle multipliée par
un polynôme. Lorsque l’on effectue une intégration par parties, on :
1. indique pour plus de clarté le terme que l’on dérive (écrire « 𝑣 = » sous le

terme) et que l’on primitive (écrire «𝑢′ = » sous le terme).
2. Lors de l’écriture de la formule d’intégration par parties, on rappelle les hy-

pothèses de classe𝒞1 sur les fonctions 𝑢,𝑣.
Toute intégration par parties doit être justifiée.

Méthode (AN) 2.6 (Changement explicite – Nouvelle variable en fonction de

l’ancienne) Pour répondre à une question de type «Calculer ∫
𝑏

𝑎
𝑓(𝑡)d𝑡 à l’aide

du changement de variable 𝑢 =φ(𝑡) », il faut :
1. vérifier que 𝑓 est continue sur [𝑎,𝑏] et que φ est de classe𝒞1 sur [𝑎,𝑏].
2. Calculer les nouvelles bornes de l’intégrale φ(𝑎) et φ(𝑏).
3. Poser 𝑢 = φ(𝑡) et calculer : d𝑢 = φ′(𝑡)d𝑡 ⟺ d𝑡 = 1

φ′(𝑡)d𝑢. Dans certains
contextes il peut être donc nécessaire que φ′ ne s’annule pas, les calculs for-
mels réalisés à cette étape justifient indirectement cela.

4. « Remplacer » les 𝑡 par des 𝑢 dans l’intégrale.

Méthode (AN) 2.7 (Changement implicite – Ancienne variable en fonction de

la nouvelle) Pour répondre à une question de type «Calculer ∫
𝑏

𝑎
𝑓(𝑡)d𝑡 à l’aide

du changement de variable 𝑡 = φ(𝑢) », il faut :
1. vérifier que 𝑓 est continue sur [𝑎,𝑏].
2. Calculer les nouvelles bornes de l’intégrale c’est-à-dire trouver deux réels 𝑎′

et 𝑏′ tels que 𝑎 =φ(𝑎′) et 𝑏 =φ(𝑏′).
3. Vérifier que φ est de classe𝒞1 sur le segment d’extrémités 𝑎′ et 𝑏′.
4. Poser 𝑡 = φ(𝑢) et calculer : d𝑡 = φ′(𝑢)d𝑢 ⟺ d𝑢 = 1

φ′(𝑢) d𝑡. Dans certains
contextes il peut être donc nécessaire que φ′ ne s’annule pas, les calculs for-
mels réalisés à cette étape justifient indirectement cela.

5. « Remplacer » les 𝑡 par des 𝑢 dans l’intégrale.

Méthode (AN) 2.8 (Variation de la constante) Chercher 𝑦p sous la forme 𝑡 ∈
I⟼C(𝑡)eA(𝑡), où la fonction C ∶ I⟶ℝ est dérivable et est à déterminer.

Méthode (AN) 2.9 (Résolution par changement de fonction inconnue) Soit
(E) une équation différentielle en une fonction 𝑦 que l’on ne sait pas résoudre a
priori.
1. Soit une fonction 𝑧 dépendant de 𝑦 donnée par l’exercice (généralement «de

la forme 𝑧(𝑡) = 𝑦∘φ(𝑡) »).
2. Calculer les dérivées successives 𝑧,𝑧′,𝑧″, ... (en fonction de l’ordre de l’équa-

tion différentielle en 𝑦).
3. Évaluer (E) en φ(𝑡) pour tout 𝑡 ∈ ℝ.
4. Combiner 2) et 3) pour trouver une équation différentielle en 𝑧.
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QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Question Réponse Commentaire

Si 𝑓 est la fonction définie sur
]0,1[ par : 𝑓(𝑥) =√1−𝑥 sur
l’intervalle ]0,1[, déterminer
l’expression d’une de ses
primitives sur ]0,1[

√1−𝑥= (1−𝑥)1/2 se primitive en
𝑥⟼− (1−𝑥)3/2

3/2 =− 2
3 (1−𝑥)

3/2
Se ramener à des
fonctions
puissances permet
de ne retenir
qu’une seule
formule de
primitivation/dé-
rivation

Donner la dérivée et une
primitive de
𝑡⟼ 1

𝑡3 sur ]0,+∞[

La fonction se primitive en
𝑡 ∈ ]0,+∞[⟼ 𝑡−2

−2 =− 1
2𝑡2

Se ramener à des
fonctions
puissances
1
𝑡3 = 𝑡−3 permet de
ne retenir qu’une
seule formule de
primitivation/dé-
rivation

Si α ∈ ℝ, déterminer
l’expression d’une primitive
de 𝑥⟼ 1

𝑥α sur ℝ+⋆

1
𝑥α = 𝑥−α se primitive en
𝑥−α+1
−α+1 =

1
1−α𝑥

1−α si α ≠ 1. Si α = 1,
alors 𝑥⟼ ln |𝑥| est une primitive

Ne pas oublier de
cas particulier sur
α, et la valeur
absolue dans le cas
particulier

Énoncer le théorème
d’intégration par parties sur
une intégrale

𝑢,𝑣 ∶ [𝑎,𝑏]⟶ℝ deux fonctions de
classe𝒞1. Alors ∫

𝑏

𝑎
𝑢(𝑡)𝑣′(𝑡)d𝑡 =

− ∫
𝑏

𝑎
𝑢′(𝑡)𝑣(𝑡)d𝑡 + [𝑢𝑣]𝑏𝑎.

Ne pas oublier les
hypothèses𝒞1,
aussi importantes
que la formule

Énoncer le théorème de
changement de variable

𝑓 ∶ I⟶ℝ définie et continue sur un
intervalle I, et φ ∶ [𝑎,𝑏]⟶ I 𝒞1.
Alors :
∫

φ(𝑏)

φ(𝑎)
𝑓(𝑥)d𝑥 = ∫

𝑏

𝑎
𝑓(φ(𝑡))φ′(𝑡)d𝑡.

Ne pas oublier les
hypothèses𝒞1,
aussi importantes
que la formule

Quelles sont les solutions de
l’équation différentielle
𝑦′+𝑎(𝑡)𝑦 = 0?

{𝑥⟼Ce−A(𝑥), C ∈ ℝ} où A est une
primitive de 𝑎

Dire également
que A existe dès
que 𝑎 est continue,
bien mentionner
un ensemble de
solutions (donc
avec des
accolades).

Soit (𝑎,𝑏) ∈ ℝ2. Donner
l’ensemble des solutions de
l’équation différentielle :
𝑦″+𝑎𝑦′+𝑏𝑦 = 0

(Considérer l’équation
caractéristique 𝑥2+𝑎𝑥+𝑏 = 0,
distinguer les cas Δ= 𝑎2−4𝑏 positif,
nul ou négatif)

Montrer
simplement que
vous connaissez le
résultat (donner
des noms
génériques pour
les racines réelles
ou complexes)
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3 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Connaître la définition de l’intégrale de fonctions continues sur un segment
2. Concernant les primitives :
• connaître les primitives usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir déterminer des primitives dans les cas de dérivation classique . . . . . . . . . ⬜
• connaître les opérations sur les primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

3. Connaître les différentes propriétés de l’intégrale :
• linéarité et relation de CHASLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• positivité et croissance de l’intégrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

4. Concernant les méthodes de calcul d’intégrales :
• l’intégration par parties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• le changement de variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

5. Concernant les équations différentielles :
• savoir résoudre l’homogène d’une équation différentielle linéaire d’ordre 1 ou 2⬜
• savoir effectuer une variation de la constante pour l’ordre 1 . . . . . . . . . . . . . . . . . . ⬜
• savoir trouver une solution particulière pour l’ordre 2 lorsque le second membre

est constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir que lorsqu’aucune condition initiale n’est imposée, on a une infinité de so-

lution, on conclut en donnant un ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir que lorsqu’une condition initiale est imposée, on conclut en donnant une

fonction solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

Cahier de calculs
Fiche(s) à travailler : 11, 12, 13, 14, 27, 28

3.1 Calculs de primitives et d’intégrales

Exercice 1 ∣ Primitives par calcul direct [Solution] Calculer les primitives des
fonctions suivantes en indiquant l’ensemble de validité :

𝑥⟼ cos(3𝑥)1. 𝑥⟼ cos2(𝑥)sin2(𝑥)2.

𝑥⟼ cos(𝑥)sin4 (𝑥)3. 𝑥⟼
sin(𝑥)
cos2 (𝑥)

4.

𝑥⟼
1

𝑥 ln(𝑥)
5. 𝑥⟼

𝑥
√𝑥2+1

6.

𝑥⟼
1

e𝑥+1
7. 𝑥⟼

1
√𝑥−1

8.

𝑥⟼
𝑥+1

𝑥2+2𝑥−3
9.

Exercice 2 ∣ Primitives avec arctan [Solution] Calculer les primitives des fonctions
suivantes en indiquant l’ensemble de validité :

𝑥⟼
1

𝑥2+3
1. 𝑥⟼

e𝑥

1+e2𝑥
2.

𝑥⟼
cos(𝑥)

1+ sin2 (𝑥)
3. 𝑥⟼

1
(1+𝑥)√𝑥

.4.

Exercice 3 ∣ Intégrales par calcul direct [Solution] Calculer les intégrales sui-
vantes :

∫
3

2

1
1−𝑥

d𝑥1. ∫
3

2

1
(1−𝑥)2

d𝑥2.

∫
π
2

0
sin(𝑥)cos(𝑥)d𝑥3. ∫

π

0
|cos(𝑥)|d𝑥4.

∫
2

1

ln𝑥
𝑥

d𝑥5. ∫
1

0

𝑥2

1+𝑥
d𝑥6.

Exercice 4 ∣ Intégrales avec intégration par parties [Solution] Calculer les inté-
grales suivantes :

∫
π

0
𝑥cos(𝑥)d𝑥1. ∫

1

0
𝑥e2𝑥 d𝑥2.

∫
1

0
𝑥(1−𝑥)𝑛 d𝑥, 𝑛 ∈ℕ3. ∫

𝑡

1
𝑥𝑛 ln(𝑥)d𝑥, 𝑛 ∈ℕ, 𝑡 > 04.
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Exercice 5 ∣ Primitives avec intégration par parties [Solution] Calculer les pri-
mitives des fonctions suivantes en indiquant l’ensemble de validité :

𝑥⟼𝑥3 cos(6𝑥)1. 𝑥⟼𝑥cos2 (𝑥)2.

𝑥⟼𝑥2e−𝑥3. 𝑥⟼𝑥3e−𝑥
2

4.

Exercice 6 ∣ Intégrales par changement de variable [Solution] Calculer les inté-
grales suivantes par changement de variable :

∫
π
4

0
(tan(𝑥) + tan3 (𝑥))d𝑥

(𝑢 = tan𝑥)

1. ∫
π

0
sin3 (𝑥)cos2 (𝑥)d𝑥 (𝑢 = cos𝑥)2.

∫
1

0
𝑥2√1+𝑥3 d𝑥 (𝑡 = 1+𝑥3)3. ∫

1

0

e𝑥

1+e2𝑥
d𝑥 (𝑡 = e𝑥).4.

Exercice 7 ∣ Primitive par changement de variable [Solution] À l’aide du chan-
gement de variable indiqué entre parenthèses, calculer une primitive des fonctions
d’une variable réelle suivantes.

𝑥⟼
𝑥

1+𝑥4
(𝑢 = 𝑡2)1. 𝑥⟼

1
2+√𝑥

(𝑢 = 2+√𝑡)2.

𝑥⟼ e2𝑥 sin(e𝑥) (𝑢 = e𝑡)3. 𝑥⟼
√sin(𝑥)
cos(𝑥)

(𝑢 =√sin(𝑡))4.

𝑥⟼
1

e𝑥+e−𝑥
(𝑢 = e𝑡)5.

Exercice 8 ∣ Intégrales de fractions rationnelles (1) [Solution] Calculer les inté-
grales suivantes :

∫
1

0

2𝑥+1
𝑥2+𝑥+1

d𝑥1. ∫
1

0

𝑥
(𝑥+1)2

d𝑥2.

Exercice 9 ∣ Intégrales de fractions rationnelles (2) [Solution]

1. Montrer que :

∀𝑥 ∈ [−1,1],
𝑥+1

𝑥2+4𝑥+5
=
1
2
×

2𝑥+4
𝑥2+4𝑥+5

−
1

𝑥2+4𝑥+5
,

puis que : 1
𝑥2+4𝑥+5 =

1
(𝑥+2)2+1 . En déduire

∫
1

−1

𝑥+1
𝑥2+4𝑥+5

d𝑥.

2. Avec la même méthode, calculer ∫
2

0

2𝑥+1
2𝑥−𝑥2−4

d𝑥.

Exercice 10 ∣ [Solution]

1. Soit 𝑓 continue sur [𝑎,𝑏]. Montrer que

∫
𝑏

𝑎
𝑓(𝑥)d𝑥 = ∫

𝑏

𝑎
𝑓(𝑎+𝑏−𝑥)d𝑥.

2. En déduire la valeur de ∫
π

0

𝑥sin𝑥
1+cos2𝑥

d𝑥.

3.2 Équations différentielles du premier ordre

Exercice 11 ∣ [Solution] Résoudre les équations différentielles suivantes sur l’in-
tervalle indiqué.

𝑦′−2𝑦 = 𝑥+𝑥2 sur ℝ1. (1+𝑥2)𝑦′+2𝑥𝑦 = 1 sur ℝ2.

𝑥2𝑦′−𝑦= e−
1
𝑥 sur ℝ+⋆3. 𝑦′−2𝑥𝑦 =−(2𝑥−1)e𝑥 sur ℝ4.

𝑦′+cos3 (𝑥)𝑦 = 0 sur ℝ5. 𝑦′+ 2
𝑥2−1𝑦 = 𝑥 sur ]1,+∞[6.

𝑦′−𝑦= 𝑥2 (e𝑥+e−𝑥)7. 𝑥3𝑦′+4(1−𝑥2)𝑦 = 08.

𝑥2𝑦′−𝑦= 𝑥2−𝑥+1. Indication : On pourra chercher une solution particulière
affine.

9.

Exercice 12 ∣ Avec conditions initiales [Solution] Résoudre les problèmesdeCAU-
CHY suivants en précisant à chaque fois l’intervalle de résolution.

1. 𝑦′ cos𝑥−𝑦sin𝑥 = 0, avec 𝑦(0) = 1
2. 𝑦′+𝑥𝑦 = 2𝑥, avec 𝑦(0) = 1
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Exercice 13 ∣ Loi de FICK [Solution] Une cellule est plongé dans une solution de
potassium de concentration 𝑐𝑝. On note 𝑐(𝑡) la concentration de potassium dans
la cellule à l’instant 𝑡, et on suppose que 𝑐(0) = 0. D’après la loi de FICK, la vitesse
de variation de la concentration de potassium dans la cellule est proportionnelle au
gradient de concentration 𝑐𝑝 −𝑐(𝑡), c’est-à-dire qu’il existe une constante τ homo-
gène à un temps telle que : 𝑐′(𝑡) = 𝑐𝑝−𝑐(𝑡)

τ .
Déterminer 𝑐(𝑡) et tracer le graphe de 𝑐.

Exercice 14 ∣ Datation au carbone 14 [Solution] La vitesse de désintégration du
carbone 14 est proportionnelle à sa quantité présente dans le matériau considéré.
Ainsi, si onnote𝑦(𝑡) le nombred’atomesde carbone14présents dansunéchantillon
de matière organique à l’anné 𝑡, 𝑦 vérifie l’équation différentielle

𝑦′(𝑡) = −𝑘𝑦(𝑡),
où 𝑘 = 1.238×10−4an−1 est la constante de désintégration du carbone 14.

1. Calculer l’expression explicite de𝑦(𝑡) en fonction dunombreN0 d’atomes de car-
bone 14 à l’instant 𝑡 = 0.

2. On appelle demi-vie d’un élément radioactif le temps au bout duquel la moitié
de ses atomes se sont désintégrés. Déterminer la demi-vie du carbone 14.

3. Lors de fouilles, on a découvert un fragment d’os dont la teneur en carbone 14
vaut 70% de celle d’un os actuel de même masse. Estimer l’âge de ces fragments.

3.3 Équations différentielles du second ordre

Exercice 15 ∣ [Solution] Résoudre les équations différentielles suivantes, puis dé-
terminer l’unique solution vérifiant 𝑦(0) = 0 et 𝑦′(0) = 1.

𝑦″+8𝑦′+15𝑦 = 51. 4𝑦″−4𝑦′+𝑦= 42.

𝑦″−2𝑦′+5𝑦 = 53. 𝑦″−2𝑦′ = 2.4.

Exercice 16 ∣ Recherche de solution particulière [Solution] Déterminer une so-
lution particulière des équations différentielles suivantes.

1. 𝑦′′−𝑦′+𝑦= 𝑡2+6 sous la forme 𝑦p(𝑡) = 𝑎𝑡2+𝑏𝑡 +𝑐 avec 𝑎,𝑏,𝑐 trois réels.
2. 𝑦′′+4𝑦 =−e2𝑡 sous la forme 𝑦p(𝑡) = 𝑎e2𝑡 avec 𝑎 ∈ ℝ.

3. 𝑦′′ +𝑦 = cos(𝑡) + sin(𝑡) sous la forme 𝑦p(𝑡) = 𝑡(𝑎cos(𝑡) + 𝑏sin(𝑡)), avec 𝑎,𝑏
deux réls.

4. 𝑦′′+𝑦′−2𝑦 = 2e𝑡 sous la forme 𝑦p(𝑡) = 𝑎𝑡e𝑡 avec 𝑎 ∈ ℝ.

Exercice 17 ∣ Avec conditions initiales [Solution] Résoudre les problèmesdeCAU-
CHY suivants :

1. 𝑦′′−4𝑦′+5𝑦 = 1 avec 𝑦(0) = 1 et 𝑦′(0) = 0
2. 𝑦′′−4𝑦′+5𝑦 = 2 avec 𝑦(0) = 0 et 𝑦′(0) = 1

3.4 Techniques particulières

Exercice 18 ∣ BOMB Changement de fonction inconnue [Solution] Résoudre
𝑥2𝑦″+3𝑥𝑦′+𝑦= 2 sur ℝ+⋆ en posant 𝑧(𝑡) = 𝑦(e𝑡) pour tout 𝑡 ∈ ℝ.

Exercice 19 ∣ BOMB Changement de fonction inconnue [Solution] Résoudre l’équa-
tion différentielle 𝑥2𝑦′′+4𝑥𝑦′+(2−𝑥2)𝑦 = 1 sur ℝ+⋆ en posant 𝑧(𝑥) = 𝑥2𝑦(𝑥).

3.5 Devoir-maisonLaptop-House

Exercice 20 ∣ [Solution] Soit 𝑎 > 0. Calculer :

I(𝑎) = ∫
𝑎

1
𝑎

ln(𝑥)
1+𝑥2

d𝑥

à l’aide du changement de variable 𝑡 = 1
𝑥 .

Problème 1 ∣ Équation différentielle linéaire d’ordre 3 [Solution] On définit sur
ℝ les fonctions ci-après :

𝑔1 ∶ 𝑥⟼ e−𝑥, 𝑔2 ∶ 𝑥⟼ e−2𝑥 cos(𝑥), 𝑔3 ∶ 𝑥⟼ e−2𝑥 sin(𝑥).
Et on définit l’ensemble des « combinaisons linéaires de 𝑔1,𝑔2,𝑔3 » comme étant :

ℰ = {λ1𝑔1+λ2𝑔2+λ3𝑔3 | (λ1,λ2,λ3) ∈ ℝ3}.
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On s’intéresse dans ce problème à la résolution de l’équation différentielle linéaire
d’ordre 3 suivante :

𝑦′′′+5𝑦′′+9𝑦′+5𝑦 = 0 (H)
et on note𝒮 l’ensemble des solutions de (H).

1. 1.1) Vérifier que 𝑔1 est solution de (H).
1.2) Vérifierque𝑔2 est solutionde (H).Onadmetpar la suite que𝑔3 est également

solution de (H)
1.3) Justifier l’inclusion : ℰ ⊂𝒮.

2. Dans cette question, on souhaite démontrer que : 𝒮 ⊂ℰ. Pour cela, on consi-
dère une fonction 𝑓 solution de (H).
2.1) On pose 𝑔 = 𝑓′′ +4𝑓′ +5𝑓. Montrer que 𝑔 est solution de l’équation diffé-

rentielle : (H1) 𝑦′+𝑦= 0.
2.2) Résoudre l’équation différentielle (H1).
2.3) Résoudre l’équation différentielle : (H2) 𝑦′′+4𝑦′+5𝑦 = 0.
2.4) Soit λ ∈ ℝ. Résoudre l’équation différentielle : (H3) 𝑦′′+4𝑦′+5𝑦 = λe−𝑥.

Indication : On cherchera une solution particulière sous la forme 𝑥⟼Ce−𝑥

avec C ∈ ℝ à choisir
2.5) Conclure.

3. Déterminer l’unique solution du problème :
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑦′′′+5𝑦′′+9𝑦′+5𝑦 = 0
𝑦(0) = 0
𝑦(π2 ) = e−

π
2

𝑦′(0) = 1.
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SOLUTIONS DES EXERCICES

Solution (exercice 1) [Énoncé] On rappelle que les primitives sont toutes
définies à une constante près. Ici je ne fais pas apparaître les constantes que je
prends toujours égales à 0.
1. La fonction est continue surℝdonc il existe Fune primitive surℝ et pour tout

𝑥 ∈ ℝ : F(𝑥) = sin(3𝑥)
3 : Primitive usuelle.

2. Il s’agit ici de linéariser, puis primitiver. D’après les formules d’EULER, on a
après développements :

cos2(𝑥)sin2(𝑥) =
−e4i𝑥+2e2i𝑥−e2i𝑥+4−e−2i𝑥+2e−2i𝑥−e−4i𝑥

16
.

En réutilisant les formules, on déduit :

cos2(𝑥)sin2(𝑥) =
−2cos(4𝑥)+4

16
=
1
8
−
cos(4𝑥)

8
.

On peut alors primitiver :

∀𝑥 ∈ ℝ, F(𝑥) =
𝑥
8
−
sin(4𝑥)
32

=
1
8
(𝑥−

sin(4𝑥)
4

) .

3. La fonction est continue surℝdonc il existe Fune primitive surℝ et pour tout
𝑥 ∈ ℝ : F(𝑥) = sin5 (𝑥)

5 : Reconnaître la forme 𝑢′𝑢4.
4. La fonction est continue surℝ∖{π2 +𝑘π, |𝑘 ∈ ℤ}. Il existe donc par exemple F

uneprimitive sur ]−π
2 ,

π
2 [etpour tout𝑥 ∈ ]−π

2 ,
π
2 [ (par exemple) : F(𝑥) = 1

cos𝑥 :
on reconnaît une primitive de la forme − 𝑢′

𝑢2 .
5. La fonction est continue sur ℝ+⋆ ∖ {1}. Il existe donc F une primi-

tive sur ]0,1[ et sur ]1,+∞[ et pour tout 𝑥 ∈]1,+∞[ (par exemple) :
F(𝑥) = ln |ln𝑥| = ln(ln𝑥) : on reconnaît une primitive de la forme 𝑢′

𝑢 .
6. La fonction est continue sur ℝ car 1+𝑥2 > 0. Il existe donc F une primitive

sur ℝ et pour tout 𝑥 ∈ ℝ : F(𝑥) =√1+𝑥2 : on reconnaît une primitive de la
forme 1

2
𝑢′

√𝑢
.

7. La fonction est continue sur ℝ car son dénominateur est non nul comme
somme de deux termes strictements positifs. Il existe donc F une primitive
sur ℝ et pour tout 𝑥 ∈ ℝ : F(𝑥) = 𝑥− ln |e𝑥+1| = 𝑥− ln(e𝑥+1) : On utilise
l’astuce 1 = 1+ e𝑥 − e𝑥 puis on coupe en deux et on reconnaît sur l’un des
deux bouts : 𝑢

′

𝑢 .
8. La fonctionest continue sur ]1,+∞[. Il existedoncFuneprimitive sur ]1,+∞[

et pour tout 𝑥 ∈]1,+∞[ : F(𝑥) = 2√𝑥−1 : on reconnaît la forme 𝑢′

√𝑢
.

9. La fonction est continue sur ℝ ∖ {−3,1}. Il existe donc par exemple
F une primitive sur ]−3,1[ et pour tout 𝑥 ∈ ]−3,1[ (par exemple) :

F(𝑥) = 1
2 ln |𝑥

2+2𝑥−3| = − ln(−𝑥2−2𝑥+3) : on reconnaît une primitive de
la forme 1

2
𝑢′
𝑢 .

Solution (exercice 2) [Énoncé]

1. La fonction est continue sur ℝ car son dénominateur est non nul comme
sommededeux termespositifs dont l’un est strictement positif. Il existe donc

Funeprimitive surℝ et pour tout𝑥 ∈ ℝ : F(𝑥) = 1
√3

arctan( 𝑥
√3
) : on reconnaît

une primitive de la forme 𝑢′
1+𝑢2 en mettant le 3 en facteur au dénominateur.

2. La fonction est continue sur ℝ car le dénominateur ne s’annule pas comme
sommede deux termes strictement positifs. Il existe donc F une primitive sur
ℝ et pour tout 𝑥 ∈ ℝ : F(𝑥) = arctan(e𝑥) : on reconnaît la forme 𝑢′

1+𝑢2 .
3. La fonction est continue sur ℝ car son dénominateur est non nul comme

sommededeux termespositifs dont l’un est strictement positif. Il existe donc
F une primitive sur ℝ et pour tout 𝑥 ∈ ℝ : F(𝑥) = arctan(sin𝑥) : on reconnaît
une primitive de la forme 𝑢′

1+𝑢2 .
4. La fonctionest continue sur ]0,+∞[. Il existedoncFuneprimitive sur ]0,+∞[

et pour tout𝑥 ∈]0,+∞[ : F(𝑥) = 2arctan(√𝑥) : on reconnaît la forme 𝑢′
1+𝑢2 en

écrivant que : 𝑥 = (√𝑥)2 et en remarquant que la dérivé de la racine carré est
bien 1

2√𝑥
.

Solution (exercice 3) [Énoncé]

1. La fonction 𝑓 ∶ 𝑥⟼ 1
1−𝑥 est continue sur [2,3] comme somme et quotient de

fonctions continues donc l’intégrale I existe. On reconnaît la forme 𝑢′
𝑢 et ainsi

I = − ln2 .
2. La fonction 𝑓 ∶ 𝑥⟼ 1

(1−𝑥)2 est continue sur [2,3] comme somme et quotient
de fonctions continues donc l’intégrale I existe. On reconnaît la forme 𝑢′

𝑢2 et
ainsi I = 1

2 .
3. La fonction 𝑓 ∶ 𝑥 ⟼ sin(𝑥)cos(𝑥) est continue sur [0, π2 ] comme produit

de fonctions continues donc l’intégrale I existe. On reconnaît la forme 𝑢′𝑢 et
ainsi I = 1

2 .
4. La fonction 𝑓 ∶ 𝑥 ⟼ |cos(𝑥)| est continue sur [0,π] comme composé de

fonctions donc l’intégrale I existe. On utilise le théorème de CHASLES pour
couper en deux l’intégrale et ainsi pouvoir enlever la valeur absolue. Ainsi on
a :

I = ∫
π
2

0
cos(𝑥)d𝑥− ∫

π

π
2

cos(𝑥)d𝑥 = 2.
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5. La fonction 𝑓 ∶ 𝑥⟼ ln𝑥
𝑥 est continue sur ]0,+∞[ donc sur [1,2] comme quo-

tient de fonctions continues donc l’intégrale I existe. On reconnaît la forme
𝑢′𝑢 et ainsi I = (ln2)2

2 .

6. La fonction 𝑓 ∶ 𝑥⟼ 𝑥2
1+𝑥 est continue surℝ∖{−1} donc sur [0,1] commequo-

tient de fonctions continues donc l’intégrale I existe. On utilise alors l’astuce
”−1+1” et on obtient que :

𝑥2

1+𝑥
=
𝑥2−1+1
1+𝑥

= 𝑥−1+
1

1+𝑥
.

Une primitive est alors F(𝑥) = 𝑥2
2 −𝑥+ ln |1+𝑥| et donc : I = − 1

2 + ln(2) .

Solution (exercice 4) [Énoncé] Je ne donne là encore que les idés de la
méthode et le résultat mais toute intégration par parties doit être correctement
rédigé, enparticulier il faut à chaque fois justifier que les fonctions sont de classe
𝒞1, comme nous l’avons fait dans les exemples du cours.
1. La fonction 𝑓 ∶ 𝑥⟼𝑥cos(𝑥) est continue sur ℝ donc sur [0,π] comme pro-

duit de fonctions continues donc l’intégrale I existe. On dérive le polynôme
et on obtient par intégration par parties que : I = −2 .

2. La fonction 𝑓 ∶ 𝑥⟼ 𝑥e2𝑥 est continue sur ℝ dont sur [0,1] comme produit
de fonctions continues donc l’intégrale I existe. On dérive le polynôme et on
obtient par intégration par parties que : I = e2+1

4 .
3. La fonction 𝑓 ∶ 𝑥 ⟼ 𝑥(1 − 𝑥)𝑛 est continue sur ℝ donc sur [0,1] comme

produit de fonctions continues donc l’intégrale I existe. On dérive le poly-
nôme de degré 1 et on intègre la fonction 𝑥 ⟼ (1 − 𝑥)𝑛 dont une primi-
tive est de la forme F ∶ 𝑥 ⟼ − (1−𝑥)𝑛+1

𝑛+1 . On obtient alors par intégration par

parties : I = 0 + 1
𝑛+1 ∫

1

0
(1 − 𝑥)𝑛+1 d𝑥 =

1
(𝑛+1)(𝑛+2)

car une primitive de

𝑥⟼(1−𝑥)𝑛+1 est F ∶ 𝑥⟼− (1−𝑥)𝑛+2
𝑛+2 .

4. La fonction 𝑓 ∶ 𝑥 ⟼ 𝑥𝑛 ln(𝑥) est continue sur ℝ+⋆ donc sur [1,𝑡] ou [1,𝑡]
car 𝑡 > 0 comme produit de fonctions continues donc l’intégrale I existe. On
dérive la fonction logarithmenépérien et on intègre la fonction𝑥⟼𝑥𝑛 dont
une primitive est de la forme F ∶ 𝑥⟼ 𝑥𝑛+1

𝑛+1 . On obtient alors par intégration

par parties : I = 𝑡𝑛+1 ln𝑡
𝑛+1 − 1

𝑛+1 ∫
𝑡

1
𝑥𝑛 d𝑥 =

𝑡𝑛+1 ln𝑡
𝑛+1

−
𝑡𝑛+1−1
(𝑛+1)2

.

Solution (exercice 5) [Énoncé] Dans tous ces exemples, on ne peut pas
calculer directement une primitive... L’idé alors d’exprimer cette primitive sous
la forme d’une intégrale pour pouvoir la calculer plus facilement. On ne détaille

pas tous les calculs, seulement des indications pour guider l’intégration par par-
ties.
1. La fonction est continue surℝdonc il existe Fune primitive surℝ et pour tout

𝑥 ∈ ℝ :

F(𝑥) = ∫
𝑥

0
𝑡3 cos(6𝑡)d𝑡 =

𝑥3 sin(6𝑥)
6

+
𝑥2 cos(6𝑥)

12
−
𝑥sin(6𝑥)

36
−
cos(6𝑥)

63
.

Trois intégration par parties en dérivant le polynôme.
2. La fonction est continue surℝdonc il existe Fune primitive surℝ et pour tout

𝑥 ∈ ℝ :

F(𝑥) =
1
2
∫
𝑥

0
𝑡cos(2𝑡)d𝑡 +

𝑥2

4
=
𝑥sin(2𝑥)

4
+
cos(2𝑥)

8
+
𝑥2

4
.

Linéarisation du cosinus carré puis une intégration par parties.
3. La fonction est continue sur ℝ. Il existe donc F une primitive sur ℝ et pour

tout 𝑥 ∈ ℝ :

F(𝑥) = ∫
𝑥

0
arctan(𝑡)d𝑡 = 𝑥arctan𝑥−

1
2
ln(1+𝑥2) .

1 intégration par parties en dérivant la fonction arctangente et en intégrant 1
puis on reconnaît la forme 𝑢′

𝑢 .
4. La fonction est continue sur ℝ. Il existe donc F une primitive sur ℝ et pour

tout 𝑥 ∈ ℝ :

F(𝑥) = ∫
𝑥

0
𝑡2e−𝑡 d𝑡 = −𝑥2e−𝑥−2𝑥e−𝑥−2e−𝑥.

2 intégration par parties en dérivant le polynôme.
5. La fonction est continue sur ℝ. Il existe donc F une primitive sur ℝ et pour

tout 𝑥 ∈ ℝ :

F(𝑥) = ∫
𝑥

0
𝑡3e−𝑡

2
d𝑡 = −

(𝑥2+1)e−𝑥
2

2
.

1 intégrationparparties endérivant lepolynôme 𝑡⟼𝑡2 et en intégrant 𝑡⟼
𝑡𝑒−𝑡

2
où on reconnaît 𝑢′e𝑢 (ici on commence par écrire que 𝑡3 = 𝑡2×𝑡). Puis

dans la nouvelle intégrale de l’intégration par parties, on reconnaît encore la
forme 𝑢′e𝑢.

Solution (exercice 6) [Énoncé]

1. La fonction 𝑥⟼ tan(𝑥)+ tan3 (𝑥) est continue sur [0, π4 ] comme composé
et somme de fonctions continues. Donc I existe.
Calculons I grâce à un changement de variable : on pose 𝑢 = tan𝑥, d𝑢 = (1+
tan2 (𝑥))d𝑥 =. Donc :

(tan(𝑥)+ tan3 (𝑥))d𝑥 = tan(𝑥)(1+ tan2 (𝑥))d𝑥.
De plus φ ∶ 𝑥 ⟼ tan(𝑥) est 𝒞1 sur [0, π4 ] comme fonction usuelle.
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Ainsi d’après le théorème de changement de variable, on obtient que :

I = ∫
1

0
𝑢d𝑢 =

1
2

.

2. La fonction 𝑥⟼ sin3 (𝑥)cos2 (𝑥) est continue sur [0,π] comme composé et
produit de fonctions continues. Donc I existe.
Calculons I grâce à un changement de variable : 𝑢 = cos𝑥, d𝑢 = −sin(𝑥)d𝑥.
Donc :

sin3 (𝑥)cos2 (𝑥)d𝑥 =−𝑢2(1−𝑢2)d𝑢.
On a 𝑥 = 0⟹ 𝑢= cos(0) = 1, et 𝑥 = π⟹ 𝑢= cos(π) = −1. De plusφ ∶ 𝑥⟼
cos(𝑥) est𝒞1 sur [0,π] comme fonction usuelle.
Ainsi d’après le théorème de changement de variable, on obtient que :

I = ∫
−1

1
−𝑢2(1−𝑢2)d𝑡 =

4
15
.

3. La fonction 𝑥⟼𝑥2√1+𝑥3 est continue sur [0,1] comme composé et pro-
duit de fonctions continues. Donc I existe.
Calculons I grâce à un changement de variable : 𝑡 = 1 + 𝑥3, d𝑡 = 3𝑥2 d𝑥,
𝑥2√1+𝑥3 d𝑥 = √𝑡

3 d𝑡. On a 𝑥 = 0 ⟹ 𝑡 = 1, et 𝑥 = 1 ⟹ 𝑡 = 2. La fonction
φ ∶ 𝑥⟼√𝑥 est𝒞1 sur ]0,1] comme fonction usuelle.
Ainsi d’après le théorème de changement de variable, on obtient que :

I = ∫
2

1

√𝑡
3

d𝑡 =
4√2−2

9
.

4. La fonction 𝑥 ⟼ e𝑥
1+e2𝑥 est continue sur [0,1] comme composé, somme et

produit de fonctions continues. Donc I existe.
Calculons I grâce à un changement de variable. On pose 𝑡 = e𝑥, d𝑡 = e𝑥 d𝑥,
e𝑥

1+e2𝑥 d𝑥 =
d𝑡
1+𝑡2 . Ona𝑥 = 0⟹𝑡 = 1, et𝑥 = 1⟹𝑡 = e. La fonctionφ ∶ 𝑥⟼ e𝑥

est𝒞1 sur [0,1] comme fonction usuelle.
Ainsi d’après le théorème de changement de variable, on obtient que :

I = ∫
𝑒

1

d𝑡
1+𝑡2

= arctane−
π
4
.

Solution (exercice 7) [Énoncé]

1. • Existence : la fonction𝑥⟼ 𝑥
1+𝑥4 est continue surℝ commesommeetquo-

tient de fonctions continues. Donc il existe une primitive F de 𝑓 sur ℝ et :
∀𝑥 ∈ ℝ, F(𝑥) = ∫

𝑥

0

𝑡
1+𝑡4

d𝑡.
• Calcul de F grâce à un changement de variable :

⋄ On pose :
⎧⎪
⎨⎪
⎩

𝑢 = 𝑡2

d𝑢 = 2𝑡d𝑡
𝑡

1+𝑡4 d𝑡 = d𝑢
2(1+𝑢2) .

⋄ On a 𝑡 = 0 ⟹ 𝑢= 0, et 𝑡 = 𝑥 ⟹ 𝑢=𝑥2.
⋄ On a :
— φ ∶ 𝑡⟼𝑡2 est𝒞1 sur [0,𝑥] comme fonction usuelle.
— 𝑢⟼ 1

2(1+𝑢2) est continue sur [0,𝑥2] comme somme et quotient de
fonctions continues.

Ainsi d’après le théorème de changement de variable, on obtient que :

F(𝑥) = ∫
𝑥2

0

d𝑢
2(1+𝑢2)

=
arctan(𝑥2)

2
.

2. • Existence : la fonction 𝑥⟼ 1
2+√𝑥

est continue sur ℝ+ comme somme et
quotient de fonctions continues. Donc il existe une primitive F de 𝑓 surℝ+

et : ∀𝑥 ∈ ℝ+, F(𝑥) = ∫
𝑥

0

1
2+√𝑡

d𝑡.

• Calcul de F grâce à un changement de variable :

⋄ On pose :

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

𝑢 = 2+√𝑡

𝑑𝑢 = d𝑡
2√𝑡

⟺ 2(𝑢−2)d𝑢 = d𝑡( car√𝑡=𝑢−2) 1
2+√𝑡

d𝑡 = 2(𝑢−2)
𝑢 d𝑢.

⋄ On a 𝑡 = 0 ⟹ 𝑢= 2, et 𝑡 = 𝑥 ⟹ 𝑢= 2+√𝑥.
⋄ On a :
— φ ∶ 𝑡⟼2+√𝑡 est𝒞1 sur [0,𝑥] comme fonction usuelle.
— 𝑢⟼ 2(𝑢−2)

𝑢 est continue sur [2,2+√𝑥] comme somme et quotient
de fonctions continues.

Ainsi d’après le théorème de changement de variable, on obtient que :

F(𝑥) = 2 ∫
2+√𝑥

2
(1−

2
𝑢
)d𝑢 = 2√𝑥−4 ln(1+

√𝑥
2
) .

3. • Existence : la fonction 𝑥 ⟼ e2𝑥 sin(e𝑥) est continue sur ℝ comme com-
posé et produit de fonctions continues. Donc il existe une primitive F de
𝑓 sur ℝ et : ∀𝑥 ∈ ℝ, F(𝑥) = ∫

𝑥

0
e2𝑡 sin(e𝑡)d𝑡.

• Calcul de F grâce à un changement de variable :

⋄ On pose :

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑢 = e𝑡

d𝑢 = e𝑡 d𝑡
e2𝑡 sin(e𝑡)

d𝑡 = 𝑢sin(𝑢)d𝑢.
⋄ On a 𝑡 = 0 ⟹ 𝑢= 1, et 𝑡 = 𝑥 ⟹ 𝑢= e𝑥.
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⋄ On a :
— φ ∶ 𝑡⟼ e𝑡 est𝒞1 sur [0,𝑥] comme fonction usuelle.
— 𝑢⟼𝑢sin(𝑢) est continue sur [1,𝑒𝑥] comme sommeet quotient de

fonctions continues.
Ainsi d’après le théorème de changement de variable, on obtient que :

F(𝑥) = ∫
e𝑥

1
𝑢sin𝑢d𝑢 =−𝑥cos𝑥+ sin𝑥+cos(1)− sin(1) ,

en faisant une intégration par parties.
4. • Existence : la fonction 𝑥 ⟼ √sin(𝑥)

cos(𝑥) est continue sur par exemple [0, π2 [
comme composé et quotient de fonctions continues. Donc il existe
une primitive F de 𝑓 sur l’intervalle [0, π2 [ et : ∀X ∈ [0, π2 [ , F(𝑥) =

∫
𝑥

0

√sin(𝑡)
cos(𝑡)

d𝑡.

• Calcul de F grâce à un changement de variable :

⋄ On pose :

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

𝑢 = √sin(𝑡)
d𝑢 = cos(𝑡)d𝑡

2√sin(𝑡)
√sin(𝑡)
cos(𝑡) d𝑡 = 2sin(𝑡)

cos2 (𝑡)
cos(𝑡)

2√sin(𝑡)
d𝑡

= 2sin(𝑡)
1−sin2 (𝑡)

cos(𝑡)
2√sin(𝑡)

d𝑡 = 2𝑢2
1−𝑢4 d𝑢.

⋄ On a 𝑡 = 0 ⟹ 𝑢= 0, et 𝑡 = 𝑥 ⟹ 𝑢=√sin(𝑥).
⋄ On a :
— φ ∶ 𝑡⟼√sin(𝑡) est𝒞1 sur [0,𝑥] comme fonction usuelle.
— 𝑢⟼ 2𝑢2

1−𝑢4 est continue sur [0,√sin(𝑥)].
Ainsi d’après le théorème de changement de variable, on obtient que :

F(𝑥) = ∫
√sin(𝑥)

0

2𝑢2

1−𝑢4
d𝑢 =−arctan(√sin𝑥)+

1
2
ln(

1−√sin(𝑥)
1+√sin(𝑥)

),

en écrivant que 𝑢2
1−𝑢4 =

A
1−𝑢2 +

B
1+𝑢2 =

1
2 ×

1
1−𝑢2 −

1
2 ×

1
1+𝑢2 puis en écrivant

encore 1
1−𝑢2 =

C
1−𝑢 +

D
1+𝑢 .

5. • Existence : la fonction 𝑥 ⟼ 1
e𝑥+e−𝑥 est continue sur ℝ comme composé,

somme et quotient de fonctions continues. Donc il existe une primitive F

de 𝑓 sur ℝ et : ∀𝑥 ∈ ℝ, F(𝑥) = ∫
𝑥

0

1
e𝑡+e−𝑡

d𝑡.
• Calcul de F grâce à un changement de variable :

⋄ On pose :
⎧⎪
⎨⎪
⎩

𝑢 = e𝑡

d𝑢 = e𝑡 d𝑡
1

e𝑡+e−𝑡 d𝑡 = d𝑢
1+𝑢2 .

⋄ On a 𝑡 = 0 ⟹ 𝑢= 1, et 𝑡 = 𝑥 ⟹ 𝑢= e𝑥.
⋄ On a :
— φ ∶ 𝑡⟼ e𝑡 est𝒞1 sur [0,𝑥] comme fonction usuelle.

— 𝑢⟼ 1
1+𝑢2 est continue sur [1,e𝑥].

Ainsi d’après le théorème de changement de variable, on obtient que :

F(𝑥) = ∫
e𝑥

1

d𝑢
1+𝑢2

= arctan(e𝑥)−
π
4
.

Solution (exercice 8) [Énoncé]

1. • La fonction 𝑥⟼ 2𝑥+1
𝑥2+𝑥+1 est continue sur [0,1] comme quotient de fonc-

tions polynomiales dont le dénominateur ne s’annule jamais surℝ (discri-
minant strictement négatif). Ainsi I existe.

• On reconnaît une forme 𝑢′
𝑢 en posant 𝑢(𝑥) = 𝑥2+𝑥+1.

• Calcul : I = [ln |𝑥2+𝑥+1|]10 = ln(3) .
2. • La fonction 𝑥 ⟼ 𝑥

(𝑥+1)2 est continue sur [0,1] comme quotient de fonc-
tions polynomiales dont le dénominateur ne s’annule pas. Ainsi I existe
bien.

• ⋄ On utilise l’astuce du +1−1 : 𝑥
(𝑥+1)2 =

𝑥+1−1
(𝑥+1)2 =

1
𝑥+1 −

1
(𝑥+1)2 .

⋄ Ainsi, on a : I = [ln |𝑥+1|+ 1
𝑥+1]

1
0 = ln(2)− 1

2 .

Solution (exercice 9) [Énoncé]

1. Les égalités sur les fractions se prouvent simplement par calculs directs. Pas-
sons au calcul des intégrales.
• La fonction𝑥⟼ 𝑥+1

𝑥2+4𝑥+5 est continue sur [−1,1] commequotient de fonc-
tions polynomiales dont le dénominateur ne s’annule pas (discriminant
négatif). Ainsi I existe bien.

• On fait apparaître 𝑢′
𝑢 :

I = ∫
1

−1
(
1
2
×

2𝑥+4
𝑥2+4𝑥+5

−
1

𝑥2+4𝑥+5
)d𝑥 = ln(√5)− ∫

1

−1

1
𝑥2+4𝑥+5

d𝑥.
• On fait apparaître la forme canonique au dénominateur :

I = ln(√5)− ∫
1

−1

1
(𝑥+2)2+1

d𝑥.

• On fait apparaître la forme 𝑢′
1+𝑢2 , en posant 𝑢(𝑥) = 𝑥+2.

Ainsi I = ln(√5)− [arctan(𝑥+2)]1−1 = ln(√5)+ π
4 −arctan(3) .

2. • La fonction 𝑥⟼ 2𝑥+1
2𝑥−𝑥2−4 est continue sur [0,2] comme quotient de fonc-

tions polynomiales et car Δ = −12 < 0 donc le dénominateur ne s’annule
jamais sur ℝ. Ainsi I existe.

• On applique alors la méthode suivante.
⋄ On fait apparaître 𝑢′

𝑢 :

I = ∫
2

0
(−

−2𝑥+2
−𝑥2+2𝑥−4

+
3

−𝑥2+2𝑥−4
)d𝑥 = 0−3 ∫

2

0

1
𝑥2−2𝑥+4

d𝑥.
⋄ On fait apparaître la forme canonique au dénominateur :
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I = −3 ∫
2

0

1
(𝑥−1)2+3

d𝑥.

⋄ On fait apparaître la forme 𝑢′
1+𝑢2 :

I = − ∫
2

0

1
(𝑥−1
√3

)2+1
d𝑥 =−√3 ∫

2

0

1
√3

(𝑥−1
√3

)2+1
d𝑥

=−√3[arctan(
𝑥−1
√3

)]
2

0

= −
π
√3

.

Solution (exercice 10) [Énoncé]

1. La fonction𝑓 est continue sur [𝑎,𝑏]par hypothèse et ainsi les fonctions𝑥⟼
𝑓(𝑥)et𝑥⟼𝑓(𝑎+𝑏−𝑥) sont elles aussi continues sur [𝑎,𝑏] commecomposé
de fonctions continues pour la deuxième. Ainsi les deux intégrales existent
bien.
Partons par exemple de ∫

𝑏

𝑎
𝑓(𝑎+𝑏−𝑥)d𝑥 et vérifions en faisant un change-

ment de variable que cette intégrale vaut bien ∫
𝑏

𝑎
𝑓(𝑦)d𝑦.

On pose 𝑦 = 𝑎 +𝑏 −𝑥, d𝑦 = −d𝑥, donc 𝑓(𝑎 +𝑏 −𝑥)d𝑥 = −𝑓(𝑦)d𝑦. Et 𝑥 =
𝑎 ⟹ 𝑦 = 𝑏, et 𝑥 = 𝑏 ⟹ 𝑦 = 𝑎, la fonction φ ∶ 𝑥 ⟼ 𝑎+𝑏 −𝑥 est 𝒞1 sur
[𝑎,𝑏] comme fonction usuelle. Ainsi d’après le théorème de changement de
variable, on obtient que :

∫
𝑏

𝑎
𝑓(𝑎+𝑏−𝑥)d𝑥 = ∫

𝑎

𝑏
(−𝑓(𝑦))d𝑦 = ∫

𝑏

𝑎
𝑓(𝑦)d𝑦 .

On obtient bien le résultat cherché.
2. La fonction 𝑥 ⟼ 𝑥sin(𝑥)

1+cos2 (𝑥) est bien continue sur [0,π] comme composé,
somme, produit et quotient de fonctions continues dont le dénominateur ne

s’annule pas. Ainsi l’intégrale I = ∫
π

0

𝑥sin𝑥
1+cos2𝑥

d𝑥 existe bien et on est bien
sous l’hypothèse du résultat de la question précédente. Ainsi, on obtient en
utilisant la question précédente que :

I = ∫
π

0

(π−𝑥)sin(π−𝑥)
1+ cos2 (π−𝑥)

d𝑥 = ∫
π

0

(π−𝑥)sin(𝑥)
1+cos2 (𝑥)

d𝑥 = π ∫
π

0

sin(𝑥)
1+ cos2 (𝑥)

d𝑥−i

en utilisant le cercle trigonométrique. Ainsi, on a : 2i = π ∫
π

0

sin(𝑥)
1+ cos2 (𝑥)

d𝑥

et on reconnaît alors une primitive usuelle et on obtient donc :

2i =−π[arctan(cos(𝑥))]π0 =
π2

2
.

Ainsi, on vient de montrer que I = π2
4 .

Solution (exercice 11) [Énoncé] Je ne détaille pas tous les calculs.
1. Résolution de l’homogène. Résolution de l’équation homogène associé : 𝑦′ =

2𝑦.On en déduit :𝒮0 = {𝑥⟼Ce2𝑥 |C ∈ ℝ}
Recherche d’une solution particulière. Par variation de la constante, on ob-
tient que : 𝑦p(𝑥) = − 1

2𝑥
2−𝑥− 1

2 .

Conclusion. 𝒮= {𝑥⟼Ce2𝑥− 1
2𝑥

2−𝑥− 1
2 |C ∈ ℝ}

2. On reconnaît une équation différentielle linéaire du premier ordre. Comme
on a 1+𝑥2 ≠ 0 sur ℝ, il est équivalent de résoudre 𝑦′+ 2𝑥

1+𝑥2𝑦 =
1

1+𝑥2 .
Résolution de l’homogène. La fonction 𝑎 ∶ 𝑥 ⟼ 𝑎(𝑥) = − 2𝑥

1+𝑥2 est continue
surℝ car 1+𝑥2 > 0 comme sommede deux termes positifs dont l’un est stric-
tement positif et ainsi on a toujours 1+𝑥2 ≠ 0. Donc il existe une primitive A
de 𝑎 sur ℝ et pour tout 𝑥 ∈ ℝ, A(𝑥) = − ln |1+𝑥2| = − ln(1+𝑥2). On a de plus
e− ln(1+𝑥

2) = 1
1+𝑥2 . Donc :𝒮0 = {𝑥⟼ C

1+𝑥2 |C ∈ ℝ}.
Recherche d’une solution particulière. On utilise la méthode de la variation
de la constante : on cherche une solution particulière sous la forme 𝑦p(𝑥) =
C(𝑥)
1+𝑥2 avec C une fonction dérivable sur ℝ. Ainsi 𝑦p est bien dérivable sur ℝ+⋆

comme composé et produit de fonctions dérivables. Et pour tout 𝑥 ∈ ℝ+⋆, on
obtient :

(𝑦p)′(𝑥)+
2𝑥

1+𝑥2
𝑦p(𝑥) =

1
1+𝑥2

⟺
C′(𝑥)
1+𝑥2

=
1

1+𝑥2
⟺ C′(𝑥) = 1,

ainsi on peut prendre C(𝑥) = 𝑥, et donc 𝑦p(𝑥) = 𝑥
1+𝑥2 .

Conclusion. 𝒮= {𝑥⟼ C+𝑥
1+𝑥2 |C ∈ ℝ}

3. On reconnaît une équation différentielle linéaire du premier ordre. Comme
on la résout sur ℝ+⋆, on a : 𝑥2 ≠ 0 et ainsi il est équivalent de résoudre :

𝑦′ =
𝑦
𝑥2

+
e−

1
𝑥

𝑥2
.

Résolution de l’homogène. La fonction 𝑎 ∶ 𝑥 ⟼ 𝑎(𝑥) = 1
𝑥2 est continue sur

ℝ+⋆ donc il existe une primitiveA de𝑎 surℝ+⋆ et pour tout 𝑥 ∈ ℝ+⋆,A(𝑥) = 1
𝑥 .

On a donc :𝒮0 = {𝑥 ∈ ℝ+ ⟼Ce−
1
𝑥 |C ∈ ℝ}

Recherche d’une solution particulière. En utilisant la méthode de la variation
de la constante, on cherche une solution particulière sous la forme : 𝑦(𝑥) =
C(𝑥)e−

1
𝑥 avecC fonction dérivable surℝ+⋆. Ainsi𝑦1 est bien dérivable surℝ+⋆

comme composé et produit de fonctions dérivables. Et pour tout 𝑥 ∈ ℝ+⋆, on
obtient :

(𝑦p)′(𝑥)−
𝑦p(𝑥)
𝑥2

=
e−

1
𝑥

𝑥2
⟺ C′(𝑥) =

1
𝑥2

en simplifiant par e−
1
𝑥 ≠ 0. Ainsi pour tout 𝑥 > 0 : C(𝑥) = − 1

𝑥 . Ainsi : 𝑦p(𝑥) =
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− 1
𝑥e

− 1
𝑥 est une solution particulière.

Conclusion. La solution générale de l’équation différentielle avec second
membre est alors : 𝒮= {𝑥⟼(C− 1

𝑥 )e
− 1
𝑥 |C ∈ ℝ}

4. 𝒮= {𝑥⟼Ce𝑥
2
+e𝑥 |C ∈ ℝ}

5. 𝒮= {𝑥⟼Ce−
1
12 sin(3𝑥)−

3
4 sin𝑥 |C ∈ ℝ} .

6. 𝒮= {𝑥 ∈]1,+∞[⟼(C+ 𝑥2
2 −2𝑥+2 ln(𝑥+1))

𝑥+1
𝑥−1 |C ∈ ℝ} .

7. Résolution de l’homogène. La fonction 𝑎 ∶ 𝑥 ⟼ 𝑎(𝑥) = 1 est continue sur
ℝ donc il existe une primitive A de 𝑎 sur ℝ et pour tout 𝑥 ∈ ℝ, A(𝑥) = 𝑥. La
solution générale de l’équation homogène associé est alors : 𝑥⟼Ce𝑥 avec
C ∈ ℝ constante.
Recherche d’une solution particulière. À l’aide de la méthode de variation de
la constante et d’intégrations par parties, on trouve une solution particulière
𝑥⟼ 𝑥3

3 e
𝑥−(𝑥

2

2 +
𝑥
2 +

1
4 )e

𝑥.

Conclusion. 𝒮= {𝑥⟼Ce𝑥+ 𝑥3
3 e

𝑥−(𝑥
2

2 +
𝑥
2 +

1
4 )e

𝑥 |C ∈ ℝ} .

8. 𝒮= {𝑥 ∈]0,+∞[⟼C𝑥4e
2
𝑥2 |C ∈ ℝ} .

9. 𝒮= {𝑥 ∈]0,+∞[⟼Ce−
1
𝑥 +𝑥−1 |C ∈ ℝ}

Solution (exercice 12) [Énoncé]

1. On résout sur ]−π
2 ,

π
2 [, un intervalle contenant 0 sur lequel la fonction cosinus

ne s’annule pas. Il est alors équivalent de résoudre :

𝑦′−
sin𝑥
cos𝑥

𝑦 = 0.

On obtient puisque l’équation différentielle est déjà homogène :
𝒮= {𝑥 ∈ ]−π

2 ,
π
2 [⟼

C
cos𝑥 |C ∈ ℝ} .

Condition initiale. On a 𝑦(0) = 1 = C
cos0 , donc on a C = 1. On en déduit que

l’unique solution vérifiant 𝑦(0) = 1 est 𝑦 ∶ 𝑥 ∈ ]−π
2 ,

π
2 [⟼

1
cos𝑥 .

2. Résolution de l’homogène. La fonction 𝑎 ∶ 𝑥⟼𝑎(𝑥) = 𝑥 est continue sur ℝ
donc il existe une primitive A de 𝑎 sur ℝ et pour tout 𝑥 ∈ ℝ, A(𝑥) = 𝑥2

2 . On a

donc :𝒮0 = {𝑥⟼Ce−
𝑥2
2 |C ∈ ℝ}.

Recherche d’une solution particulière. En utilisant la méthode de la variation
de la constante, on cherche une solution particulière sous la forme : 𝑦p(𝑥) =
C(𝑥)e−

𝑥2
2 avec C fonction dérivable sur ℝ. Ainsi 𝑦p est bien dérivable sur ℝ

comme composé et produit de fonctions dérivables. Et pour tout 𝑥 ∈ ℝ, on
obtient : (𝑦p)′(𝑥)+𝑥𝑦p(𝑥) = 2𝑥 ⟺ C′(𝑥) = 2𝑥𝑒

𝑥2
2 . Ainsi pour tout 𝑥 ∈ ℝ :

C(𝑥) = 2e
𝑥2
2 , et 𝑦p(𝑥) = 2 est une solution particulière.

Conclusion. 𝒮={𝑥⟼Ce−
𝑥2
2 +2 |C ∈ ℝ}.

Condition initiale. Comme 𝑦(0) = 1, on a : 𝑦(0) = Ce0+2 = C+2 = 1⟺ C=

−1. Ainsi il existe une unique solution qui est : 𝑦 ∶ 𝑥⟼2−e−
𝑥2
2 .

Solution (exercice 13) [Énoncé]On doit résoudre l’équation différentielle :
𝑐′ + 1

τ𝑐 =
1
τ𝑐𝑝. C’est une équation différentielle linéaire, du premier ordre, à co-

efficients constants.
Résolution de l’homogène. On commence par étudier l’équation homogène as-
socié :𝑐′+ 1

τ𝑐 = 0. L’ensembledes solutions est𝒮0 = {𝑐ℎ𝑡 ∈ ℝ+ ⟼Ce−
𝑡
τ , |C ∈ ℝ}.

Recherche d’une solution particulière. 𝑓(𝑡) = α. Ona alors𝑓′(𝑡) = 0, doncondoit
avoir 0+ 1

τα =
1
τ𝑐𝑝, soit α = 𝑐𝑝.

Conclusion. On en déduit que l’ensemble des solutions est S =
{𝑡 ∈ ℝ+ ⟼Ce−

𝑡
τ +𝑐𝑝 |C ∈ ℝ}. Comme de plus on a 𝑐(0) = 0, on aC+𝑐𝑝 = 0, soit

C = −𝑐𝑝. Finalement, la solution est donné par 𝑐 ∶ 𝑡 ∈ ℝ+ ⟼𝑐𝑝 (1−e−
𝑡
τ ) . Pour

tracer la courbe, il suffit d’étudier les variations de la fonctions 𝑐, en supposant
que τ et 𝑐𝑝 sont des constantes strictement positives. On constate que la
concentration tend vers 𝑐𝑝 : les concentrations en potassium s’équilibrent entre
le milieu extérieur et la cellule.

𝑦

0

1

2

0 1 2 3 4 5 𝑥

𝑐𝑝
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Solution (exercice 14) [Énoncé]

1. On doit résoudre l’équation différentielle 𝑦′+𝑘𝑦 = 0. C’est une équation dif-
férentielle linéaire, du premier ordre, à coefficients constants et homogène.
On connaît donc l’ensemble des solutions :

S = {𝑦 ∶ 𝑡 ∈ ℝ+ ⟼Ce−𝑘𝑡 |C ∈ ℝ}.
De plus, on a 𝑦(0) = N0, donc Ce−𝑘×0 =N0, soit C=N0. On en déduit que 𝑦 a
pour expression 𝑦 ∶ 𝑡 ∈ ℝ+ ⟼N0e−𝑘𝑡 .

2. On cherche 𝑡0.5 tel que :

𝑦(𝑡0.5) =
1
2
N0 ⟺ N0e−𝑘𝑡0.5 =

1
2
N0 ⟺ e−𝑘𝑡0.5 =

1
2
⟺ −𝑘𝑡0.5 = ln(

1
2
)

par stricte croissance de la fonction logarithme.On endéduit 𝑡0.5 = ln2
𝑘 . L’ap-

plication numérique donne 𝑡0.5 ≃ 5599 ans.
3. On cherche 𝑡1 tel que :

𝑦(𝑡1) = 0.7N0 ⟺ N0e−𝑘𝑡1 = 0.7N0 ⟺ e−𝑘𝑡1 = 0.7 ⟺ −𝑘𝑡1 = ln(0.7)
a par stricte croissance de la fonction logarithme. On en déduit 𝑡1 =− ln0.7

𝑘 .
L’application numérique donne comme estimation 𝑡1 ≃ 2881 ans pour ces
fragments.

Solution (exercice 15) [Énoncé] Résoudre les équations différentielles
suivantes, puis déterminer l’unique solution vérifiant 𝑦(0) = 0 et 𝑦′(0) = 1.
1. Résolution de l’homogène. On étudie l’équation caractéristique as-

socié : 𝑟2 + 8𝑟 + 15 = 0. Ses solutions sont réelles distinctes, don-
nés par 𝑟1 = −5 et 𝑟2 = −3. Les solutions sont donc donnés par
𝒮0 = {𝑦 ∶ 𝑡 ∈ ℝ⟼Ae−5𝑡+Be−3𝑡 | (A,B) ∈ ℝ2}.
Recherche d’une solution particulière. 𝑦p(𝑡) = α. On a alors (𝑦p)′ (𝑡) =
(𝑦p)″ (𝑡) = 0, donc on doit avoir 0 + 15α = 5, soit α = 1

3 . On en déduit que
l’ensemble des solutions est S = {𝑦 ∶ 𝑡⟼Ae−5𝑡+Be−3𝑡+ 1

3 | (A,B) ∈ ℝ
2} .

Condition initiale. On a 𝑦(0) = 0, soit A+B+ 1
3 = 0. De plus, on doit avoir

𝑦′(0) = 0. Or on a : 𝑞′(𝑡) = −5Ae−5𝑡 −3Be−3𝑡, donc 𝑞′(0) = −5A−3B = 1. On
doit donc résoudre :

{ A+B = − 1
3

−5A−3B = 1 ⟺ { A = 0
B = − 1

3 .

La solution est donc donné par 𝑦 ∶ 𝑡⟼ 1
3(1−e

−3𝑡) .

2. Résolution de l’homogène. On étudie l’équation caractéristique
associé : 4𝑟2 − 4𝑟 + 1 = 0. Cette équation admet une solution
double, donné par 𝑟 = 1

2 . Les solutions sont donc donnés par
𝒮0 = {𝑦 ∶ 𝑡 ∈ ℝ⟼(A+B𝑡)e

𝑡
2 | (A,B) ∈ ℝ2}.

Recherche d’une solution particulière. 𝑦p(𝑡) = α. On a alors (𝑦p)′ (𝑡) =
(𝑦p)″ (𝑡) = 0, donc on doit avoir 0+α = 4, soit α = 4.
On en déduit que l’ensemble des solutions est
𝒮= {𝑦 ∶ 𝑡 ∈ ℝ⟼(A+B𝑡)e

𝑡
2 +4 | (A,B) ∈ ℝ2} .

Condition initiale. On a 𝑦(0) = 0, soit A = 0. De plus, on doit avoir 𝑦′(0) = 0.
Or on a :𝑦′(𝑡) = A

2 e
𝑡
2 +Be

𝑡
2 + B

2 𝑡e
𝑡
2 , donc𝑦′(0) = A+B

2 = 1, soitB = 2. La solution
est donc donné par 𝑦 ∶ 𝑡 ∈ ℝ⟼2𝑡e

𝑡
2 +4 .

3. On doit résoudre une équation différentielle linéaire, du second ordre, à co-
efficients constants.
Résolution de l’homogène. On étudie l’équation caractéristique associé :
𝑟2 − 2𝑟 + 5 = 0. Ses solutions sont complexes conjugués, donnés par
𝑟1 = 1 + 2i et 𝑟2 = 1 − 2i . Les solutions sont donc donnés par 𝒮0 =
{𝑦 ∶ 𝑡 ∈ ℝ⟼ e𝑡 (Acos(2𝑡)+Bsin(2𝑡)) | (A,B) ∈ ℝ2}.
Recherche d’une solution particulière. 𝑦p(𝑡) = α. On a alors (𝑦p)′ (𝑡) =
(𝑦p)″ (𝑡) = 0, donc on doit avoir 0+5α = 5, soit α = 1.
On en déduit que l’ensemble des solutions est
𝒮= {𝑦 ∶ 𝑡 ∈ ℝ⟼ e𝑡 (Acos(2𝑡)+Bsin(2𝑡))+1 | (A,B) ∈ ℝ2} .
Condition initiale. On a 𝑦(0) = 0, soit A+1 = 0, donc A=−1. De plus, on doit
avoir 𝑦′(0) = 0. Or on a : 𝑦′(𝑡) = e𝑡(Acos(2𝑡)+Bsin(2𝑡)) + e𝑡(−2Asin(2𝑡)+
2Bcos(2𝑡)), donc 𝑦′(0) = A+2B = 1. On en déduit B = 1−A

2 = 1. La solution
est donc donné par 𝑦 ∶ 𝑡 ∈ ℝ⟼ e𝑡(−cos(2𝑡)+ sin(2𝑡))+1 .

4. On doit résoudre une équation différentielle linéaire, du second ordre, à co-
efficients constants. Cependant, ici le coefficient du terme 𝑦 est nul : on se
ramène à une équation du premier ordre, en 𝑧 = 𝑦′. On commence donc par
résoudre l’équation 𝑧′ −2𝑧 = 2. La solution de l’équation homogène associé
sont de la forme 𝑧ℎ(𝑡) = Ce2𝑡, avec C ∈ ℝ. On cherche une solution particu-
lière constante : 𝑧𝑝(𝑡) = α. On obtient α = −1. Les solutions générales sont
donc de la forme 𝑧(𝑡) = Ce2𝑡−1, avec C ∈ ℝ.
Revenons à présent à 𝑦 : on a 𝑦′ = 𝑧, donc 𝑦 est une primitive de 𝑧. On en
déduit que𝑦 s’écrit sous la forme : S = {𝑦 ∶ 𝑡 ∈ ℝ⟼ C

2 e
2𝑡−𝑡+K| (A,B) ∈ ℝ2} .

On utilise les conditions initiales pour déterminer C et K : on a 𝑦(0) = 0, soit
C
2 +K = 0. De plus, on a 𝑦′(𝑡) = Ce2𝑡 −1, donc 𝑦′(0) = 1 donne C−1 = 1, soit
C= 2. En revenant à l’équation C

2 +K= 0, on obtient alors K=−1. On a donc
finalement 𝑦 ∶ 𝑡 ∈ ℝ⟼ e2𝑡−𝑡−1 .

Solution (exercice 16) [Énoncé] Je ne donne pas tous les détails.
1. 𝑦p(𝑡) = 𝑡2+2𝑡 +6.
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2. 𝑦p(𝑡) = − 1
8e

2𝑡 avec 𝑎 ∈ ℝ.
3. 𝑦p(𝑡) = 𝑡(− 1

2 cos(𝑡)+
1
2 sin(𝑡)).

4. 𝑦p(𝑡) = 2
3𝑡e

𝑡.

Solution (exercice 17) [Énoncé]

1. Résolution de l’homogène. L’équation caractéristique associé est : 𝑟2 −4𝑟 +
5 = 0 dont le discriminant est Δ = −4 < 0. L’équation caractéristique a donc
deux solutions complexes conjugués 𝑟1 = 2+ i et 𝑟2 = 2− i .
Ainsi𝒮0 = {𝑥⟼ e2𝑥(Acos(𝑥)+Bsin(𝑥)) | (A,B) ∈ ℝ2}.
Recherche d’une solution particulière. En remplaçant par une constante K
dans l’équation, on obtient : K= 1

5 . Ainsi une solution particulière de l’équa-
tion est : 𝑦p(𝑥) = 1

5 .
Conclusion. 𝒮= {𝑥⟼ e2𝑥(Acos(𝑥)+Bsin(𝑥))+ 1

5 | (A,B) ∈ ℝ
2}.

Condition initiale. On a 𝑦(0) = 1 et 𝑦′(0) = 0. Or on sait que 𝑦(0) = A+ 1
2 , et

d’autre part, on a 𝑦′(𝑥) = e2𝑥(2Acos(𝑥)+2Bsin(𝑥)−Asin𝑥+Bcos𝑥)+ 1
2e

𝑥.
On en déduit que 𝑦′(0) = 2A+B+ 1

2 . On doit donc résoudre :

{ A+ 1
2 = 1

2A+B+ 1
2 = 0 ⟺ { A = 1

2
B = − 3

2 .
Ainsi, l’unique solution vérifiant les conditions initiales donnés est
𝑦 ∶ 𝑥⟼ e2𝑥

2 (cos(𝑥)−3sin(𝑥))+
1
2e

𝑥 .
2. Résolution de l’homogène. D’après la question précédente : 𝒮0 =

{𝑥⟼ e2𝑥(Acos(𝑥)+Bsin(𝑥)) | (A,B) ∈ ℝ2}.
Recherche d’une solution particulière. En remplaçant par une constante K
dans l’équation, on obtient : K= 1

5 . Ainsi une solution particulière de l’équa-
tion est : 𝑦p(𝑥) = 2

5 .
Conclusion. 𝒮= {𝑥⟼ e2𝑥(Acos(𝑥)+Bsin(𝑥)+1) | (A,B) ∈ ℝ2}.
Condition initiale. On a 𝑦(0) = 0 et 𝑦′(0) = 1. Or on sait que 𝑦(0) = A+1, et
d’autre part, on a 𝑦′(𝑥) = e2𝑥(2Acos(𝑥)+2Bsin(𝑥)+2−Asin𝑥+Bcos𝑥). On
en déduit que 𝑦′(0) = 2A+2+B. On doit donc résoudre :

{ A+1 = 0
2A+B+2 = 1 ⟺ { A = −1

B = 1.
Ainsi, l’unique solution vérifiant les conditions initiales donnés est
𝑦 ∶ 𝑥⟼ e2𝑥(−cos(𝑥)+ sin(𝑥)+1).

Solution (exercice 18) [Énoncé]

• [Recherche d’une équation différentielle en 𝑧] On commence par calcu-

ler les dérivées de 𝑧. Pour tout 𝑡 ∈ ℝ,
𝑧′(𝑡) = e𝑡𝑦′(e𝑡),

𝑧″(𝑡) = e𝑡𝑦′(e𝑡)+ (e𝑡)2𝑦″(e𝑡)

= 𝑧′(𝑡)+ (e𝑡)2𝑦″(e𝑡).
Or, pour tout 𝑡 ∈ ℝ, on a en utilisant l’équation différentielle de départ :

(e𝑡)2𝑦″(e𝑡) = −3e𝑡𝑦′(e𝑡)−𝑦(e𝑡)−2,  
donc :

(e𝑡)2𝑦″(e𝑡) = −3𝑧′(𝑡)−𝑧(𝑡)−2.
Donc 𝑧 vérifie :

∀𝑡 ∈ ℝ, 𝑧″(𝑡) = 𝑧′(𝑡)−3𝑧′(𝑡)−𝑧(𝑡)−2,
donc : 𝑧″+2𝑧′+𝑧 = 2.

• [Résolution en 𝑧] C’est cette fois-ci une équation différentielle linéaire à
coefficients constants, l’équation caractéristique est 𝑥2 +2𝑥 + 1 = 0, et une
solution particulière peut être cherchée sous la forme 𝑦p = K avec K ∈ ℝ. En
remplaçant, on trouve K= 2. Donc :

∃A,B ∈ ℝ, ∀𝑡 ∈ ℝ, 𝑧(𝑡) = (A𝑡 +B)e−𝑡+2.
• [Solutions 𝑦] Constatons que :

∀𝑡 ∈ ℝ, 𝑧(𝑡) = 𝑦(e𝑡) ⟺ ∀𝑥 > 0, 𝑦(𝑥) = 𝑧(ln𝑥).
Donc :

∀𝑥 > 0, 𝑦(𝑥) =
A ln𝑥+B

𝑥
+2 .

Solution (exercice 19) [Énoncé]On calcule les dérivés successives de 𝑧. On
a 𝑧′(𝑥) = 2𝑥𝑦(𝑥)+𝑥2𝑦′(𝑥), et

𝑧″(𝑥) = 2𝑦(𝑥)+2𝑥𝑦′(𝑥)+2𝑥𝑦′(𝑥)+𝑥2𝑦″(𝑥) = 2𝑦(𝑥)+4𝑥𝑦′(𝑥)+𝑥2𝑦″(𝑥).
On en déduit que l’on a :

𝑧″−𝑧 = 𝑥2𝑦″+4𝑥𝑦′+(2−𝑥2)𝑦 = 1.
Donc 𝑧 vérifie une équation différentielle linéaire d’ordre 2 à coefficients
constants.
Résolution de l’homogène. 𝑧″−𝑧 = 0. On résout l’équation caractéristique asso-
cié : 𝑟2 −1 = 0. On a deux racines réelles distinctes 𝑟1 = 1 et 𝑟2 = −1. La solution
générale de l’équation homogène est donc donné par 𝑧ℎ(𝑥) = Ae𝑥 +Be−𝑥, avec
(A,B) ∈ ℝ2.
Recherche d’une solution particulière. Le second membre est une constante, on
cherche donc une solution sous la forme 𝑧𝑝(𝑡) = α. En remplaçant dans l’équa-
tion, on obtient α =−1.
Conclusion. La solutiongénérale de l’équationen𝑧 est donc𝑧(𝑥) = Ae𝑥+Be−𝑥−
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1, avec (A,B) ∈ ℝ2.
On revient à 𝑦 : on a 𝑦(𝑥) = 𝑧(𝑥)

𝑥2 , soit 𝑦(𝑥) = Ae𝑥+Be−𝑥−1
𝑥2 , avec (A,B) ∈ ℝ2.
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Correction Devoir-maisonLaptop-House (Chapitre (AN) 2)

Solution (exercice 20) [Énoncé] La fonction inverse est de classe 𝒞1 sur
ℝ+⋆ donc en particulier sur [ 1𝑎 ,𝑎]. De plus, d𝑡 = −d𝑥

𝑥2 , donc d𝑥 =− 1
𝑡2 d𝑡, d’où :

ln(𝑥)
1+𝑥2

d𝑥 =
ln ( 1𝑡 )

1+ ( 1𝑡 )
2 (−

1
𝑡2
d𝑡) = −

(− ln𝑡)
𝑡2+1

d𝑡.

Par formule de changement de variable, on déduit donc :

I(𝑎) = ∫
1
𝑎

𝑎

ln𝑡
𝑡2+1

d𝑡 = −I(𝑎).

On déduit alors que 2I(𝑎) = 0 soit I(𝑎) = 0 .

Solution (problème 1) [Énoncé]

1. 1.1) La fonction 𝑔1 ∶ 𝑥⟼ e−𝑥 est de classe𝒞∞ surℝ (théorèmes généraux).
Pour tout réel 𝑥, on a : 𝑔′1(𝑥) = −e−𝑥 ⟹𝑔′′1 (𝑥) = e−𝑥 ⟹𝑔′′′1 (𝑥) = −e−𝑥

Ainsi, pour tout réel𝑥 ∶ 𝑔′′′1 (𝑥)+5𝑔
′′
1 (𝑥)+9𝑔

′
1(𝑥)+5𝑔1(𝑥) = −e−𝑥+5e−𝑥−

9e−𝑥+5e−𝑥 = 0. Donc 𝑔1 est solution de (H).
1.2) La fonction 𝑔2 ∶ 𝑥 ⟼ e−2𝑥 cos(𝑥) est de classe 𝒞∞ sur ℝ (théorèmes

généraux). Pour tout réel 𝑥, on a :
𝑔′2(𝑥) = −2e−2𝑥 cos(𝑥)−e−2𝑥 sin(𝑥)
⟹ 𝑔′′2 (𝑥) = 3e−2𝑥 cos(𝑥)+4e−2𝑥 sin(𝑥)
⟹ 𝑔′′′2 (𝑥) = −2e−2𝑥 cos(𝑥)−11e−2𝑥 sin(𝑥).

Ainsi, pour tout réel 𝑥, on a :
𝑔′′′2 (𝑥)+5𝑔

′′
2 (𝑥)+9𝑔

′
2(𝑥)+5𝑔2(𝑥)

= −2e−2𝑥 cos(𝑥)−11e−2𝑥 sin(𝑥)+5[3e−2𝑥 cos(𝑥)+4e−2𝑥 sin(𝑥)]
+9[−2e−2𝑥 cos(𝑥)−e−2𝑥 sin(𝑥)]+5e−2𝑥 cos(𝑥)
= e−2𝑥 cos(𝑥)(−2+15−18+5)+e−2𝑥 sin(𝑥)(−11+20−9)
= 0.

Donc 𝑔2 est solution de (H).
1.3) Puisque 𝑔1,𝑔2 et 𝑔3 sont solutions de la même équation différentielle

homogène linéaire (H) alors (par linéarité de la dérivation) toute com-
binaison linéaire de 𝑔1,𝑔2 et 𝑔3 est encore solution de (H) (d’après le
cours).
Ainsi : ∀𝑓 ∈ ℰ,𝑓 ∈𝒮. Ce qui s’écrit encore : ℰ ⊂𝒮 .

2. 2.1) On a : 𝑔 = 𝑓′′ +4𝑓′ +5𝑓 ⟹ 𝑔′ = 𝑓′′′ +4𝑓′′ +5𝑓′. Alors : 𝑔′ +𝑔 = 𝑓′′′ +
4𝑓′′ +5𝑓′ +𝑓′′ +4𝑓′ +5𝑓 = 𝑓′′′ +5𝑓′′ +9𝑓′ +5𝑓 = 0 car 𝑓 est solution
de (H).

Ainsi : 𝑔 est solution de (H1)𝑦′+𝑦= 0.
2.2) D’après le cours, l’ensemble des solutions est {𝑥 ∈ ℝ⟼Ce−𝑥 |C ∈ ℝ} .
2.3) L’équation caractéristique associée à (H2) est 𝑟2+4𝑟 +5 = 0. Ses solu-

tions sont les complexes conjugués−2± i . L’ensemble des solutions de
(H2) est alors :

{𝑥 ∈ ℝ⟼(Acos(𝑥)+Bsin(𝑥))e−2𝑥 | (A,B) ∈ ℝ2} .
2.4) On cherche une solution particulière de (H3) sous la forme 𝑦0 ∶ 𝑥⟼

Ce−𝑥 avec C ∈ ℝ. On a de plus :
𝑦0 solution de (H3) ⟺ ∀𝑥 ∈ ℝ, 𝑦′′0 (𝑥)+4𝑦

′
0(𝑥)+5𝑦0(𝑥) = λe−𝑥

⟺ ∀𝑥∈ℝ, Ce−𝑥−4Ce−𝑥+5Ce−𝑥 = λe−𝑥

⟺ C−4C+5C = λ

⟺ ∀𝑥 ∈ ℝ,𝑦0(𝑥) =
λ
2
e−𝑥.

car
∀𝑥 ∈
ℝ,e−𝑥 ≠
0

L’ensemble des solutions de (H3) est donc :

{𝑥 ∈ ℝ⟼(Acos(𝑥)+Bsin(𝑥))e−2𝑥+
λ
2
e−𝑥 | (A,B) ∈ ℝ2} .

2.5) D’après ce qui précède, si𝑓 ∈𝒮, c’est-à-dire si𝑓 est solution deH, alors
𝑓 est solution de (H3), c’est-à-dire : ∃(λ,α,β) ∈ ℝ3 tel que :

∀𝑥 ∈ ℝ, 𝑓(𝑥) = (αcos(𝑥)+βsin(𝑥))e−2𝑥+λe−𝑥 = λ𝑔1(𝑥)+α𝑔2(𝑥)+β𝑔3(𝑥).
Ainsi𝑓 est une combinaison linéaire de𝑔1,𝑔2,𝑔3 donc𝑓 ∈ ℰ. Onadonc :
𝒮⊂ℰ .

3. D’après ce qui précède, on a :
∃(λ,α,β) ∈ ℝ3, ∀𝑥 ∈ ℝ, 𝑓(𝑥) = λ𝑔1(𝑥)+α𝑔2(𝑥)+β𝑔3(𝑥).

Autrement dit :
∃(λ,α,β) ∈ ℝ3, ∀𝑥 ∈ ℝ, 𝑓(𝑥) = ((β−2α)cos(𝑥)−(α+2β)sin(𝑥))e−2𝑥−λe−𝑥.
Il reste à traduire le système de conditions initiales.

⎧⎪
⎨⎪
⎩

𝑓(0) = 0 = λ+α
𝑓(π2 ) = e−

π
2 = βe−π+λe−

π
2

𝑓′(0) = 1 = β−2α−λ
⟺

⎧⎪
⎨⎪
⎩

α = −λ
β = 1−λ

(1−λ)e−
π
2 +λ = 1

⟺ λ= 1, α = −1, β = 0.

Finalement, l’unique solution de (E) est : 𝑥 ∈ ℝ⟼ e−𝑥−cos(𝑥)e−2𝑥 .
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