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Chapitre (AN) 3
Suites récurrentes usuelles &
Modélisation

1 Suites récurrentes usuelles . . . . .

2 Modélisation de dynamiques
continues . . . . . . . . . . . . . . . . . . . . . . .

3 Modélisation de dynamiques
discrètes. . . . . . . . . . . . . . . . . . . . . . . .

4 Exercices . . . . . . . . . . . . . . . . . . . . . . .
I say, that the power of
population is indefinitely
greater than the power in the
earth to produce subsistence
for man. Population, when
unchecked, increases in a
geometrical ratio. Subsistence
increases only in an
arithmetical ratio.

—Thomas. R. MALTHUSa

aà l’origine de l’un des premiersmodèles de dyna-
mique des populations

Résumé & Plan
L’objectif de ce chapitre est de mo-
déliser à l’aide de suites numériques
ou d’équations différentielles divers
contextes de la vie réelle présen-
tant une dynamique au cours du
temps. La théorie des équations dif-
férentielles a été vue dans le Cha-
pitre (AN) 2, il convient à présent de
faire quelques compléments sur les
suites récurrentes usuelles qui nous
serviront.

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

1 SUITES RÉCURRENTES USUELLES

Cette section est composée de révisions de lycée (suites arithmétiques et géomé-
triques), et de nouveautés (suites arithmético-géométriques et récurrentes linéaires
d’ordre 2).

1.1 Généralités

Commençons par définir l’objet suite.

Définition 1 | Suite réelle
• Une suite réelle est une application de J𝑛0 , +∞J, pour un certain 𝑛0 ∈ ℕ, de

la forme : 𝑢 | J𝑛0 , +∞J ⟶ ℝ
𝑛 ⟼ 𝑢𝑛.

⋄ La suite 𝑢 ∶ J𝑛0 , +∞J⟶ℝ est notée (𝑢𝑛)𝑛⩾𝑛0 ou encore (𝑢𝑛0 ,𝑢𝑛0+1,…).
⋄ La valeur 𝑢𝑛0 est appelé le premier terme de la suite.
⋄ Pour tout entier 𝑛 ⩾𝑛0, 𝑢𝑛 est le terme de rang 𝑛 de la suite.

• Une suite réelle finie est une application de J𝑛0 , 𝑛1K, pour un certain 𝑛0 ∈ ℕ

et 𝑛1 ⩾ 𝑛0 entier, dans ℝ, de la forme : 𝑢 | J𝑛0 , 𝑛1K ⟶ ℝ
𝑛 ⟼ 𝑢𝑛.

On la note

généralement (𝑢𝑛)
𝑛1
𝑛=𝑛0 ou encore (𝑢𝑛0 ,…,𝑢𝑛1).

La plupart du temps, nous aurons 𝑛0 = 0 ou éventuellement 𝑛0 = 1.

Notation Abus de ...
Σ

Parfois onnotera seulement (𝑢𝑛) au lieu de (𝑢𝑛)𝑛⩾𝑛0 . Cela signifiera donc impli-
citement que l’on considère le plus petit entier 𝑛0 telle que l’expression 𝑢𝑛 soit
définie pour tout 𝑛 ⩾𝑛0.
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Notation
Σ

L’ensemble des suites définies à partir de 𝑛0 est ℝJ𝑛0 ,+∞J, notation déjà rencon-
trée pour les applications.On rappelle queEF désigne l’ensemble des applications
d’un ensemble F dans un ensemble E.

Attention
,

De-même qu’il ne faut pas confondre une fonction 𝑓 et l’image 𝑓(𝑥) de 𝑥 par 𝑓,
on prendra garde de bien distinguer la suite (𝑢𝑛) de son terme général d’ordre
𝑛 noté lui 𝑢𝑛 sans parenthèse.

Nous arrêtons là les généralités, le reste sera développédans leChapitre (AN) 4 dédié
aux suites.

1.2 Suites récurrentes

1.2.1 Généralités
Définition 2 | Suites récurrentes

Soit𝑝 ∈ℕ∗. Ondit que la suite (𝑢𝑛)𝑛∈ℕ est une suite récurrented’ordre𝑝 si chaque
terme de la suite ne dépend que des 𝑝 termes précédents, c’est-à-dire si elle vé-
rifie une relation de récurrence de la forme :

∀𝑛 ∈ℕ, 𝑢𝑛+𝑝 = E(𝑢𝑛,𝑢𝑛+1,…,𝑢𝑛+𝑝−1)

où E(𝑢𝑛,𝑢𝑛+1,…,𝑢𝑛+𝑝−1) est une expression dépendant de 𝑢𝑛,𝑢𝑛+1,… et
𝑢𝑛+𝑝−1.

Note
L’ordre est donc le nombre de termes consécutifs de la suite apparaissant
dans la relation,moins un.

Exemple 1
• Une suite (𝑢𝑛)𝑛∈ℕ vérifiant pour tout𝑛 ∈ℕ, 𝑢𝑛+3 = 2𝑢𝑛+2+

𝑢𝑛+1
𝑢𝑛

est une suite
récurrente d’ordre 3.

• Une suite (𝑢𝑛)𝑛∈ℕ vérifiant pour tout 𝑛 ∈ ℕ, 𝑢𝑛+5 = ln(𝑢𝑛+2)−𝑢𝑛+1 +𝑢2𝑛 est
une suite récurrente d’ordre 5.

• Il faut toutefois seméfier : une suite (𝑢𝑛)𝑛∈ℕ vérifiantpour tout𝑛 ∈ℕ⋆,𝑢𝑛+1 =
𝑢𝑛+𝑢𝑛−1, est une suite récurrente d’ordre 2. En effet, la relationde récurrence
peut se réecrire : ∀𝑛 ⩾ 2, 𝑢𝑛+2 =𝑢𝑛+1+𝑢𝑛.

Une suite récurrente d’ordre 𝑝 est donc entièrement déterminée par :

1. son équation de récurrence,
2. ses conditions initiales : la donnée de ses 𝑝 premiers termes.

Ainsi, lamême équation de récurrence avec des conditions initiales différentes don-
nera deux suites a priori différentes.

Lorsque l’on étudiera une suite récurrente, on se posera principalement les deux
questions suivantes :

1. La suite admet-elle une limite? Ce point sera étudié dans le Chapitre (AN) 4.
2. Peut-on obtenir une écriture explicite du terme général d’une telle suite? Ce pro-

blème est généralement difficile lorsque l’on sort des cas connus (principalement
suites arithmétiques, géométriques et arithmético-géométriques). Par exemple,
la formule explicite de la suite définie par 𝑢𝑛+1 = 2𝑢𝑛+1 est :

∀𝑛 ∈ℕ, 𝑢𝑛 = (𝑢0+1)2𝑛−1.

1.2.2 Suites arithmétiques
Définition 3 | Suite arithmétique

On appelle suite arithmétique de raison 𝑟 ∈ ℝ toute suite (𝑢𝑛) ∈ ℝℕ telle que :
∀𝑛 ∈ℕ, 𝑢𝑛+1 =𝑢𝑛+𝑟.

On rappelle que l’on a alors :
∀𝑛 ∈ℕ, ∀𝑝 ∈ ℕ, 𝑢𝑛 =𝑢𝑝+(𝑛−𝑝)𝑟 ,

formule que l’on peut démontrer par récurrence.

𝑢1 𝑢2 𝑢3 𝑢4 … 𝑢𝑛

+𝑟 +𝑟 +𝑟 +𝑟 +𝑟

𝑢𝑝 𝑢𝑝+1 𝑢𝑝+2 𝑢𝑝+3 … 𝑢𝑛

+𝑟 +𝑟 +𝑟 +𝑟 +𝑟

Théorème 1 | Somme arithmétique de raison 𝑎 ♥

Soit 𝑎 ∈ ℝ et (𝑢𝑛) une suite arithmétique de raison 𝑟. Alors :

∀(𝑛,𝑝) ∈ ℕ2, tel que : 𝑛 ⩾ 𝑝,
𝑛
∑
𝑘=𝑝

𝑢𝑘 =
𝑢𝑝+𝑢𝑛

2
×(𝑛−𝑝+1).

Preuve Soit (𝑛,𝑝) ∈ ℕ2,𝑛 ⩾ 𝑝. On a déjà vu que : ∀𝑘 ∈ J𝑝 , 𝑛K, 𝑢𝑘 = 𝑢𝑝 + (𝑘−𝑝)𝑟.
Donc :
PEN-FANCY
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Exemple 2 Calculer la somme : S = 2+7+12+⋯+47.
• Introduisons la suite arithmétique 𝑢 définie par :

𝑢0 = 2, et : ∀𝑘 ∈ℕ, 𝑢𝑘+1 =𝑢𝑘+5.
Alors : ∀𝑘 ∈ℕ, 𝑢𝑘 = 2+5𝑘. Écrivons la somme à l’aide de cette suite :
PEN-FANCY

C’est donc bien une somme de termes de suite arithmétique.
• Calcul de la somme :

PEN-FANCY

Nous pouvons retenir une formule générale de la manière suivante :

∑suite arithmétique= nb termes×
premier terme+dernier terme

2
.

Exemple : subdivision d’un intervalle. Précisons enfin une notion utile
dans plusieurs futurs chapitres (tracés de fonctions en info, intégration en Maths
etc.).

Définition 4 | Subdivision (régulière)
Soit [𝑎,𝑏] un intervalle, avec 𝑎 < 𝑏 deux réels et 𝑛 un entier non nul. On appelle
subsdivision de [𝑎,𝑏] en 𝑛+ 1 points l’unique suite arithmétique (𝑥𝑘)𝑛𝑘=0 telle

que : { 𝑥0 = 𝑎
𝑥𝑛 = 𝑏.

Proposition 1 | Expression d’une subdivision régulière
Soit [𝑎,𝑏] un intervalle, avec 𝑎 < 𝑏 deux réels et 𝑛 un entier non nul. Alors la
suite (𝑥𝑘)𝑛𝑘=0 subdivisant [𝑎,𝑏] en 𝑛+1 points a pour expression :

∀𝑘 ∈ J0 , 𝑛K, 𝑥𝑘 = 𝑎+𝑘
𝑏−𝑎
𝑛

.

Voici le dessin typique à avoir en tête.

ℎ = 𝑏−𝑎
𝑛

𝑎 𝑏
•
𝑥0 •

𝑥1 •
𝑥2 •

𝑥𝑛…

SUBDIVISION RÉGULIÈRE D’UN INTERVALLE

On a donc sur ce dessin : 𝑛+1 points, et 𝑛 intervalles de longueur ℎ.

Preuve
PEN-FANCY

Exemple 3 Déterminer l’expressionde la subdivision régulière de [−1,3] en𝑛+1
points.
PEN-FANCY

La commande np.linspace permet de renvoyer un tableau des valeurs de 𝑥.
>>> a = -1

>>> b = 3

>>> n = 3

>>> np.linspace(-1, 3, n+1) # 4 points

array([-1. , 0.33333333, 1.66666667, 3. ])

1.2.3 Suites géométriques
Définition 5 | Suite géométrique

On appelle suite géométrique de raison 𝑞 ∈ ℝ toute suite (𝑢𝑛) telle que :
∀𝑛 ∈ℕ, 𝑢𝑛+1 =𝑞𝑢𝑛.

On rappelle que l’on a alors :
∀𝑛 ∈ℕ, 𝑝 ∈ ℕ, 𝑢𝑛 =𝑢𝑝𝑞𝑛−𝑝 ,

formule que l’on peut démontrer par récurrence.

3
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𝑢1 𝑢2 𝑢3 𝑢4 … 𝑢𝑛

×𝑞 ×𝑞 ×𝑞 ×𝑞 ×𝑞

𝑢𝑝 𝑢𝑝+1 𝑢𝑝+2 𝑢𝑝+3 … 𝑢𝑛

×𝑞 ×𝑞 ×𝑞 ×𝑞 ×𝑞

Remarque 1 (Suite « sous »-géométrique) Parfois nous rencontrerons des
suites (𝑢𝑛) vérifiant, pour 𝑞 ∈ ℝ+ :

∀𝑛 ∈ℕ, 𝑢𝑛+1 ⩽ 𝑞𝑢𝑛.
On montre alors facilement par récurrence que :

∀𝑛 ∈ℕ, 𝑢𝑛 ⩽ 𝑞𝑛𝑢0.

Théorème 2 | Somme géométrique de raison 𝑞 ♥

Soit 𝑞 ∈ ℝ et (𝑢𝑛) une suite géométrique de raison 𝑞. Alors :

∀(𝑛,𝑝) ∈ ℕ2, tel que :
𝑛
∑
𝑘=𝑝

𝑢𝑘 =
⎧
⎨
⎩

𝑢𝑝×
1−𝑞𝑛−𝑝+1

1−𝑞 si 𝑞 ≠ 1,
𝑢𝑝(𝑛−𝑝+1) si 𝑞 = 1.

Preuve Soit (𝑛,𝑝) ∈ ℕ2,𝑛 ⩾ 𝑝. On a déjà vu que : ∀𝑘 ∈ J𝑝 , 𝑛K, 𝑢𝑘 =𝑢𝑝×𝑞𝑘−𝑝. Donc :

PEN-FANCY

Nous pouvons retenir une formule générale de la manière suivante :

∑suite géométrique= premier terme×
1− raisonnb termes

1− raison
.

Exemple 4 Calculer la somme : S = 3−9+27−⋯−729. (indication : 729 = 36)

• Introduisons la suite géométrique 𝑢 définie par :
𝑢0 = 3, et : ∀𝑘 ∈ℕ, 𝑢𝑘+1 =−3𝑢𝑘.

Alors : ∀𝑘 ∈ℕ, 𝑢𝑘 = 3×(−3)𝑘. Écrivons la somme à l’aide de cette suite :
PEN-FANCY

C’est donc bien une somme de termes de suite géométrique.
• Calcul de la somme :

PEN-FANCY

1.2.4 Suites arithmético-géométriques Introduisons à présent un nou-
veau type de suites : les suites arithmético-géométriques, qui sont en quelque sorte
un mélange des deux suites précédentes.

Définition 6 | Suite arithmético-géométrique
On appelle suite arithmético-géométrique toute suite (𝑢𝑛) pour laquelle il existe
𝑞 ∈ ℝ et 𝑟 ∈ ℝ tels que :

∀𝑛 ∈ℕ, 𝑢𝑛+1 =𝑞𝑢𝑛+𝑟.

L’expression du terme général en fonction de 𝑛 ∈ ℕ semble être ici moins évidente.
En revanche, nous allons pouvoir facilement nous ramener à quelque chose de géo-
métrique. En effet, supposons tout d’abord que 𝑞 ≠ 1 (sinon la suite est simplement
arithmétique) et fixons-nous ℓ ∈ ℝ de sorte que ℓ = 𝑞ℓ+𝑟, c’est-à-dire ℓ = 𝑟

1−𝑞 , alors
pour tout 𝑛 ∈ℕ :

{ 𝑢𝑛+1 = 𝑞𝑢𝑛+𝑟
ℓ = 𝑞ℓ+𝑟 ⟹ 𝑢𝑛+1−ℓ = 𝑞(𝑢𝑛−ℓ)+ �𝑟− �𝑟 = 𝑞(𝑢𝑛−ℓ).

Et là, on a donc fait apparaître (𝑣𝑛)𝑛 = (𝑢𝑛−ℓ)𝑛 qui est une suite géométrique.

Méthode (AN) 3.1 (Trouver l’expression explicite d’une suite vérifiant 𝑢𝑛+1 =
𝑞𝑢𝑛+𝑟,𝑞 ≠ 1)
1. Chercher ℓ tel que ℓ = 𝑞ℓ+𝑟.
2. Montrer que la suite (𝑢𝑛 −ℓ) est géométrique de raison 𝑞, puis en déduire

l’expression de (𝑢𝑛−ℓ) en fonction de 𝑛 ∈ℕ.
3. En déduire l’expression de (𝑢𝑛) en fonction de 𝑛 ∈ℕ.

4
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Remarque 2 (Analogie avec les équations différentielles) Mais d’où vient
cette idée?
• Considérons l’équationdifférentielle𝑦′ = 𝑎(𝑡)𝑦+𝑏(𝑡), et𝑦p une solutionpar-

ticulière. Alors nous avions constaté que :

{ 𝑦′ = 𝑎(𝑡)𝑦+𝑏(𝑡)
𝑦′p = 𝑎(𝑡)𝑦p+𝑏(𝑡)

⟹ (𝑦−𝑦p)
′ = 𝑎(𝑡)(𝑦−𝑦p)+���𝑏(𝑡)−���𝑏(𝑡),

c’est-à-dire que : 𝑦−𝑦p est solution d’une équation différentielle linéaire
homogène du 1er ordre, et donc que 𝑦 s’exprime comme somme d’une solu-
tion particulière et d’une solution de l’homogène.

• Considérons une suite arithmético-géométrique, et ℓ comme précédem-
ment. Alors nous avons constaté que :

{ 𝑢𝑛+1 = 𝑞𝑢𝑛+𝑟
ℓ = 𝑞ℓ+𝑟 ⟹ 𝑢𝑛+1−ℓ = 𝑞(𝑢𝑛−ℓ)+ �𝑟− �𝑟

c’est-à-dire que : 𝑢−ℓ est une suite géométrique, et donc que𝑢 s’exprime
comme somme de ℓ et d’une suite géométrique.

• La même idée sous-jacente apparaît : en cherchant une solution particulière
puis en faisant la différence, on élimine le « second membre ».

Mettons en oeuvre cette méthode sur des exemples.

Exemple 5 Soit (𝑢𝑛) la suite définie par𝑢0 = 1 et : ∀𝑛 ∈ℕ, 𝑢𝑛+1 =− 1
2𝑢𝑛+1.

PEN-FANCY

Exemple 6 Soit (𝑢𝑛) la suite définie par 𝑢0 = 1 et : ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 3𝑢𝑛 +2.

Déterminer une expression explicite en fonction de 𝑛 de :
𝑛
∑
𝑘=0

𝑢𝑘.

PEN-FANCY

1.2.5 Suites récurrentes linéaires d’ordre 2 On ne s’intéresse ici qu’au
cas des coefficients constants.

Définition 7 | Suite récurrente linéaire d’ordre 2
On appelle suite récurrente linéaire homogène d’ordre deux à coefficients
constants sur ℝ toute suite (𝑢𝑛) pour laquelle il existe 𝑎,𝑏,𝑐 ∈ ℝ tels que :

∀𝑛 ∈ℕ, 𝑎𝑢𝑛+2+𝑏𝑢𝑛+1+𝑐𝑢𝑛 = 0.
On appelle équation caractéristique associée à (𝑢𝑛) l’équation

𝑎𝑟2+𝑏𝑟 +𝑐 = 0. (EC)

Remarque 3
• Une suite récurrente linéaire d’ordre 2 généralise en fait les suites géomé-

triques; en effet, une suite géométrique de raison 𝑞 vérifie une récurrence
linéaire d’ordre 2 avec 𝑎 = 0,𝑏 = 1,𝑐 = −𝑞.

• En revanche, une suite arithmétique n’est pas une suite récurrente linéaire
d’ordre 2, sauf si sa raison est nulle.

Théorème 3 | Expression explicite ♥

Soient (𝑢𝑛) une suite récurrente linéaire homogène d’ordre deux à coefficients
constants et (EC) son équation caractéristique. On suppose que 𝑎 ≠ 0 ((EC) est

5
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alors bien du second degré) et on note Δ le discriminant de (EC).
• Si Δ> 0, alors (EC) possède deux racines réelles distinctes α et β, et :

∃(A,B) ∈ ℝ2, ∀𝑛 ∈ ℕ, 𝑢𝑛 =Aα𝑛+Bβ𝑛.
• Si Δ= 0, alors (EC) possède une racine double α ∈ ℝ, et :

∃(A,B) ∈ ℝ2, ∀𝑛 ∈ ℕ, 𝑢𝑛 = (A𝑛+B)α𝑛.
• Si Δ < 0, alors (EC) possède deux racines distinctes complexes conjuguées α

et α. On pose ρ = |α| > 0 et θ un argument de α, si bien que α = ρe𝑖θ. Alors :
∃(A,B) ∈ ℝ2, ∀𝑛 ∈ ℕ, 𝑢𝑛 = ρ𝑛 (Acos(𝑛θ)+Bsin(𝑛θ)) .

Attention
,

Attention aux confusions avec le résultat analogue sur les équations différen-
tielles dans le cas Δ< 0 : il fait appel à la forme algébrique des racines pour les
équations différentielles, et la forme exponentielle pour les suites.

Preuve Par exemple dans le cas Δ > 0, par récurrence double sur 𝑛 ∈ ℕ. Les valeurs de
𝑢0,𝑢1 étant fixées, on choisit A,B de sorte que :

{ A+B = 𝑢0
Aα+Bβ = 𝑢1.

À l’aided’opérations élémentaires simples, par exempleL2 ←L2−αL1, on voit que ce système
admet bien une unique solution (A,B) ∈ ℝ2 puisque α ≠ β.
PEN-FANCY

On vérifie alors, par récurrence double, que les valeurs choisies précédemment
conviennent.
Initialisation. Déjà faite.
Hérédité. Supposons que𝑢𝑛 =Aα𝑛+Bβ𝑛 et𝑢𝑛+1 =Aα𝑛+1+Bβ𝑛+1 pour𝑛 ∈ℕfixé.Montrons
que : 𝑢𝑛+2 =Aα𝑛+2+Bβ𝑛+2.
PEN-FANCY

Résumé Solutions d’une EDL2 et SRL2 à coefficients constants
♥

On note : (EC) 𝑎𝑟2+𝑏𝑟 +𝑐 = 0.

Δ Équation différentielle
𝑎𝑦″+𝑏𝑦′+𝑐𝑦 = 0

Suite récurrente
𝑎𝑢𝑛+2+𝑏𝑢𝑛+1+𝑐𝑢𝑛 = 0

Δ> 0
𝑦(𝑡) = Aeα𝑡+Beβ𝑡 𝑢𝑛 =Aα𝑛+Bβ𝑛

Racines (EC) : deux racines réelles α ≠ β

Δ= 0
𝑦(𝑡) = (A𝑡 +𝑏)eα𝑡 𝑢𝑛 = (A𝑛+B)α𝑛

Racines (EC) : une racine double réelle α

Δ= 0
𝑦(𝑡) = eα𝑡(Acos(β𝑡)+Bsin(β𝑡)) 𝑢𝑛 = ρ𝑛 (Acos(𝑛θ)+Bsin(𝑛θ))

Racines (EC) : deux racines complexes conjuguées α± iβ = ρe±iθ

Exemple 7 Déterminer une expression de (𝑢𝑛) en fonction de𝑛 définie par𝑢0 =
1, 𝑢1 =−1, et : 2𝑢𝑛+2 = 3𝑢𝑛+1−𝑢𝑛.
PEN-FANCY

Exemple 8 Déterminer les suites 2-périodiques.
PEN-FANCY
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Exemple 9 Déterminer une expression de (𝑣𝑛) en fonction de𝑛 définie par 𝑣0 =
1, 𝑣1 = 0, et : ∀𝑛 ∈ℕ, 𝑣𝑛+2 = 4𝑣𝑛+1−4𝑣𝑛.
PEN-FANCY

Exemple 10 Déterminer une expression de (𝑤𝑛) en fonction de 𝑛 définie par
𝑤0 = 1,𝑤1 = 1, et : ∀𝑛 ∈ℕ, 𝑤𝑛+2−2𝑤𝑛+1+4𝑤𝑛 = 0.
PEN-FANCY

Exemple 11 On considère la suite (𝑢𝑛) définie par :
𝑢0 = 1, 𝑢1 = 2, et : ∀𝑛 ⩾ 0, 𝑢𝑛+2 =√𝑢𝑛+1𝑢𝑛.

1. Justifier que la suite est bien définie, en montrant que : ∀𝑛 ∈ℕ, 𝑢𝑛 > 0 et
𝑢𝑛 est bien définie.
PEN-FANCY

2. Déterminer son expression en fonction de 𝑛 ∈ℕ.
PEN-FANCY

7
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Exemple 12 Déterminer l’ensemble des suites (𝑎𝑛) et (𝑏𝑛) vérifiant :

∀𝑛 ∈ℕ,   { 𝑎𝑛+1 = 3𝑎𝑛+𝑏𝑛
𝑏𝑛+1 = 2𝑎𝑛.

PEN-FANCY

2 MODÉLISATION DE DYNAMIQUES CONTINUES

L’interprétation physique du nombre dérivé est une vitesse instantanée. Il sera donc
possible de décrire des phénomènes d’évolution continue à l’aide d’équations diffé-
rentielles. Nous nous intéresserons également dans la suite aux modèles décrivant
des dynamiques de population dans un contexte continu (le cas discret sera quant
à lui étudié dans la section suivante).

2.1 Taux d’évolution et dynamiques linéaires

Lorsqu’une grandeur continue 𝑦 (une fonction dérivable) varie, on cherche à quan-
tifier souvent la variation de cette grandeur entre deux instants. Pour le signe, i.e. sa-
voir si elle croît ou décroît, on dispose déjà d’outils : le calcul de 𝑦′ pour les fonctions.
On pourrait d’autre part s’intéresser plus précisément à l’amplitude de la variation
en un temps donné.

Si 𝑡,ℎ sont deux réels positifs, alors la variation de 𝑦 entre les temps 𝑡 et ℎ est définie
comme 𝑦(𝑡 +ℎ)−ℎ(𝑡).Mais plutôt que de regarder des variations, on peut aussi se
demanderquel est lepourcentage (ou taux)d’augmentation/diminutionpar rapport
à une valeur antérieur — c’est le principe par exemple des livrets bancaires. En effet,
si [𝑡,𝑡 +ℎ] est un intervalle de temps correspondant à 1 année, et 𝑦 désigne votre
capital à un instant 𝑡 rémunéré à un taux τ, alors :

𝑦(𝑡 +ℎ) = 𝑦(𝑡)+ℎτ𝑦(𝑡) ⟺
𝑦(𝑡 +ℎ)−𝑦(𝑡)

ℎ
= τ𝑦(𝑡).

Si l’on fait tendre ℎ vers zéro, on obtient : τ =
𝑦′

𝑦
.

Définition 8 | Taux d’évolution continu
Soit 𝑦 une fonction dérivable.
• Si 𝑡 ∈ ℝ+, alors on définit le taux d’évolution de 𝑦 en 𝑡 noté τ𝑡(𝑦) par :

τ𝑡(𝑦) =
𝑦′(𝑡)
𝑦(𝑡)

= lim
ℎ⟶0

𝑦(𝑡 +ℎ)−𝑦(𝑡)
ℎ×𝑦(𝑦)

.

Lorsque𝑦décrit unepopulationd’individus, onparle de taux de reproduction
(resp.mortalité) en 𝑡 si τ𝑡(𝑦) ⩾ 0 (resp. ⩽ 0).

• On dit que 𝑦 suit une évolution linéaire lorsque le taux d’évolution est
constant au cours du temps.

Exemple 13 Dans cet exemple, on considère 𝑦 ∶ ℝ⟶ℝ une fonction dérivable.
Quelles sont les fonctions 𝑦 de taux d’évolution constant égal à τ ∈ ℝ? Analysez
la limite.
PEN-FANCY

8
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2.2 Modélisation

L’utilisation de suites numériques d’une part, et de fonctions d’autre part permet de
modéliser de manière très fidèle des systèmes présentant une dynamique discrète
ou continue simple.

Soit V une suite ou une fonction.
• [Discret] bilan de V entre 𝑛 et 𝑛+1 ⟹ relation de récurrence sur (𝑣𝑛).
• [Continu] bilan de V entre 𝑡 et 𝑡 +ℎ ⟹ équation différentielle sur V.

Faisons ce travail de bilan de grandeur, dans plusieurs contextes, pour le moment
uniquement continus (avec des fonctions).

Exemple 14 (Modélisation) Modéliser les situations ci-après à l’aide d’une
fonction, et déterminer une expression de ladite fonction.
1. [Cinétique chimique d’ordre 1] On considère une réaction chimique no-

tée A ⟶ B, on suppose que le réactif A disparait entre deux instants très
proches 𝑡,𝑡 +ℎ de manière proportionnelle au temps écoulé et à la concen-
tration [A] en réactif A présent au début de l’intervalle de temps.
PEN-FANCY

2. [Évolution radioactive] On considère une population d’atomes de car-
bone 14. On suppose qu’entre deux instants très proches 𝑡,𝑡 + ℎ une pro-
portion ρ† ∈ ℝ+ d’atomes se désintègrent, et une proportion 𝑡ρ𝑏 ∈ ℝ+ se crée,
proportionnellement à la longueur ℎ de l’intervalle de temps.
PEN-FANCY

3. [Compétition entre deux populations] Une population d’adorables pe-
tits lapins « fonction 𝑦 » se reproduit selon un taux constant égal à 1, et une
population de renards « fonction 𝑧 » se reproduit selon un taux constant égal
à 1

2 mais chassent les lapins, selon le modèle suivant : il y a diminution du
nombre de lapins entre deux temps égale au produit du nombre de renards
par le nombre de lapins et par la longueur de l’intervalle de temps. On sup-
pose qu’initialement il y a 5 lapins et 5 renards.
PEN-FANCY

9
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2.3 Dynamique (continue) des populations

Modèle malthusien : évolution libre. Il est largement considéré que c’est
au crédit de Thomas. R. MALTHUS que l’on accorde la paternité de l’un des premiers
modèles mathématiques de croissance de population, qui publie (anonymement,
dans sa première version) son célèbre Essai sur le principe de population en 1798.

Selon MALTHUS, cf. la citation pré-
sentée en début de chapitre, la
croissance d’une population aurait
un ratio géométrique, a contrario de
la croissance des ressources qui serait
arithmétique. MALTHUS ne vérifia pas
rigoureusement cette théorie de rap-
port de croissances, prenant comme
argument d’autorité l’évidence de
ses propos. MALTHUS estime que la
population mondiale double toutes
les 25 années - fatalement, la popula-
tion tendra rapidement à s’accroître
au-delà des moyens de subsistance,
engendrant selon lui pléthores de
conséquences plutôt dévastatrices
(guerres, famines, épidémies, ...).

Population
(Croissance géométrique)

Ressources
(croissance arithmétique)

•

Catastrophe
malthusienne

Temps

Quantité

Représentation du modèle de MALTHUS.
Lorsque la quantité de population (aug-
mentation géométrique) dépasse celle
des ressources (augmentation arithmé-
tique), la catastrophe malthusienne s’en-
clenche.

L’appréhension d’une telle catastrophe démographique associée à une préconisa-
tion de la limitation dunombre de naissances porte désormais le nomdemalthusia-
nisme. Notons que, comme le souligne l’anthropologue C. MEILASSOUX, cette peur
d’une croissance excessive au délà des moyens de subistances est complètement ir-
réaliste : en réalité, comment une population pourrait-elle continuer à croître ex-
ponentiellement en ayant épuisé les ressources nécessaires à son développement?
MALTHUS le reconnaît d’ailleurs lui-même (traduction en Français) : « Je sais bien,
que les millions d’habitants en excès dont j’ai parlé n’existeront jamais ». Mais cette
penséemalthusienne eut tout demême des conséquences importantes, commepar

exemple la politique de l’enfant unique en Chine. Présentons à présent une descrip-
tion mathématique.

On suppose que la population grandit en semultipliant par un nombre fixe β appelé
taux de reproduction ou taux de fertilité, et meurt selon un taux de mortalité μ > 0
supposés constant ici. Ainsi, si P désigne le cardinal¹ de la population.

Bilan de population malthusien continu. PEN-FANCY

On débouche alors sur la définition ci-après.

Définition 9 | Modèle deMALTHUS
On dit qu’une fonction P suit un modèle malthusien de taux β,μ, condition ini-
tiale P0 ∈ ℝ si P est dérivable en 𝑡 et vérifie :

P′(𝑡) = (β−μ)P(𝑡) (𝑡 ⩾ 0), P(0) = P0. (Malthus)
On appelle β le taux de natalité, μ le taux de mortalité. Le taux d’évolution est
alors β−μ. (conséquence directe de la définition!)

De manière équivalente, cela si-
gnifie que P(𝑡) = P0e(β−μ)𝑡 pour
tout 𝑡 ⩾ 0. Ici nous ne suppo-
sons donc pas l’existence de pré-
dateurs, et que les ressources na-
turelles sont en quantité illimité.
Ainsi la population a donc la pos-
sibilité de se développer indéfini-
ment. 𝑡

P(𝑡)

P0

Cas β > μ

Cas β = μ

Cas μ> β

Cemodèle très simplistemet en évidence un point très important : l’évolution d’une
population est dictée par la balance entre taux de fertilité et taux de mortalité, que
ce soit dans le cas discret ou le cas continu.

1. abus de vocabulaire, puisque P n’a aucune raison d’être un entier positif

10
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Modèle logistique de Verhulst : évolution sous capacité de milieu.
En 1838, Pierre-François VERHULST répond à MALTHUS en proposant un modèle lo-
gistique de dynamique de population. À l’instar du modèle de MALTHUS, il suppose
qu’unepopulation sans limitationde ressources croît demanière exponentiellemais
que la croissance de la population est freinée par sa propre dynamique et par la li-
mitation des ressources du milieu. Dans sa note, VERHULST suppose la résistance à
la croissance d’une population proportionnelle au carré de la vitesse avec laquelle la
population tend à croître (à l’instar d’un mobile en chute libre traversant un milieu
résistant — cette intuition fut d’ailleurs fournie àVERHULST par le physicien QUETE-
LET). Le bilan de population est quant à lui le même que pour MALTHUS, avec sim-
plement l’ajout d’un terme proportionnel à−P(𝑡)2. À renommage de variables près,
on arrive directement sur la définition ci-après.

Définition 10 | Modèle de VERHULST
On dit qu’une fonction P suit un modèle de VERHULST de taux β,μ,κ, condition
initiale P0 ∈ ℝ si P est dérivable en 𝑡 et vérifie :

P′(𝑡) = (β−μ)(P(𝑡)−
P(𝑡)2

κ
) (𝑡 ⩾ 0), P(0) = P0. (Verhulst)

On appelleβ le taux denatalité,μ le taux demortalité, etκ la capacité dumilieua.

Si P0 > 0, nous pouvons établir
(cf. TD) que :

P(𝑡) =
κ

1+e−(β−μ)𝑡 ( κP0 −1)
.

𝑡

P(𝑡)

P0

κ

Modèle deVERHULST continu.

Modèle de Gompertz. Un modèle ressemblant au précédent, seule la vitesse
de convergence vers la valeur limite est modifiée ainsi que la pente initiale.

Définition 11 | Modèle de GOMPERTZ
On dit qu’une fonction P suit un modèle de GOMPERTZ de taux β,μ,κ, condition
initiale P0 ∈ ℝ si P est dérivable en 𝑡 et vérifie :

P′(𝑡) = (β−μ) ln(
κ

P(𝑡)
)P(𝑡) (𝑡 ⩾ 0), P(0) = P0. (Gompertz)

On appelle β le taux de natalité, μ le taux de mortalité, et κ la capacité du milieu.

a. C’est donc ce terme supplémentaire qui vient freiner la croissance de la population si β−μ > 0,
et accélérer la croissance si β−μ < 0

Là encore, on ne peut pas obtenir
d’expression explicite pour lemo-
dèle discret. En revanche dans le
cas continu, si P0 > 0, nous pou-
vons établir (cf. TD) que :

P(𝑡) = κeln  (
P(0)
κ )e−(β−μ)𝑡 .

Nous ferons la résolution expli-
cite en TD.

𝑡

P(𝑡)

P0

κ

Verhulst
Gompertz

Modèle de GOMPERTZ continu

Modèle proies-prédateurs de Lotka-Volterra : compétition entre
deux populations. Si deux espèces dont les populations sont représentées par
P1 et P2 se partagent le milieu, on peut adapter le modèle de VERHULST pour tenir
compte de cette compétition.

Définition 12 | Modèle de LOTKA-VOLTERRA
On dit qu’une fonction P suit un modèle de LOTKA-VOLTERRA de taux β,μ,κ si P
est dérivable en 𝑡 et vérifie :

{ P′1(𝑡) = ((β1−μ1)−π1P2(𝑡))P1(𝑡),
P′2(𝑡) = ((β2−μ2)−π2P1(𝑡))P2(𝑡).

(LoktaVolt)

On appelle β1 le taux de natalité, μ1 le taux de mortalité pour la première (avec
β2,μ2 pour la seconde), et π1,π2 les taux de prédation.

Remarque 4 (Interprétation du système) Nous annotons chacun des termes
présents dans le système.
PEN-FANCY

{ P′1(𝑡) = (β1−μ1)P1(𝑡)−π1P2(𝑡)P1(𝑡),
P′2(𝑡) = (β2−μ2)P2(𝑡)−π2P1(𝑡)P2(𝑡).

PEN-FANCY

La résolution et l’étude générale d’un tel système est en revanche difficile.

11
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3 MODÉLISATION DE DYNAMIQUES DISCRÈTES

On s’intéresse ici aux dynamiques discrètes, c’est-à-dire des grandeurs qui évoluent
en des temps ponctuels.

3.1 Taux d’évolution et dynamiques linéaires

Définition 13 | Taux d’évolution discret
Soit 𝑢 = (𝑢𝑛) une suite.
• Si 𝑛 ∈ℕ, alors on définit le taux d’évolution en 𝑛 noté τ𝑛(𝑢) par :

τ𝑛(𝑢) =
𝑢𝑛+1−𝑢𝑛

𝑢𝑛
.

Lorsque𝑢décrit unepopulationd’individus, onparle de tauxde reproduction
(resp.mortalité) en 𝑛 si τ𝑛(𝑢) ⩾ 0 (resp. ⩽ 0).

• On dit que 𝑢 suit une évolution linéaire lorsque le taux d’évolution est
constant au cours du temps.

Exemple 15 Si 𝑢 = (𝑢𝑛) désigne la suite représentant le capital à l’année 𝑛 d’un
livret bancaire rémunérée à τ%, alors :

∀𝑛 ∈ℕ, 𝑢𝑛+1 =𝑢𝑛+τ𝑢𝑛.
Donc τ𝑛(𝑢) = τ — le taux de rémunération que vous connaissez depuis long-
temps est simplement le taux d’évolution de la suite des capitaux.

Exemple 16 Quelles sont les suites (𝑢𝑛) de taux d’évolution constant égal à τ ∈
ℝ? Analysez la limite.
PEN-FANCY

3.2 Modélisation

• [Discret] bilan de V entre 𝑛 et 𝑛+1 ⟹ relation de récurrence sur (𝑣𝑛).
• [Continu] bilan de V entre 𝑡 et 𝑡 +ℎ ⟹ équation différentielle sur V.

Faisons à nouveau ce travail de bilan de grandeur dans plusieurs contextes discrets
ici.

Exemple 17 (Modélisation) Modéliser les situations ci-après à l’aide d’une
suite, et déterminer une expression de ladite suite.
1. [Dune] En 2018, la largeur maximale de la dune du Pilat était estimée à

616 mètres. Une étude a montré que, chaque année, la dune progresse en
moyenne de 3,5 mètres à l’intérieur des terres. En admettant que cette évo-
lution se poursuit, comment peut-on modéliser l’évolution de la largeur de
la dune chaque année?
PEN-FANCY

2. [Reproduction cellulaire très simplifiée] On considère une population
de cellules, qui se reproduisent tous les ans. On suppose que chaque cellule
donne alors lieu à deux cellules à l’année suivante.
PEN-FANCY

3. [Invasion] La pyrale est une chenille invasive qui s’attaque aux buis. Selon
un relevé statistique, chaque année, le nuisible fait disparaitre 15% des buis
du massif. Alors que l’on compte en 2017, 75000 pieds de buis, l’ONF préco-
nise de replanter 3000 plants chaque année pour compenser les dégâts de la
pyrale.
• Modéliser la situation si la préconisation de l’ONF n’est pas suivie.

PEN-FANCY

12
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• Modéliser la situation si la préconisation de l’ONF est suivie.
PEN-FANCY

4. [Lapins de FIBONACCI]

FIBONACCI émet les hypo-
thèses suivantes au sujet de la
reproduction d’un couple de
lapin initial :
• un mois donné, on isole

un couple de nouveaux-nés
dans un lieu clos.

• Tout couple de lapins ne
peut se reproduire qu’au
bout de deux mois de vie
(lorsque les individus sont
adultes).

• Tout couple de lapins
adultes se reproduit
chaque mois en donnant
naissance à un couple de
bébés lapins.

• Les lapins ne meurent ja-
mais. (que c’est beau!)

Modèle de FIBONACCI

Comment peut-on modéliser l’évolution du nombre de couples de lapins à
un moins 𝑛 donné? Notons F𝑛 le nombre de couples à la fin du mois 𝑛 ∈  ℕ
(c’est-à-dire une fois les naissances terminées). Soit 𝑛 ∈ ℕ, et comptons le
nombre de lapins à la génération 𝑛+2, c’est-à-dire F𝑛+2 : qui est la somme
du
• nombre de couples à la génération 𝑛+1, au nombre de F𝑛+1,
• et du nombre d’enfants arrivant en fin de mois 𝑛+1 : ils sont au nombre

de F𝑛 puisque la gestation dure 1 mois.
PEN-FANCY

13
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5. [Deux populations à évolution liée] On considère une population de tor-
tues, composée de bébés (âgés d’un an) et d’adultes (âgés de 2 ans ou plus).
On suppose l’évolution suivante :
• les tortues deviennent adultes à 2 ans, et que seules 20%parviennent à cet

âge,
• 40% des tortues adultes de l’année 𝑛meurent avant la fin de l’année,
• les femelles composent lamoitiéde lapopulationetdonnentnaissanceà4

bébés chaque année, de l’âge de 2 ans jusqu’à la fin de leur vie. Les bébés
deviennent alors des tortues âgées d’1 an à la génération suivante, puis
une partie d’entre elles deviendront adulte à la génération encore d’après
(à 2 ans).

On définit pour tout 𝑛 ∈ ℕ : 𝑎𝑛 le nombre d’adultes vivant l’année 𝑛, et 𝑏𝑛 le
nombre de bébés provenant de la génération 𝑛 (le nombre de tortues âgées
d’1 an à la génération 𝑛 ∈ℕ⋆ est alors 𝑏𝑛−1).
Faisons un bilan de quantité entre 𝑛 ∈ ℕ et 𝑛+ 1 pour les adultes déjà. Le
modèle invite à établir une récurrence d’ordre 2.

𝑎𝑛+2 = 0.6×𝑎𝑛 + 0.2𝑏𝑛 , 𝑏𝑛 = 4 ×
𝑎𝑛
2
.

adultes survivants
de la génération 
précédente

bébés de l’année 𝑛
passant adultes à 2 ans nombre de bébés

par femelle

adultes femelles génération 𝑛

On déduit alors que (𝑎𝑛) satisfait une relation de récurrence linéaire d’ordre
2.

∀𝑛 ∈ℕ, 𝑎𝑛+2 = 0.6𝑎𝑛+0.4𝑎𝑛 .

3.3 Modèles de populations

On reprend brièvement ici les modèles de dynamique des populations vus dans le
Chapitre (AN) 2 mais dans un cadre discret.

Bilan de population malthusien continu. On rappelle que selon MAL-
THUS, la population grandit en se multipliant par un nombre fixe β appelé taux de
reproduction ou taux de fertilité, et meurt selon un taux demortalité μ> 0 supposés
constant ici. Ainsi, si (𝑝𝑛) représente le cardinal de la population, on a :

∀𝑛 ∈ℕ, 𝑝𝑛+1 =𝑝𝑛+β𝑝𝑛−μ𝑝𝑛 = (1+β−μ)𝑝𝑛.

On débouche alors sur la définition ci-après.

Définition 14 | Modèle deMALTHUS
Ondit qu’une suite (𝑝𝑛) suit unmodèlemalthusiende tauxβ,μ, condition initiale
𝑝0 ∈ ℝ si (𝑝𝑛) vérifie :

𝑝𝑛+1 =𝑝𝑛+(β−μ)𝑝𝑛 (𝑛 ∈ ℕ), 𝑝0 = P0. (Malthus,disc)
On appelle β le taux de natalité, μ le taux de mortalité. Le taux d’évolution est
alors β−μ.

De manière équivalente, cela si-
gnifie que𝑝𝑛 = (1+β−μ)𝑛P0 pour
tout 𝑛 ∈ ℕ. Ici nous ne suppo-
sons donc pas l’existence de pré-
dateurs, et que les ressources na-
turelles sont en quantité illimité.
Ainsi la population a donc la pos-
sibilité de se développer indéfini-
ment.

𝑛

𝑝N

P0

Cas β > μ

Cas β = μ

Cas μ> β

Modèle logistique de Verhulst et autres modèles. Comme pour le
modèle continu, on ajoute ici un terme qui vient freiner la croissance de la popu-
lation, cela permet de tenir compte de la capacité d’un milieu.

Définition 15 | Modèle de VERHULST
On dit qu’une suite (𝑝𝑛) suit un modèle de VERHULST de taux β,μ,κ, condition
initiale P0 ∈ ℝ si (𝑝𝑛) vérifie :

𝑝𝑛+1 =𝑝𝑛+(β−μ)(𝑝𝑛−
𝑝2
𝑛

κ
) (𝑛 ∈ ℕ), 𝑝0 = P0. (Verhulst,disc)

On appelleβ le taux denatalité,μ le taux demortalité, etκ la capacité dumilieua.

Pour le modèle deVERHULST, il n’est pas possible d’obtenir d’expression explicite de
(𝑝𝑛) en fonction de 𝑛 ∈ ℕ. L’étude de cette suite récurrente est par ailleurs difficile.
De-même que les modèles de GOMPERTZ et LOKTA-VOLTERRA introduisant une pré-
dation.

a. C’est donc ce terme supplémentaire qui vient freiner la croissance de la population si β−μ > 0,
et accélérer la croissance si β−μ < 0

14
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FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (AN) 3.1 (Trouver l’expression explicite d’une suite vérifiant 𝑢𝑛+1 =
𝑞𝑢𝑛+𝑟,𝑞 ≠ 1)
1. Chercher ℓ tel que ℓ = 𝑞ℓ+𝑟.
2. Montrer que la suite (𝑢𝑛 −ℓ) est géométrique de raison 𝑞, puis en déduire

l’expression de (𝑢𝑛−ℓ) en fonction de 𝑛 ∈ℕ.
3. En déduire l’expression de (𝑢𝑛) en fonction de 𝑛 ∈ℕ.

QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Pas de question de cours dans ce chapitre

15
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4 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Concernant les suites usuelles (arithmétique, géométrique, arithmético-

géométrique, récurrente linéaire d’ordre deux) :
• connaitre leur relation récurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir exprimer leur terme général en fonction de 𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• savoir traduire une condition initiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

2. Concernant la modélisation :
• savoir traduire des dynamiques discrètes à l’aide d’une suite récurrente . . . . . . .⬜
• savoir traduire des dynamiques continues à l’aide d’une équation différentielle⬜
• avoir une idée générale des deux principaux modèles de dynamique des popula-

tions (évolution libre [MALTHUS], et évolution avec capacité [logistique])
⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

4.1 Suites usuelles

Exercice 1 ∣ Récurrences arithmétiques, géométriques, arithmético-
géométriques [Solution]

1. Calculer le termegénéral, étudier la convergence, et calculer la sommedes termes
S =

𝑛
∑
𝑘=0

𝑢𝑘 pour les suites (𝑢𝑛) définies par 𝑢0 = 2 et pour tout 𝑛 ∈ℕ :

𝑢𝑛+1 =𝑢𝑛+3• 𝑢𝑛+1 =𝑢𝑛+ 1
2• 𝑢𝑛+1 =𝑢𝑛−5•

𝑢𝑛+1 = 3𝑢𝑛• 𝑢𝑛+1 =
𝑢𝑛
2• 𝑢𝑛+1 =−5𝑢𝑛•

𝑢𝑛+1 = 3𝑢𝑛+3• 𝑢𝑛+1 =−𝑢𝑛
2 + 1

3• 𝑢𝑛+1 =−𝑢𝑛−4.•

2. Dans chacun des cas ci-dessus, calculer S =
𝑛
∑
𝑘=0

𝑢𝑘.

Exercice 2 ∣ Récurrences linéairesd’ordre2 [Solution] Déterminer en fonctionde
𝑛, le terme 𝑢𝑛 des suites qui vérifient

1. 𝑢0 = 1, 𝑢1 = 2, ∀𝑛 ∈ ℕ⋆, 𝑢𝑛+1−2𝑢𝑛−3𝑢𝑛−1 = 0.
2. 𝑢0 = 2, 𝑢1 =−3, ∀𝑛 ∈ ℕ, 𝑢𝑛+2 =−8𝑢𝑛+1−16𝑢𝑛.
3. 𝑢0 = 1, 𝑢1 = 2, ∀𝑛 ∈ ℕ, 𝑢𝑛+2 =−4𝑢𝑛.

Exercice 3 ∣ Récurrences de type homographique [Solution] On considère les
suites (𝑢𝑛) et (𝑣𝑛) définies par :

𝑢0 = 0, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =
5𝑢𝑛−2
𝑢𝑛+2

, 𝑣𝑛 =
𝑢𝑛−2
𝑢𝑛−1

.

1. Montrer que la suite (𝑢𝑛) est bien définie et que pour tout 𝑛 ⩾ 3, et que 𝑢𝑛 > 1.
2. En déduire que la suite (𝑣𝑛) est bien définie surℕ.
3. Montrer que (𝑣𝑛) est géométrique.
4. En déduire l’expression explicite de (𝑣𝑛) puis de (𝑢𝑛).

Exercice 4 ∣ [Solution] On considère la suite (𝑢𝑛) définie par

𝑢0 =
2
3
, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =

𝑢𝑛
2
+

𝑛

2√2
+

1
√2

.

1. En étudiant (𝑣𝑛) définie par 𝑣𝑛 =𝑢𝑛×√2−𝑛 pour tout 𝑛, donner l’expression de
𝑢𝑛 en fonction de 𝑛.

2. Calculer S𝑛 =∑𝑛
𝑖=0𝑢𝑖 en fonction de 𝑛.

4.2 Modélisation discrète

Exercice 5 ∣ Injection d’un traitement [Solution] Toutes les heures, on injecte à
un sujet, une même dose de 1,8 unités, d’une substance médicamenteuse dans le
sang. On suppose que la substance se répartit instantanément dans le sang et qu’elle
est ensuite progressivement éliminée. En l’espace d’une heure, la quantité de cette
substanceprésentedans le sangdiminuede30%. Lapremière injection se fait à 𝑡 = 0.
Pour 𝑛 ∈ ℕ, on note Q𝑛 la quantité de substance présente dans le sang à l’instant
𝑡 = 𝑛 (en heures), dès que la nouvelle injection est faite.

1. DonnerQ0 et déterminer une relation de récurrence entreQ𝑛+1 etQ𝑛.
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2. TERMINALPython Écrire une fonction en langage Python Q qui prend en argument un entier
naturel𝑛 et qui renvoieQ𝑛 audixièmeprès.Donner grâce à cette fonctionune ap-
proximation au dixième près de la quantité de substance présente dans le sang à
l’instant à 𝑡 = 5 puis conjecturer le comportement asymptotique de la suite (Q𝑛).

3. Calculer, pour 𝑛 ∈ ℕ∗, le terme Q𝑛 en fonction de 𝑛 et déterminer la limite de la
suite (Q𝑛).

4. TERMINALPython Écrire une fonction en langage Python proche qui prend en argument un
réel ε > 0 et renvoie le plus petit entier 𝑛 tel que |Q𝑛−6| < ε. Autrement dit, à
partir de quel rang 𝑛 la quantitéQ𝑛 sera-t-elle ” proche ”, à ε près, de sa limite 6?

Exercice 6 ∣ [Solution] Un arboriculteur possède, au 1er janvier 2020, 5000 pom-
miers. Chaque année, il arrache 4% des pommiers (endommagés) et en replante 300
nouveaux. On note P𝑛 le nombre de pommiers au 1er janvier de l’année 2020+𝑛.
La superficie du terrain permet à l’arboriculteur d’avoir 6000 pommiers au maxi-
mum.

1. Donner P0 et déterminer une relation de récurrence entre P𝑛+1 et P𝑛.
2. Calculer, pour 𝑛 ∈ℕ, le terme P𝑛 et déterminer la limite de la suite (P𝑛).
3. TERMINALPython Écrireun script Pythonpermettantde représenter sur lemêmegraphique le

nombre de pommiers entre 2020 et 2050 et la droite d’équation 𝑦 = 6000. Estimer
par lecture graphique en quelle année l’arboriculteur devra acquérir un nouveau
terrain pour pouvoir planter de nouveaux pommiers.

4. TERMINALPython Écrire maintenant un script Python permettant de déterminer l’année pré-
cédente.

4.3 Modélisation continue

Exercice 7 ∣ Cinétique chimique d’ordre 2 [Solution] On considère une réaction
chimique notée A ⟶ B, on suppose que le réactif A disparait avec un taux pro-
portionnel (on note 𝑘 ∈ ℝ le coefficient associé) à la concentration de réactif. Dé-
terminer la concentration [A] en réactif en fonction du temps, en supposant que la
concentration ne s’annule pas.

Exercice 8 ∣ Propagation d’une rumeur [Solution] On tente de modéliser la ma-
nière dont une rumeur se répand en considérant que la vitesse de propagation est
proportionnelle au produit du pourcentage 𝑦 ∈ [0,1] de ceux qui sont au courant de
la rumeur par le pourcentage de ceux qui, au contraire, ne sont pas au courant.

1. Écrire une équation différentielle vérifiée par 𝑦. On admet dans la suite que la
seule solution s’annulantquelquepart est la solutionnulle, on résoutdonc l’équa-
tion différentielle sur l’ensemble des fonctions 𝑦 ne s’annulant pas.

2. En déduire une équation différentielle vérifiée par 𝑧 = 1
𝑦 .

3. Résoudre l’équation vérifiée par 𝑧 et en déduire 𝑦.
4. [Application] Une petite ville compte 1000 habitants. À 8 heures du matin, 80

personnes ont entendu parler de la nouvelle du jour. À midi, la moitié de la ville
est au courant. A quelmoment de la journée est-ce que 90% de la population sera
au courant de cette nouvelle? On arrondira le résultat à 10−2 près, on précisera
aussi dans quelle unité il est exprimé.

Exercice 9 ∣ Hauteur d’une baignoire [Solution] On considère une baignoire de
forme parallélépipédique dont la base est de dimensions 𝑎𝑏 que l’on remplit avec
un débit constant noté d. On note 𝑧(𝑡) la hauteur d’eau dans la baignoire à l’instant
𝑡 et V(𝑡) son volume. On suppose que V(0) = 0.

La baignoire a une fissure au fond qui laisse s’échapper plus oumoins d’eau en fonc-
tion de la pression exercée par l’eau sur celle-ci. On rappelle que la pression au fond
de la baignoire est égale à 𝑝(𝑧) = ρ𝑔𝑧. Le débit de la fuite est d𝑓 = α𝑝 avec α > 0 et 𝑝
la pression qui s’y exerce. Toutes les grandeurs sont en unité SI.

1. Si on suppose la baignoire suffisamment haute,montrer que le volumed’eau tend
vers un volume à l’équilibre V𝑒𝑞 que l’on déterminera.

2. Si la baignoire a un volume V (que l’on suppose inférieur au volume d’équilibre),
au bout de combien de temps sera-t-elle pleine?

4.4 Devoir-maisonLaptop-House

Exercice 10 ∣ Modèle de VERHULST continu [Solution] On dit qu’une fonction P
suit unmodèle de Verhulst de taux β,μ,κ si P est dérivable en 𝑡 et vérifie :

∀𝑡 ⩾ 0, P′(𝑡) = (β−μ)(P(𝑡)−
P(𝑡)2

κ
), P(0) = P0. (Verhulst)

Dans la suiteonnote 𝑟 = β−μ.Oncherche résoudre l’équation (Verhulst) pourP(0) =
P0 ∈ ]0,κ[.

1. [Positivité] On cherche déjà à prouver que pour tout 𝑡 ⩾ 0, P(𝑡) ∈ ]0,κ[. On
suppose que P est une solution, et on note 𝑓(𝑡) = 𝑟P(𝑡)(1− P(𝑡)

κ ) pour tout 𝑡 ⩾ 0.
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1.1) Montrer que 𝑓 est dérivable sur ℝ+ puis justifier que 𝑓 est solution d’une
équation différentielle linéaire homogène du premier ordre à coefficients
continus.

1.2) Montrer que 𝑓(0) ≠ 0 et en déduire que pour tout 𝑡 ⩾ 0, 𝑓(𝑡) ≠ 0.
1.3) Montrer que pour tout 𝑡 ⩾ 0, P(𝑡) ∈ ]0,κ[.

2. [Résolution]
2.1) Montrer qu’il existe deux constantes 𝑎,𝑏 ∈ ℝ2 telles que :

∀𝑥 ∈ ℝ∖{0,κ},
κ

𝑥(κ−𝑥)
=
𝑎
𝑥
+

𝑏
κ−𝑥

.

2.2) Résoudre (Verhulst).

18
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SOLUTIONS DES EXERCICES

Solution (exercice 1) [Énoncé]

1. C’est une suite arithmétique de raison 3 et de premier terme 2, ainsi :

∀𝑛 ∈ℕ, 𝑢𝑛 = 2+3𝑛, S = 2(𝑛+1)+3
𝑛
∑
𝑘=0

𝑘 = 2(𝑛+1)+3
𝑛(𝑛+1)

2
.

2. C’est une suite arithmétique de raison 1
2 et de premier terme 2, ainsi : ∀𝑛 ∈

ℕ, 𝑢𝑛 = 2+ 𝑛
2 .On a :

S = 2(𝑛+1)+
1
2

𝑛
∑
𝑘=0

𝑘 = 2(𝑛+1)+
𝑛(𝑛+1)

4
.

3. C’est une suite arithmétique de raison −5 et de premier terme 2, ainsi :

∀𝑛 ∈ℕ, 𝑢𝑛 = 2−5𝑛, S = 2(𝑛+1)−5
𝑛
∑
𝑘=0

𝑘 = 2(𝑛+1)−5
𝑛(𝑛+1)

2
.

4. C’est une suite géométrique de raison 3 et de premier terme 2, ainsi :

∀𝑛 ∈ℕ, 𝑢𝑛 = 23𝑛, S = 2
𝑛
∑
𝑘=0

3𝑘 = 3𝑛+1−1.

5. C’est une suite géométrique de raison 1
2 et de premier terme 2, ainsi :

∀𝑛 ∈ℕ, 𝑢𝑛 = 2(
1
2
)
𝑛
, S = 2

𝑛
∑
𝑘=0

(
1
2
)
𝑘
= 4(1−(

1
2
)
𝑛+1

) .

6. C’est une suite géométrique de raison −5 et de premier terme 2, ainsi :

∀𝑛 ∈ℕ, 𝑢𝑛 = 2(−5)𝑛, S = 2
𝑛
∑
𝑘=0

(−5)𝑘 =
1
3
(1−(−5)𝑛+1) .

7. C’est une suite arithmético-géométrique. On applique la méthode vue en
cours pour trouver l’expression de 𝑢𝑛 en fonction de 𝑛.
• Calcul de la limite éventuelle. On suppose que (𝑢𝑛) converge vers ℓ. Alors

par passage à la limite, on a 3ℓ+3 = ℓ ⟺ ℓ=− 3
2 .

• On pose 𝑣𝑛 =𝑢𝑛−ℓ = 𝑢𝑛+ 3
2 . On a alors :

𝑣𝑛+1 =𝑢𝑛+1+
3
2
= 3𝑢𝑛+3+

3
2
= 3𝑢𝑛+

9
2
= 3(𝑢𝑛+

3
2
) = 3𝑣𝑛,

donc (𝑣𝑛) est une suite géométrique de raison 3 et de premier terme 𝑣0 =
𝑢0+ 3

2 =
7
2 . On obtient donc ∀𝑛 ∈ℕ, 7

2 ×3
𝑛.

• On en déduit : ∀𝑛 ∈ℕ, 𝑢𝑛 = 𝑣𝑛− 3
2 =

7
2 ×3

𝑛− 3
2 .

On a de plus : S = 7
4 (3

𝑛+1−1)− 3(𝑛+1)
2 .

8. C’est une suite arithmético-géométrique. On obtient :

∀𝑛 ∈ℕ, 𝑢𝑛 =
16
9
(−

1
2
)
𝑛
+
2
9
, S =

32
27

(1−(−
1
2
)
𝑛+1

)+
2(𝑛+1)

9
.

9. C’est une suite arithmético-géométrique. On obtient :
∀𝑛 ∈ℕ, 𝑢𝑛 = 4(−1)𝑛−2, S = 2(1−(−1)𝑛+1)−2(𝑛+1).

Solution (exercice 2) [Énoncé] Toutes ces suites sont des suites linéaires
récurrentes d’ordre deux, on les résout en étudiant l’équation caractéristique. Je
ne donne ici que le résultat.
1. ∀𝑛 ∈ℕ, 𝑢𝑛 = 1

4 (3
𝑛+1+(−1)𝑛),

2. ∀𝑛 ∈ℕ, 𝑢𝑛 = (2− 5
4𝑛)(−4)

𝑛,
3. ∀𝑛 ∈ℕ, 𝑢𝑛 = 2𝑛 (cos (𝑛π2 )+ sin (

𝑛π
2 )).

Solution (exercice 3) [Énoncé]

1. Comme toujours pour ce genre de question, on fait une récurrence.
On montre par récurrence sur𝑛 ⩾ 3 la propriété𝒫(𝑛) ∶ 𝑢𝑛 défini et𝑢𝑛 > 1.
Initialisation. pour 𝑛 = 3, on a : 𝑢1 = −1 puis 𝑢2 = −7 et 𝑢3 = 37

5 > 1. Ainsi,
𝒫(3) est vraie.
Hérédité. soit𝑛 ⩾ 3, on suppose la propriété vraie à l’ordre𝑛, montrons que
𝒫(𝑛 + 1) est vraie. Par hypothèse de récurrence, on sait que 𝑢𝑛 > 1, donc
𝑢𝑛−1 ≠ 0 et 𝑢𝑛+1 est bien défini. De plus, on a

𝑢𝑛+1 > 1 ⟺
5𝑢𝑛−2
𝑢𝑛+2

> 1 ⟺ 5𝑢𝑛−2 > 𝑢𝑛+2 ⟺ 𝑢𝑛 > 1.

Ici on a utilisé le fait que 𝑢𝑛 > 1 d’après 𝒫(𝑛), et donc que 𝑢𝑛 + 2 > 0. On
arrive 𝑢𝑛 > 1 qui est bien vrai, donc par équivalences, 𝑢𝑛+1 > 1 est vrai aussi.
Ainsi,𝒫(𝑛+1) est vraie.
Conclusion : il résulte du principe de récurrence que ∀𝑛 ⩾ 3, 𝑢𝑛 > 1.

2. La suite (𝑣𝑛)𝑛∈ℕ est bien définie car𝑢0,𝑢1,𝑢2 ne sont pas égaux à 1 et ensuite
on a ∀𝑛 ⩾ 3,𝑢𝑛 > 1. Ainsi pour tout 𝑛 ∈ ℕ, on a bien 𝑢𝑛 −1 ≠ 0 et 𝑣𝑛 bien
défini.

3. Soit 𝑛 ∈ℕ :

𝑣𝑛+1 =
𝑢𝑛+1−2
𝑢𝑛+1−1

=
5𝑢𝑛−2−2𝑢𝑛−4

𝑢𝑛+2
5𝑢𝑛−2−𝑢𝑛−2

𝑢𝑛+2

=
3𝑢𝑛−6
4𝑢𝑛−4

=
3
4
𝑢𝑛−2
𝑢𝑛−1

=
3
4
𝑣𝑛.

Ainsi la suite (𝑣𝑛)𝑛∈ℕ est une suite géométrique de raison 3
4 et de premier

terme 2.
4. On en déduit la formule explicite de 𝑣𝑛 :

∀𝑛 ∈ℕ, 𝑣𝑛 = 2(
3
4
)
𝑛
.

En remarquant que : 𝑢𝑛(𝑣𝑛−1) = 𝑣𝑛−2 et que la suite (𝑣𝑛)𝑛∈ℕ était toujours
différente de 1, on obtient que :

∀𝑛 ∈ℕ, 𝑢𝑛 =
𝑣𝑛−2
𝑣𝑛−1

⟹ 𝑢𝑛 =
2( 34)

𝑛−2
2( 34)𝑛−1

.
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Solution (exercice 4) [Énoncé] Attention, (𝑢𝑛) n’est pas du tout
arithmético-géométrique.
1. Soit 𝑛 ∈ℕ. Alors :

𝑣𝑛+1 =√2.𝑢𝑛+1−(𝑛+1)

=√2(
𝑢𝑛
2
+

𝑛

2√2
+

1
√2

)−(𝑛+1)

=
𝑢𝑛
√2

+
𝑛
2
+1−𝑛−1

=
𝑣𝑛+𝑛

√22
+
𝑛
2
−𝑛

=
𝑣𝑛
2
+𝑛−𝑛 =

1
2
𝑣𝑛.

Donc (𝑣𝑛) est géométrique de raison 1
2 , et donc 𝑣𝑛 =

𝑣0
2𝑛 =

2√2
3
2𝑛 = √2

3⋅2𝑛−1 pour
tout 𝑛 ∈ℕ. Ainsi, on déduit que

∀𝑛 ∈ℕ, 𝑢𝑛 =
1

3 ⋅ 2𝑛−1
+

𝑛
√2

.

2. S𝑛 =
𝑛
∑
𝑖=0

(
1

3 ⋅ 2𝑖−1
+

𝑖
√2

)

=
2
3

𝑛
∑
𝑖=0

1
2𝑖
+

1
√2

𝑛(𝑛+1)
2

=
2
3
1− 1

2𝑛+1
1
2

+
1
√2

𝑛(𝑛+1)
2

=
4
3
(1−

1
2𝑛+1

)+
1
√2

𝑛(𝑛+1)
2

.

Solution (exercice 5) [Énoncé]

1. On a Q0 = 1.8 puis d’après l’énoncé : pour tout 𝑛 ∈ ℕ, Q𝑛+1 = 0.7Q𝑛+1.8 .
C’est donc une suite arithmético-géométrique.

2. def Q(n):

    Q = 1.8

    for _ in range(1, n+1):

        Q = 0.7*Q + 1.8

    return Q

>>> Q(5)

5.294106

3. On cherche ℓ telle que ℓ = 0.7ℓ+1.8. On trouve après résolution ℓ = 1.8
0.3 = 6 .

Alors faisant la différence entre les relationQ𝑛+1 = 0.7Q𝑛+1.8,ℓ = 0.7ℓ+1.8,
pour 𝑛 ∈ ℕ, on obtient que Q𝑛+1 −ℓ = 0.7(Q𝑛 −ℓ) donc (Q𝑛 −ℓ) est géomé-
trique de raison 0.7, donc :

∀𝑛 ∈ℕ, Q𝑛−6 = 0.7𝑛(Q0−6) ⟺ Q𝑛 = 6(1−0.7𝑛) .
4. TERMINALPython

def seuil(eps):

    n = 0

    Q = 1.8

    while abs(Q-6) > eps:

        Q = 0.7*Q + 1.8

        n += 1

    return n

>>> n = seuil(10**(-3))

>>> n

24

>>> Q(n) # c'est bien une valeur approchée de 6 à la \

↪ précision souhaitée

5.9991953588282

Solution (exercice 6) [Énoncé]

1. D’après l’énoncé : P0 = 5000 et pour tout 𝑛 ∈ℕ, P𝑛+1 = 0.96P𝑛+300 .
2. On cherche ℓ telle que ℓ = 0.96ℓ+300. On trouve après résolution ℓ = 300

0.04 =
7500 . Alors faisant la différence entre les relation P𝑛+1 = 0.96P𝑛 + 300,ℓ =
0.96ℓ+300, pour 𝑛 ∈ℕ, on obtient que P𝑛+1−ℓ = 0.96(P𝑛−ℓ) donc (P𝑛−ℓ)
est géométrique de raison 0.06, donc :

∀𝑛 ∈ℕ, P𝑛−7500 = 0.96𝑛(5000−7500) ⟺ P𝑛 = 7500−2600.(0.96)𝑛 .
Cette suite converge vers 7500 car |0.96| < 1.

3. TERMINALPython
def P(n):

    P = 5000

    for _ in range(1, n+1):

        P = 0.96*P + 300

    return P

plt.plot([P(n) for n in range(31)], 'bo')

plt.plot([0, 30], [6000, 6000], 'r:')
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0 5 10 15 20 25 30

5000

5250

5500

5750

6000

6250

6500

6750

Par lecture graphique, on déduit qu’il faut attendre l’année 2013 environ .
4. C’est une structure typique d’utilisation de boucle while.

def seuil():

    P = 5000

    n = 0

    while P < 6000:

        P = 0.96*P + 300

        n += 1

    return n

>>> seuil()

13

Solution (exercice 7) [Énoncé] Le taux d’évolution est négatif, puisqu’il y a
disparition comme l’indique l’énoncé, et donc

[A]′ (𝑡)
[A](𝑡)

= −𝑘 ⋅ [A](𝑡).

On peut aussi reformuler sans utiliser la définition du taux, en faisant un bilan
de concentration entre 𝑡 et 𝑡 +ℎ, 𝑡,ℎ ⩾ 0 :

[A](𝑡 +ℎ) = [A](𝑡)−ℎ(𝑘 ⋅ [A](𝑡)) ⋅ [A](𝑡),
donc en faisant ℎ⟶0, on retrouve que [A] est solution de

𝑦′ =−𝑘𝑦2 .
Supposons que la concentration ne s’annule pas, on obtient :

∀𝑡 ⩾ 0, ∫
𝑡

0
−
[A]′ (𝑢)
[A]2 (𝑢)

d𝑢 = ∫
𝑡

0
𝑘d𝑢

⟺[
1

[A](𝑢)
]
𝑡

0
=𝑘[𝑢]𝑡0

⟺
1

[A](𝑡)
−

1
[A](0)

= 𝑘𝑡.

Donc : [A](𝑡) =
1

𝑘𝑡 + 1
[A](0)

.

Solution (exercice 8) [Énoncé]

1. La vitesse de propagation étant la dérivée, nous avons d’après l’énoncé pour
une certaine constante 𝑘 ∈ ℝ :

∀𝑡 ∈ ℝ, 𝑦′(𝑡) = 𝑘𝑦(𝑡)(1−𝑦(𝑡)) .

2. Par quotient, 𝑧 est dérivable et 𝑧′ = −𝑦′

𝑦2 donc en divisant l’équation différen-
tielle précédente par 𝑦2, on déduit :

−𝑧′ =𝑘
1−𝑦
𝑦

= 𝑘(𝑧−1).

Donc 𝑧 vérifie 𝑧′ =−𝑘𝑧+𝑘 .
3. On cherche une solution particulière sous la forme d’une constante, on

trouve que la constante 1 est solution, donc l’ensemble des solutions est :
{𝑡 ∈ ℝ+ ⟼Ke−𝑘𝑡+1 |K ∈ ℝ} .

Donc 𝑦 est de la forme : 𝑦 ∶ 𝑡 ∈ ℝ+ ⟼ 1
Ke−𝑘𝑡+1 .

4. On peut imaginer que 8 heures correspond à l’origine de l’échelle des temps
de sorte que l’on cherche𝑦 vérifiant𝑦(0) = 80 cequi est équivalent àK+1 = 1

80
d’où K=− 79

80 . Ainsi :

∀𝑡 ∈ ℝ+, 𝑦(𝑡) =
1

1− 79
80e−𝑘𝑡

.

On a comme condition : 1
1− 79

80 e−4𝑘
= 500 ce qui permet de fixer 𝑘 :

1−
79
80
e−4𝑘 =

1
500

⟺
499×80
500×79

= e−4𝑘 ⟺ e−4𝑘 =
1996
1975

⟺𝑘=−
1
4
ln(

1996
1975

) .

On cherche alors 𝑡 de sorte que
1

1− 79
80e−𝑘𝑡

= 900 ⟺ 1−
79
80
e−𝑘𝑡 =

1
900

⟺
899
900

=
79
80
e−𝑘𝑡.

On trouve alors : 𝑡 = − 1
𝑘 ln(

3596
3555

)   ≈ 4.41 heures.

Solution (exercice 9) [Énoncé]

1. On rappelle qu’un débit est homogène à un volume sur un temps. Pour
mettre en équation le problème, on fait un bilan de volume d’eau entre deux
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temps très proches. Soient 𝑡 ∈ ℝ+,ℎ ∈ ℝ+. D’après l’énoncé, on a :
V(𝑡 +ℎ) = V(𝑡)+volume d’eau ajouté−volume sortant

= V(𝑡)+d×ℎ−d𝑓ℎ
= V(𝑡)+d×ℎ−αρ𝑔𝑧(𝑡)ℎ

= V(𝑡)+d×ℎ−
αρ𝑔
𝑎𝑏

V(𝑡)ℎ.
V(𝑡) = 𝑎𝑏𝑧(𝑡)

En passant V(𝑡) à gauche, puis en divisant par ℎ et en faisant ℎ ⟶ 0, on
trouve finalement que V est solution de :

𝑦′ =−
αρ𝑔
𝑎𝑏

𝑦+d .

Dans la suite on notera : 1
τ = αρ𝑔

𝑎𝑏 . Le second membre est ici constant, on
peut donc chercher une solution particulière sous forme d’une constante,
τd convient. On déduit alors que V est de la forme

∀𝑡 ∈ ℝ+, V(𝑡) = Ke−𝑡/τ+(τ𝑑),
avec K ∈ ℝ. Or, V(0) = 0 donc K+τ𝑑 = 0 et :

∀𝑡 ∈ ℝ+, V(𝑡) = τ𝑑(1−e−𝑡/τ) .

Ainsi, par règle usuelle sur les limites, on déduit que lim
𝑡⟶∞

V(𝑡) = τ𝑑 = V𝑒𝑞 .
2. Si la baignoire a un volume V (que l’on suppose inférieur au volume d’équi-

libre), on doit résoudre en 𝑡 : V(𝑡) = V, c’est-à-dire :

τ𝑑(1−e−𝑡/τ) = V ⟺ e−𝑡/τ = 1−
V
τ𝑑

⟺ 𝑡 =−τ ln(1−
V
τ𝑑

) .
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Correction Devoir-maisonLaptop-House (Chapitre (AN) 3)

Solution (exercice 10) [Énoncé]

1. [Positivité] On cherche déjà à prouver que pour tout 𝑡 ⩾ 0, P(𝑡) ∈ ]0,κ[.
On suppose que P est une solution, et on note 𝑓(𝑡) = 𝑟P(𝑡)(1− P(𝑡)

κ ).
1.1) la fonction𝑓 est dérivable surℝ+ en tant que sommeet produit de fonc-

tions dérivables. De plus, pour tout 𝑡 ⩾ 0,

𝑓′(𝑡) = 𝑟P′(𝑡)(1−
P(𝑡)
κ

)+𝑟P(𝑡)(−
1
κ
P′(𝑡))

= 𝑟2P(𝑡)(1−
P(𝑡)
κ

)
2

−
𝑟2

κ
P(𝑡)(1−

P(𝑡)
κ

)

= 𝑟P(𝑡)(1−
P(𝑡)
κ

)[𝑟(1−
P(𝑡)
κ

)−
𝑟
κ
]

= 𝑓(𝑡)𝑔(𝑡),

où𝑔(𝑡) = 𝑟(1− P(𝑡)
κ )− 𝑟

κ pour tout 𝑡 ⩾ 0. Constatons que𝑔 est une fonc-
tion continue, donc 𝑓 est solution de 𝑦′ = 𝑔(𝑡)𝑦 , une équation diffé-
rentielle linéaire homogène du premier ordre à coefficients continus.

1.2) On a

𝑓(0) = 𝑟P0 (1−
P0
κ
) > 0

car P0
κ ∈ ]0,1[ par hypothèse. Donc 𝑓(0) ≠ 0 , par ailleurs, d’après la

questionprécédente, si onnoteG la primitive de𝑔qui s’annule en zéro,
alors

𝑓(𝑡) = 𝑓(0) ⋅eG(𝑡),
or eG(𝑡) ≠ 0 pour tout 𝑡 donc 𝑓(𝑡) ≠ 0 pour tout 𝑡 ⩾ 0 .

1.3) NotonsQ= 𝑟X(1− X
κ ), c’est un polynômede degré deux, de graphe une

parabole orientée vers le bas, et de racines 0,κ.
𝑓 =Q∘P.

On sait que P(0) ∈]0,κ[, donc la valeur initiale de P se situe strictement
entre les racines de Q et 𝑓(0) > 0 (le polynôme Q est positif entre ses
racines). Si en un certain 𝑡, P(𝑡) ∉]0,  κ[ alors 𝑓(𝑡) < 0. Puisque 𝑓 est
continue, d’après le théorème des valeurs intermédiaires, il existerait 𝑡
tel que 𝑓(𝑡) = 0— contradiction. Donc pour tout 𝑡 ⩾ 0, P(𝑡) ∈ ]0,κ[.

2. [Résolution]

2.1) Après calculs, on trouve :

∀𝑥 ∈ ℝ∖{0,κ},
κ

𝑥(κ−𝑥)
=
1
𝑥
+

1
κ−𝑥

.

2.2) On sait que 𝑓 ne s’annule pas, donc on peut commencer par diviser de
chaque côté l’équation différentielle par 𝑓. On résout alors :

P′(𝑡)

𝑟P(𝑡)(1− P(𝑡)
κ )

=
P′(𝑡)
𝑟

κ
P(𝑡)(κ−P(𝑡))

= 1.

D’après la question précédente, elle est équivalente à
P′(𝑡)
𝑟

(
1

P(𝑡)
+

1
κ−P(𝑡)

) = 1,

ou encore
1
𝑟
(
P′(𝑡)
P(𝑡)

−
−P′(𝑡)
κ−P(𝑡)

) = 1.

‘ En primitivant de chaque côté, on déduit l’existence d’une constante
K ∈ ℝ satisfaisant

∀𝑡 ⩾ 0,
1
𝑟
(ln |P(𝑡)|− ln |κ−P(𝑡)|) = 𝑡 +K.

Par propriété du log, en passant à l’exponentielle, et en utilisant le fait
que P(𝑡) ∈]0,κ[, on obtient finalement

∀𝑡 ⩾ 0,
P(𝑡)

κ−P(𝑡)
= e𝑟(𝑡+K) ⟺ P(𝑡) =

κe𝑟(𝑡+K)

1+e𝑟(𝑡+K)
.
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