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Suites recurrentes usuelles &

Chapitre (AN) 3

- L L3
Modelisation
. 3 n SUITES RECURRENTES USUELLES
1 Suites recurrentes usuelles..... Résumé & Plan
2 Modélisation de dynamiques Lobjectif de ce chapitre est de mo-
CONtINUES....cuviervnnnerennnens déliser al'aide de suites numériques Cette section est composée de révisions de lycée (suites arithmétiques et géomé-
3 Modélisation de dynamiques ou d’équations différentielles divers triques), et de nouveautés (suites arithmético-géométriques et récurrentes linéaires
discrétes......oovevvvuiiinnnnnns contextes de la vie réelle présen- d'ordre 2).
4 Exercices tant une dynamique au cours du
I say, that the power of temps. La théorie des équations dif-
population is indefinitely fgrentlelles a été vue d\ans ’le Cha n Geéneralites
greater than the power in the pitre (AN) 2, il convient a présent de
earth to produce subsistence faire quelques compléments sur les Commencons par définir I'objet suite.
; suites récurrentes usuelles qui nous
for man. PO’? ulatior, y)hen serviront. — Définition 1| Suite réelle
unchecked, increases in a ® Une suite réelle est une application de [n,, +oo[, pour un certain n, € N, de
geometrical ratio. Subsistence et ' [ng, +oo] — R
increases only in an alorme: U n — u,.

arithmetical ratio.

. o Lasuite u: [ng, +oo[— R est notée (u,) 5, Ou encore (U, , Uy 41, ---)-
— Thomas. R. MALTHUS

¢ Lavaleur u, estappeléle premier terme de la suite.
o Pour tout entier n = n,, u,, est le terme de rang n de la suite.
a3 l'origine de I'un des premiers modgles de dyna- ® Une suite réelle finie est une application de [n,, n,], pour un certain n, € N

mique des populations ) ny, | — R
E bop et n, = n, entier, dans R, de la forme : u [0, m]

On la note
n — U,.
généralement (u,, Zl:no ou encore (U, ..., Uy, )-

® Les énoncés importants (hors définitions) sont indiqués par un V9.

® Les énoncés et faits a la limite du programme, mais trés classiques parfois, seront
indiqués par le logo [H.P] . Si vous souhaitez les utiliser a un concours, il faut donc
en connaitre la preuve ou la méthode mise en jeu. Ils doivent étre considérés comme

La plupart du temps, nous aurons n, = 0 ou éventuellement n, = 1.

9 Notation Abusde...

un exercice important. Parfois on notera seulement (u,,) aulieude (u,,) —_ Cela signifiera donc impli-
® Les preuves déja tapées sont généralement des démonstrations non exigibles en citement que 'on considere le plus petit entier 7, telle que 'expression u,, soit
BCPST1, qui peuvent étre lues uniquement par les curieuses et curieux. Nous n'en définie pour tout n = n.

parlerons pas en cours.
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Notation

Lensemble des suites définies a partir de n, est RI"+°l notation déja rencon-
trée pour les applications. On rappelle queEF désigne l'ensemble des applications
d'un ensembleF dans un ensembleE.

o Attention

De-méme qu'il ne faut pas confondre une fonction f et 'image f(x) de x par f,
on prendra garde de bien distinguer la suite («,,) de son terme général d’'ordre
n noté lui u,, sans parenthése.

Nous arrétons la les généralités, le reste sera développé dans le Chapitre (AN) 4 dédié
aux suites.

n Suites récurrentes

121 Geéneralites

— Définition 2 | Suites récurrentes
Soit p € N*. Onditquelasuite (u, ), estune suiterécurrente dordre p sichaque

terme de la suite ne dépend que des p termes précédents, c’est-a-dire si elle vé-
rifie une relation de récurrence de la forme :

VReN, u,,,= E(un, Uyt ...,u,H,,_l)

ol E(un,un+1,...,un+p_1) est une expression dépendant de u,,u,.,,... et

un+p—1'

Lordre est donc le nombre de termes consécutifs de la suite apparaissant

Note . .
dans la relation, moins un.

Exemple 1

® Une suite (1), vérifiant pour tout n €N, u,,, 5 =2u,,, +
récurrente d’ordre 3.

® Une suite (u,,),,cy vérifiant pour tout n € N, u,,5 = In(u,,,) — Uy, + U5 est
une suite récurrente d’ordre 5.

o Il faut toutefois se méfier: unesuite (u,,) . Vérifiant pourtout n € N*, u,,,, =
u,+u,_;,estunesuite récurrente d'ordre 2. En effet, larelation de récurrence
peutseréecrire: Vn=2, U,.p=U,. +U,.

u .
;’“ est une suite
n

Une suite récurrente d’ordre p est donc entierement déterminée par :

1. son équation de récurrence,
2. ses conditions initiales : la donnée de ses p premiers termes.

Ainsi, laméme équation de récurrence avec des conditions initiales différentes don-
nera deux suites a priori différentes.

Lorsque 'on étudiera une suite récurrente, on se posera principalement les deux
questions suivantes :

1. La suite admet-elle une limite? Ce point sera étudié dans le Chapitre (AN) 4.

2. Peut-on obtenir une écriture explicite du terme général d'une telle suite ? Ce pro-
bleme est généralement difficile lorsque 'on sort des cas connus (principalement
suites arithmétiques, géométriques et arithmético-géométriques). Par exemple,
la formule explicite de la suite définie par u,,,; = 2u, + 1 est:

vneN, u,=(u,+1)2"-1.

1.2.2 Suites arithmeétiques
Définition 3 | Suite arithmétique
On appelle suite arithmétique de raison r € R toute suite (u,) € RN telle que :
VneN,

Uy = Uy +T.

On rappelle que 'on a alors :
VnelN, VpeN,

formule que I'on peut démontrer par récurrence.

U, =u,+(n-pr,

+r +r +r +r +r

u up+1 up+2 Ltp+3 I un

Théoréme 1| Somme arithmétique de raison a
Soit a € R et (u,,) une suite arithmétique de raison r. Alors :

n U, +u
Y(n,p) eN?, telque: n=p, Zuk:%x(n—l?+l).
k=p

Preuve

Donc:

7

Soit (n,p) e N*,n = p.Onadéavuque: Vke[p,n], wu=u,+(k-p)r.
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Exemple2 Calculerlasomme: S=2+7+12+---+47.
® Introduisons la suite arithmétique u définie par :

Ug=2, et: VkeN, up,;=u,+5.
Alors: VkeN, u; =2+5k.Ecrivons la somme a l'aide de cette suite :
¢
»

C’est donc bien une somme de termes de suite arithmétique.
® Calcul de la somme:

4

Nous pouvons retenir une formule générale de la maniere suivante :

premier terme + dernier terme

) suite arithmétique = nb termes x 2

EXEMPLE : SUBDIVISION D'UN INTERVALLE. Précisons enfin une notion utile
dans plusieurs futurs chapitres (tracés de fonctions en info, intégration en Maths
etc.).

— Définition 4 | Subdivision (réguliere)
Soit [a, b] un intervalle, avec a < b deux réels et n un entier non nul. On appelle
subsdivision de [a, b] en n + 1 points I'unique suite arithmétique (x;);_, telle

ue: x():a
que: x, = b.

— Proposition 1| Expression d’'une subdivision réguliere
Soit [a, b] un intervalle, avec a < b deux réels et n un entier non nul. Alors la

suite (x;)}_, subdivisant [a, b] en n + 1 points a pour expression :
b-a

Vke[0,n], x.=a+k

Voici le dessin typique a avoir en téte.

Xo X1 X2 Xn

Fy & & b \

hd hd 7

a « b
h= b—a

SUBDIVISION REGULIERE D'UN INTERVALLE

On a donc sur ce dessin : n + 1 points, et n intervalles de longueur A.

Preuve

4

Exemple3 Déterminerl'expression de la subdivision réguliere de [-1,3] en n+1
points.

4

La commande np. linspace permet de renvoyer un tableau des valeurs de x.
>>> g = -1

>>> p = 3

>>>n = 3

>>> np.linspace(-1, 3, n+l) # 4 points

array([-1. , 0.33333333, 1.06660667, 3. 1)

1.2.3 Suites geomeétriques

Définition 5 | Suite géométrique
On appelle suite géométrique de raison q € R toute suite (u,,) telle que :

VneN, u,,,=4qgu,.

On rappelle que 'on a alors :
VnelN, peN,
formule que 'on peut démontrer par récurrence.

= n—
U, = upq p’
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xq xq xq

7Y YT YT Y Y

Uy Uy Ug

xq xq xq

up up+1 up+2

Remarque 1 (Suite « sous »-géométrique)

suites (u,,) vérifiant, pour g € R* :
YneN, u,.;<qu,.

xq

Uy

xq

7T YT YT YT Y

up+3

On montre alors facilement par récurrence que :

vrneN, u,<q"u,.

Théoréme 2| Somme géométrique de raison g

Parfois nous rencontrerons des

Soit g € Ret (u,,) une suite géométrique de raison g. Alors :

L u
V(n,p)eN? telque: Y wu=4{ "
k=p

u,(n-p+1)

1_qn—p+1

I-q

siqg+1,
sig=1.

Preuve  Soit (n,p)eN?, n=p.Onadéjavuque: Vke][p,n],

4

Nous pouvons retenir une formule générale de la maniere suivante :

- k- )
up=u,xq" 7.Donc:

1— raisonnb termes
Y suite géométrique = premier terme x -
1 —raison
Exemple 4 Calculerlasomme: S=3-9+27—---—729. (indication:729=3%)

® Introduisons la suite géométrique u définie par :
uy=3, et: VkeN, up,;=-3u.

Alors: VkeN, u; =3x(-3)*. Ecrivonsla somme al'aide de cette suite :

4

C’est donc bien une somme de termes de suite géométrique.
® Calcul de la somme:

4

1.2.4  Suites arithmético-geéomeétriques Introduisons 2 présent un nou-
veau type de suites : les suites arithmético-géométriques, qui sont en quelque sorte
un mélange des deux suites précédentes.

Définition 6 | Suite arithmético-géométrique
On appelle suite arithmético-géométrique toute suite (u,) pour laquelle il existe
geRetreRtelsque:

VneN, u,,=qu,+r.

Lexpression du terme général en fonction de n € N semble étre ici moins évidente.
En revanche, nous allons pouvoir facilement nous ramener a quelque chose de géo-
métrique. En effet, supposons tout d'abord que g # 1 (sinon la suite est simplement
arithmétique) et fixons-nous ¢ € R de sorte que ¢ = g¢ +r, c’'est-a-dire £ = ﬁ, alors
pour toutn € N :
Uper = qU,+T
{ n+g _ qgr_li_r = Uy~ C=qu,-O)+yf-f=q(u,-10).
Et 13, on a donc fait apparaitre (v,),, = (u,, — ¢),, qui est une suite géométrique.

Méthode (AN) 31 (Trouver I'expression explicite d’'une suite vérifiant u,,,, =

qu,+1,q+1)

1. Chercher ¢ telque ¢ = g +r.

2. Montrer que la suite (u,, — ¢) est géométrique de raison ¢, puis en déduire
I'expression de (u,, — ¢) en fonction de n € N.

3. En déduire I'expression de (u,,) en fonction de n € N.
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Remarque 2 (Analogie avec les équations différentielles) Mais d’ou vient
cette idée?
® Considérons!'équation différentielle y’ = a(t)y+b(t), et y, unesolution par-

ticuliere. Alors nous avions constaté que :

{ ¥ a(t)y +b(r) — (y-y,) = a(t)(y—y,)+ béeT - bitT,

yp = a(t)y,+b(1)
c'est-a-dire que: y —y, est solution d’une équation différentielle linéaire
homogeéne du ler ordre, et donc que y s’exprime comme somme d’une solu-
tion particuliere et d'une solution de ’homogene.

® Considérons une suite arithmético-géométrique, et ¢ comme précédem-

ment. Alors nous avons constaté que :
u = qu,+r
{ vy 2 = == q =0+ -f

ql +r
c'est-a-dire que: u— ¥ est une suite géométrique, et donc que u s’exprime
comme somme de ¢ et d’'une suite géométrique.
® Laméme idée sous-jacente apparait : en cherchant une solution particuliere
puis en faisant la différence, on élimine le « second membre ».

Mettons en oeuvre cette méthode sur des exemples.

Exemple 5 Soit (u,,) la suite définie par u, =1 et:

4

VReN, Uy, =—3u,+1.

Exemple 6 Soit (u,,) la suite définie paru, =let: VneN, u,,, =3u,+2.
n
Déterminer une expression explicite en fonctionde nde: ) uy.
k=0

4

1.2.5 Suites récurrentes linéaires d’ordre 2 On ne s'intéresse ici qu'au
cas des coefficients constants.

— Définition 7| Suite récurrente linéaire d’ordre 2
On appelle suite récurrente linéaire homogene dordre deux a coefficients

constants sur R toute suite (u,) pour laquelle il existe a, b, ¢ € R tels que :

VneN,

On appelle équation caractéristique associée a (u,,) I'équation
ar®*+br+c=0.

au,.,+bu,,+cu,=0.

(EC)

Remarque 3

® Une suite récurrente linéaire d'ordre 2 généralise en fait les suites géomé-
triques; en effet, une suite géométrique de raison g vérifie une récurrence
linéaire d'ordre 2 aveca =0,b=1,c = —¢.

® En revanche, une suite arithmétique n'est pas une suite récurrente linéaire
d’ordre 2, sauf si sa raison est nulle.

Theoréme 3 | Expression explicite
Soient (u,,) une suite récurrente linéaire homogene d’ordre deux a coefficients

constants et (EC) son équation caractéristique. On suppose que a # 0 ((EC) est
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v/

alors bien du second degré) et on note A le discriminant de (EC).
® SiA >0, alors (EC) possede deux racines réelles distinctes o et p, et :

3(A,B)eR?, VneN, u,=Aa"+Bp".
® Si A =0, alors (EC) possede une racine double a € R, et :
3(A,B)eR?, VneN, u,=(An+B)a".
® Si A <0, alors (EC) possede deux racines distinctes complexes conjuguées o
et@. On pose p = |a| > 0 et B un argument de a, si bien que o = pe’®. Alors :
3(A,B)eR?, VneN, u,=p"(Acos(nd)+Bsin(nd)).

o

Attention

Attention aux confusions avec le résultat analogue sur les équations différen-
tielles dans le cas A < 0: il fait appel a la forme algébrique des racines pour les
équations différentielles, et la forme exponentielle pour les suites.

Preuve  Par exemple dans le cas A > 0, par récurrence double sur n € N. Les valeurs de
Uy, u, étant fixées, on choisit A, B de sorte que :

A+B = u,
Aa+Bp = u,.

ATaide d'opérations élémentaires simples, par exemple L, — L,—aL,, on voit que ce systéme
admet bien une unique solution (A, B) € R? puisque o # f.

7

On vérifie alors, par récurrence double, que les valeurs choisies précédemment
conviennent.

Initialisation. Déja faite.
Hérédité. Supposonsque u, = Aa" +Bp" et u,,; = Aa™*' +Bp™*! pour n € N fixé. Montrons
que: u,,, =Aa"t? +Bp"*2

7

Résumé Solutions d’'une EDL, et SRL, a coefficients constants

Onnote: (EC) ar’+br+c=0.

Suite récurrente
AUpyp + bun+1 +cu,

Equation différentielle

ay"+by' +cy=0

y(t) = Ae*’ +BeP! u, =Aua" +Bp"
A>0
Racines (EC): deuxracines réelles o #
Ao y(t) = (At + b)e™ u, =(An+B)a"
- Racines (EC): une racine double réelle a
Azo y(1) = e*(Acos(pt) +Bsin(pt)) | u, =p" (Acos(n0)+Bsin(nb))
B Racines (EC) . deuxracines complexes conjuguées a +iff = peJ—rie

Exemple7 Déterminer une expression de (u,,) en fonction de n définie par u, =
1,uy=-1,et: 2u,,,=3u,,—Uu,.

4

Exemple 8 Déterminer les suites 2-périodiques.
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Exemple 9 Déterminer une expression de (v,) en fonction de n définie par y, =

Exemple 11 On considere la suite (u,,) définie par :
1,yy=0,et: VrneN, v,,,=4v,,4 —4v,.

p

u, est bien définie.

7
Exemple 10 Déterminer une expression de (w,) en fonction de n définie par
Wo=1,wy=1et: VneN, w,,,—2w,,;+4w,=0. ] ) )
p; 2. Déterminer son expression en fonction de n € N.
)
4
»'

P Up=1 u, =2, et: vnz=0, uU,m=\U,1lUp,-
1. Justifier que la suite est bien définie, en montrant que :

VnenN,

u,>0et
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Exemple 12 Déterminer 'ensemble des suites (a,,) et (b,,) vérifiant :
bn+1 = 2an'

4

n MODELISATION DE DYNAMIQUES CONTINUES

Linterprétation physique du nombre dérivé est une vitesse instantanée. Il sera donc
possible de décrire des phénomeénes d’évolution continue a I'aide d’équations diffé-
rentielles. Nous nous intéresserons également dans la suite aux modéles décrivant
des dynamiques de population dans un contexte continu (le cas discret sera quant
a lui étudié dans la section suivante).

m Taux d’évolution et dynamiques linéaires

Lorsqu’une grandeur continue y (une fonction dérivable) varie, on cherche a quan-
tifier souvent la variation de cette grandeur entre deux instants. Pour le signe, i.e. sa-
voir si elle croit ou décroit, on dispose déja d’outils : le calcul de y’ pour les fonctions.
On pourrait d’autre part s’intéresser plus précisément a 'amplitude de la variation
en un temps donné.

Si t, h sont deux réels positifs, alors la variation de y entre les temps t et h est définie
comme y(t + h) — h(t). Mais plutét que de regarder des variations, on peut aussi se
demander quel estle pourcentage (ou taux) d’augmentation/diminution par rapport
a une valeur antérieur — c’est le principe par exemple des livrets bancaires. En effet,
si [¢,t + h] est un intervalle de temps correspondant a 1 année, et y désigne votre
capital a un instant ¢t rémunéré a un taux T, alors :

ye+h)—yt)

y(+h)=y(t)+hty(t) < .

Ty(1).

!

Sil'on fait tendre h vers zéro, on obtient: |T= Y .
Yy

— Définition 8 | Taux d’évolution continu
Soit y une fonction dérivable.

® Si e R*, alors on définit le taux d’évolution de y en t noté t,(y) par:
() = '@ _ o, Y+t —y(@)
y(@) hr—o  hxy(y)
Lorsque y décrit une population d’individus, on parle de taux de reproduction
(resp. mortalité) en t si1,(y) =0 (resp. < 0).
® On dit que y suit une évolution linéaire lorsque le taux d’évolution est
constant au cours du temps.

Exemple 13 Dans cet exemple, on considere y : R — R une fonction dérivable.
Quelles sont les fonctions y de taux d’évolution constant égal a T € R? Analysez
la limite.

4
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m Modélisation

Lutilisation de suites numériques d'une part, et de fonctions d’autre part permet de
modéliser de maniere tres fidele des systemes présentant une dynamique discrete
ou continue simple.

Soit V une suite ou une fonction.
® [Discret] bilandeVentre netn+1 = relation de récurrence sur (v,,).
® [Continu] bilan de Ventre t et t + h = équation différentielle sur V.

Faisons ce travail de bilan de grandeur, dans plusieurs contextes, pour le moment
uniquement continus (avec des fonctions).

Exemple 14 (Modélisation) Modéliser les situations ci-apres a l'aide d'une

fonction, et déterminer une expression de ladite fonction.

1. [Cinétique chimique d’ordre 1] On considére une réaction chimique no-
tée A — B, on suppose que le réactif A disparait entre deux instants tres
proches t,t + h de manieére proportionnelle au temps écoulé et a la concen-
tration [A] en réactif A présent au début de I'intervalle de temps.

R4

2. [Evolution radioactive] On considére une population d’atomes de car-
bone 14. On suppose qu'entre deux instants trés proches ¢, + h une pro-
portion p; € R* d’atomes se désintegrent, et une proportion tp, € R* se crée,
proportionnellement a la longueur s de I'intervalle de temps.

R4

3. [Compétition entre deux populations] Une population d’adorables pe-
tits lapins « fonction y » se reproduit selon un taux constant égal a 1, et une
population de renards « fonction z » se reproduit selon un taux constant égal
a % mais chassent les lapins, selon le modele suivant : il y a diminution du
nombre de lapins entre deux temps égale au produit du nombre de renards
par le nombre de lapins et par la longueur de I'intervalle de temps. On sup-
pose qUu’initialement il y a 5 lapins et 5 renards.

4
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m Dynamique (continue) des populations

MODELE MALTHUSIEN : EVOLUTION LIBRE. Il est largement considéré que c'est
au crédit de Thomas. R. MALTHUS que 'on accorde la paternité de 'un des premiers
modeles mathématiques de croissance de population, qui publie (anonymement,
dans sa premiére version) son célebre Essai sur le principe de population en 1798.

Selon MArTHUS, cf. la citation pré-
sentée en début de chapitre, la
croissance d'une population aurait
un ratio géométrique, a contrario de
la croissance des ressources qui serait
arithmétique. MALTHUS ne vérifia pas
rigoureusement cette théorie de rap-
port de croissances, prenant comme
argument d’autorité 1'évidence de
ses propos. MALTHUS estime que la
population mondiale double toutes
les 25 années - fatalement, la popula-
tion tendra rapidement a s’accroitre
au-dela des moyens de subsistance,

Population

Quantité . o
(Croissance géométrique)

Catastrophe
malthusienne

Ressources

(croissance arithmétique)

Temps

Représentation du modéle de MALTHUS.
Lorsque la quantité de population (aug-
mentation géométrique) dépasse celle
engendrant selon lui pléthores de des ressources (augmentation arithmé-

conséquences plutot dévastatrices tique), la catastrophe malthusienne s'en-

(guerres, famines, épidémies, ...). clenche.

Lappréhension d’'une telle catastrophe démographique associée a une préconisa-
tion de lalimitation du nombre de naissances porte désormais le nom de malthusia-
nisme. Notons que, comme le souligne I'anthropologue C. MEILASSOUX, cette peur
d’'une croissance excessive au déla des moyens de subistances est complétement ir-
réaliste : en réalité, comment une population pourrait-elle continuer a croitre ex-
ponentiellement en ayant épuisé les ressources nécessaires a son développement?
MaArLrHUS le reconnait d’ailleurs lui-méme (traduction en Frangais) : «Je sais bien,
que les millions d’habitants en exces dont j'ai parlé n’existeront jamais ». Mais cette
pensée malthusienne eut tout de méme des conséquences importantes, comme par

exemple la politique de I'enfant unique en Chine. Présentons a présent une descrip-
tion mathématique.

On suppose que la population grandit en se multipliant par un nombre fixe { appelé
taux de reproduction ou taux de fertilité, et meurt selon un taux de mortalité u > 0
supposés constant ici. Ainsi, si P désigne le cardinal ' de la population.

BILAN DE POPULATION MALTHUSIEN CONTINU. »*

On débouche alors sur la définition ci-apres.

— Définition 9 | Modéle de MALTHUS
On dit qu'une fonction P suit un modeéle malthusien de taux P, |\, condition ini-

tialeP, € R si P est dérivable en ¢ et vérifie :

P(t)=P-pP(t) (£=0), P(0)=P,. (Malthus)
On appelle P le taux de natalité, p le taux de mortalité. Le taux d’évolution est
alors B — Y. (conséquence directe de la définition!)

De manieére équivalente, cela si-
gnifie que P(t) = Pye® W’ pour
tout ¢ = 0. Ici nous ne suppo-
sons donc pas 'existence de pré-
dateurs, et que les ressources na-
turelles sont en quantité illimité.
Ainsi la population a donc la pos-
sibilité de se développer indéfini-
ment.

P(t)
Casfp > p

P, Casfp =p

Casp>\[?

Ce modele tres simpliste met en évidence un point trés important : I'évolution d'une
population est dictée par la balance entre taux de fertilité et taux de mortalité, que
ce soit dans le cas discret ou le cas continu.

1. abus de vocabulaire, puisque P n'a aucune raison d’étre un entier positif
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MODELE LOGISTIQUE DE VERHULST : EVOLUTION SOUS CAPACITE DE MILIEU.
En 1838, Pierre-Francois VERHULST répond a MALTHUS en proposant un modele lo-
gistique de dynamique de population. A I'instar du modele de MaLTHUS, il suppose
gu'une population sans limitation de ressources croit de maniere exponentielle mais
que la croissance de la population est freinée par sa propre dynamique et par la li-
mitation des ressources du milieu. Dans sa note, VERHULST suppose la résistance a
la croissance d’'une population proportionnelle au carré de la vitesse avec laquelle la
population tend a croitre (a I'instar d'un mobile en chute libre traversant un milieu
résistant — cette intuition fut d’ailleurs fournie a VERHULST par le physicien QUETE-
LET). Le bilan de population est quant a lui le méme que pour MALTHUS, avec sim-
plement I'ajout d'un terme proportionnel a —P(¢)?. A renommage de variables pres,
on arrive directement sur la définition ci-apres.

— Définition 10 | Modele de VERHULST
On dit qu’une fonction P suit un modele de VERHULST de taux 3, |\, X, condition

initiale P, € R si P est dérivable en t et vérifie :
, P(t)*
Pi(r)=B-w|P()-

K
On appelle f le taux de natalité, p le taux de mortalité, et k la capacité du milieu “.

) (t=0), P(0)=P,. (Verhulst)

P(tx
Si Py > 0, nous pouvons établir K
(c¢f. TD) que :
K

P(t) = .
1+e-(b-wr (£ 1)

0 P

0

>t

Modele de VERHULST continu.

MODELE DE GOMPERTZ. Un modele ressemblant au précédent, seule la vitesse
de convergence vers la valeur limite est modifiée ainsi que la pente initiale.

— Définition 11| Modeéle de GOMPERTZ
On dit qu'une fonction P suit un modeéle de GOMPERTZ de taux f, Y, K, condition
initiale P, € R si P est dérivable en t et vérifie :

K
P'(£)=(p-pln (ﬁ) P(t) (£20), P(0)=P,

On appelle f le taux de natalité, p le taux de mortalité, et k la capacité du milieu.

(Gompertz)

a. C’est donc ce terme supplémentaire qui vient freiner la croissance de la population sip —p > 0,
et accélérer la croissance sip—pu <0

La encore, on ne peut pas obtenir
d’expression explicite pour le mo-
dele discret. En revanche dans le K

P(t4\

cas continu, si P, > 0, nous pou- Goinpe
vons établir (cf. TD) que : Verhulst
In (2Q)e- -
P(t)=xe |« . p
2 . . 0
Nous ferons la résolution expli- >

cite en TD. Modeéle de GOMPERTZ continu

MODELE PROIES-PREDATEURS DE LOTKA-VOLTERRA : COMPETITION ENTRE
DEUX POPULATIONS. Sideux espéces dontles populations sont représentées par
P, et P, se partagent le milieu, on peut adapter le modele de VERHULST pour tenir
compte de cette compétition.

— Définition 12 | Modéle de LOTKA-VOLTERRA
On dit qu'une fonction P suit un modeéle de LOTKA-VOLTERRA de taux P, |1,k si P

est dérivable en ¢ et vérifie :
{ Pi(£) = ((By— 1) —mPo(£)) Py(2),
Py(£) = ((B2— M) — Py (£)) Po(1).
On appelle B, le taux de natalité, y, le taux de mortalité pour la premiére (avec
B,, 1, pour la seconde), et m;, 7, les taux de prédation.

(LoktaVolt)

Remarque 4 (Interprétation du systétme) Nous annotons chacun des termes
présents dans le systéme.

#
Pi(t) = (By—m)Pi() =Py ()P (1),
Py(1) = (Bo— Hp)Py (1) — Py (£)Py(2).
,/

La résolution et I'étude générale d’un tel systéme est en revanche difficile.
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n MODELISATION DE DYNAMIQUES DISCRETES

On s’intéresse ici aux dynamiques discretes, c’est-a-dire des grandeurs qui évoluent
en des temps ponctuels.

m Taux d’évolution et dynamiques linéaires

— Définition 13 | Taux d’évolution discret
Soit u = (u,,) une suite.
® Sin eN, alors on définit le taux d’évolution en n noté t,,(u) par:
Uy — U
1,(u) = Zntl  Tn
n
Lorsque u décrit une population d’individus, on parle de taux de reproduction

(resp. mortalité) en n si 1, (u) =0 (resp. <0).
® On dit que u suit une évolution linéaire lorsque le taux d’évolution est
constant au cours du temps.

Exemple 15 Si u = (u,,) désigne la suite représentant le capital a 'année n d'un
livret bancaire rémunérée a 1%, alors :

VnenN,
Donc 1,,(1) = T — le taux de rémunération que vous connaissez depuis long-
temps est simplement le taux d’évolution de la suite des capitaux.

Uy = Uy +TU,.

Exemple 16 Quelles sont les suites (u,,) de taux d’évolution constant égal a T €
R? Analysez la limite.

R4

m Modélisation

® [Discret]
® [Continu]

bilan de V entre n et n + 1 = relation de récurrence sur (v,,).
bilan de V entre ¢ et t + h — équation différentielle sur V.

Faisons a nouveau ce travail de bilan de grandeur dans plusieurs contextes discrets
ici.

Exemple 17 (Modélisation) Modéliser les situations ci-aprés a I'aide d'une

suite, et déterminer une expression de ladite suite.

1. [Dune] En 2018, la largeur maximale de la dune du Pilat était estimée a
616 metres. Une étude a montré que, chaque année, la dune progresse en
moyenne de 3,5 metres a l'intérieur des terres. En admettant que cette évo-
lution se poursuit, comment peut-on modéliser I’évolution de la largeur de
la dune chaque année?

4

2. [Reproduction cellulaire trés simplifiée] On considére une population
de cellules, qui se reproduisent tous les ans. On suppose que chaque cellule
donne alors lieu a deux cellules a I'année suivante.

R4

3. [Invasion] La pyrale est une chenille invasive qui s’attaque aux buis. Selon
un relevé statistique, chaque année, le nuisible fait disparaitre 15% des buis
du massif. Alors que I'on compte en 2017, 75000 pieds de buis, 'ONF préco-
nise de replanter 3000 plants chaque année pour compenser les dégéts de la
pyrale.
® Modéliser la situation si la préconisation de 'ONF n’est pas suivie.

4
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® Modéliser la situation si la préconisation de I'ONF est suivie.

4. [Lapins de FiBOoNACCI]

FiBoNaccr émet les hypo-

théses suivantes au sujet de la

reproduction d'un couple de

lapin initial :

® un mois donné, on isole
un couple de nouveaux-nés
dans un lieu clos.

® Tout couple de lapins ne
peut se reproduire qu’au
bout de deux mois de vie
(lorsque les individus sont
adultes).

® Tout couple de lapins
adultes se reproduit
chaque mois en donnant
naissance a un couple de
bébés lapins.

® les lapins ne meurent ja-

mais. (que clest beau!)
Comment peut-on modéliser I'évolution du nombre de couples de lapins a

un moins n donné? Notons F,, le nombre de couples ala fin dumoisne N

(c’est-a-dire une fois les naissances terminées). Soit n € N, et comptons le

nombre de lapins a la génération n + 2, c’est-a-dire F,,, : qui est la somme

du

® nombre de couples a la génération n + 1, au nombrede F,, .,

® et du nombre d’enfants arrivant en fin de mois n + 1 : ils sont au nombre
de F,, puisque la gestation dure 1 mois.

4

#
B
B
B
B

gpe—€—
% R <—€—
sa|dnoag& <t ﬁ % a <t

sa|dnod

B oot mght g

temps
(en mois)

9|dnod T
9|dnod T
s9|dnod
s9|dnod ¢

Modele de FIBONACCI
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5. [Deux populations a évolutionliée] On considére une population de tor-
tues, composée de bébés (4gés d'un an) et d’adultes (4gés de 2 ans ou plus).
On suppose I'évolution suivante :
® lestortues deviennent adultes a 2 ans, et que seules 20% parviennent a cet
age,

® 40% des tortues adultes de 'année n meurent avant la fin de I'année,

® Jlesfemelles composentla moitié dela population et donnent naissance a4
bébés chaque année, de I’dge de 2 ans jusqu’a la fin de leur vie. Les bébés
deviennent alors des tortues agées d’1 an a la génération suivante, puis
une partie d’entre elles deviendront adulte a la génération encore d’apres
(a2 ans).

On définit pour tout n € N : a,, le nombre d’adultes vivant 'année n, et b,, le

nombre de bébés provenant de la génération n (le nombre de tortues dgées

d’1 an a la génération n € N* est alors b,,_,).

Faisons un bilan de quantité entre n € N et n + 1 pour les adultes déja. Le

modele invite a établir une récurrence d’ordre 2.

a
a,., = 06xa, +0.2b,, b,=4 x 7"

L , T adultes femelles génération n
bebés de 'anng¢e n :

passant adulte$ a 2 ans

adultes survivants
de la génération
précédente

nombre de bébhés
par femelle

On déduit alors que (a,,) satisfait une relation de récurrence linéaire d’ordre
2.

IVneN, a,,,=0.6a,+0.4a,|

m Modéles de populations

On reprend brievement ici les modeles de dynamique des populations vus dans le
Chapitre (AN) 2 mais dans un cadre discret.

BILAN DE POPULATION MALTHUSIEN CONTINU. On rappelle que selon MAL-
THUS, la population grandit en se multipliant par un nombre fixe p appelé taux de
reproduction ou taux de fertilité, et meurt selon un taux de mortalité 1 > 0 supposés
constant ici. Ainsi, si (p,,) représente le cardinal de la population, on a:

VneN, ppa :pn+ﬁpn_upn:(l+ﬁ_”)pn'

On débouche alors sur la définition ci-apres.

— Définition 14 | Modeéle de MALTHUS
On dit qu'une suite (p,,) suit un modéle malthusien de taux, |\, condition initiale

po € Rsi (p,,) vérifie :

Pua1 =Pnt(B-wp, (neN), py=P. (Malthus,disc)
On appelle f le taux de natalité, u le taux de mortalité. Le taux d’évolution est
alors p — .

PN
Casp>p
De maniere équivalente, cela si- o

gnifie que p,, = (1+p—p)"P, pour
tout n € N. Ici nous ne suppo-
sons donc pas 'existence de pré-
dateurs, et que les ressources na- o
turelles sont en quantité illimité.
Ainsi la population a donc la pos-
sibilité de se développer indéfini-
ment. .

CasPp=p

o . Caspu>p
[J )n

MODELE LOGISTIQUE DE VERHULST ET AUTRES MODELES. Comme pour le
modele continu, on ajoute ici un terme qui vient freiner la croissance de la popu-
lation, cela permet de tenir compte de la capacité d'un milieu.

— Définition 15 | Modéle de VERHULST
On dit qu’une suite (p,,) suit un modele de VERHULST de taux P, |, K, condition
initialeP, € R si (p,,) vérifie :

2

Pn) (neN), py=P,.

Pni1=Pnt+(B—H) (Pn T (Verhulst,disc)

On appelle f le taux de natalité, p le taux de mortalité, et k la capacité du milieu “.

Pour le modele de VERHULST, il n'est pas possible d’obtenir d’expression explicite de
(p,,) en fonction de n € N. L'étude de cette suite récurrente est par ailleurs difficile.
De-méme que les modéles de GOMPERTZ et LOKTA-VOLTERRA introduisant une pré-
dation.

a. C’est donc ce terme supplémentaire qui vient freiner la croissance de la population sip —p > 0,
et accélérer la croissance sip—pu <0
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FICHE METHODES QUESTIONS DE COURS POSEES AU CONCOURS AGRO—VETO

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com- Pas de question de cours dans ce chapitre
plétées par un nouvel exemple.

Méthode (AN) 31 (Trouver expression explicite d’une suite vérifiant u,,_, =

qu,+1,q #1)

1. Chercher ¢ telque ¢ = g¢ +r.

2. Montrer que la suite (u, — ¢) est géométrique de raison ¢, puis en déduire
I'expression de (u,, — ¢) en fonction de n € N.

3. En déduire I'expression de (u,,) en fonction de n € N.
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EXERCICES

La liste ci-dessous représente les éléments a maitriser absolument. Pour les travailler,
il sagit de refaire les exemples du cours et les exercices associés a chaque item.

Savoir-faire
1. Concernant les suites usuelles (arithmétique, géométrique, arithmético-
géométrique, récurrente linéaire d’ordre deux) :
® connaitre leur relation réCUITeNCe .. ......ooviit ittt O
® savoir exprimer leur terme général en fonctiondern ............. ... ... ...... O
® savoir traduire une condition initiale............. ... .o il ([
2. Concernant la modélisation :
® savoir traduire des dynamiques discretes a I'aide d’'une suite récurrente. . . . ... O

® savoir traduire des dynamiques continues a l'aide d'une équation différentielle[]
® avoir une idée générale des deux principaux modéles de dynamique des popula-
tions (évolution libre [MALTHUS], et évolution avec capacité [logistique])
O

Signalétique du TD

® Lelogo B désigne les exercices que vous traiterez en devoir 4 la maison. Vous pouvez
m'en rendre un ou plusieurs, au plus tard le lundi qui précede un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

® Lelogo @ désigne les exercices un peu plus difficiles; a aborder une fois le reste du
TD bien maitrisé.

Suites usuelles

Exercice 1
géométriques

| Récurrences arithmétiques, géométriques, arithmético-
Solution

1. Calculerle terme général, étudier la convergence, et calculer la somme des termes
n

S= Y u, pour les suites (u,,) définies par u, =2 et pour tout n € N :
k=0

.un+1:un+3 .un+1:un+2 .un+1:un_5
u
® Uy =3Uy ® Uy =5 ® Uy = DU,
— —_u 1 —
® Uy =3uU,+3 i un+1__7n+§ ® Uy =—U,— 4

n
2. Dans chacun des cas ci-dessus, calculer S = Y u,.
k=0

Exercice 2| Récurrenceslinéaires dordre2 solution Déterminer en fonction de

n, le terme u,, des suites qui vérifient

1 uy=1, u;=2, VvneN*, wu,,,—-2u,-3u,_,=0.
2' uO = 2’ ul = _3) Vn € N) un+2 = _8ul’l+l - 16un.
3. up=1, u =2, VvVneN, u,.,=-4u,.

Exercice 3 | Récurrences de type homographique soution On considere les
suites (u,) et (v,) définies par :
Su,—2 u,—2
uy=0, VvVneN, u,=———, U,= .
U, +2 u,—1

Montrer que la suite (u,,) est bien définie et que pour tout n = 3, et que u,, > 1.
En déduire que la suite (v,,) est bien définie sur N.

Montrer que (v,) est géométrique.

En déduire I'expression explicite de (v,,) puis de (u,,).

FDNR

Exercice &4 |  solution On considere la suite (u,,) définie par

Uy m 1
n+l — 2 2\/5 \/z

1. En étudiant (v,) définie par v, = u,, x
u, en fonction de n.
2. CalculerS, =Y " u; en fonction de n.

u0=§, VHEN,

2 — n pour tout n, donner I'expression de

Modélisation discréte

Exercice 5 | Injection d’un traitement solution Toutes les heures, on injecte a
un sujet, une méme dose de 1,8 unités, d’'une substance médicamenteuse dans le
sang. On suppose que la substance se répartit instantanément dans le sang et qu’elle
est ensuite progressivement éliminée. En I'espace d’'une heure, la quantité de cette
substance présente dans le sang diminue de 30%. La premiére injection se faita ¢ = 0.
Pour n € N, on note Q,, la quantité de substance présente dans le sang a I'instant
t = n (en heures), dés que la nouvelle injection est faite.

1. Donner Q, et déterminer une relation de récurrence entre Q,,,; et Q,,.
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2. >_% Fcrire une fonction en langage Python Q qui prend en argument un entier
naturel n et qui renvoie Q,, au dixieéme pres. Donner grace a cette fonction une ap-
proximation au dixiéme pres de la quantité de substance présente dans le sang a
I'instant a ¢ = 5 puis conjecturer le comportement asymptotique de la suite (Q,,).

3. Calculer, pour 7 € N, le terme Q,, en fonction de n et déterminer la limite de la
suite (Q,,).

4. >_®@ Fcrire une fonction en langage Python proche qui prend en argument un
réel € > 0 et renvoie le plus petit entier n tel que |Q,, —6| < €. Autrement dit, a
partir de quel rang n la quantité Q,, sera-t-elle ” proche ”, a € pres, de sa limite 6?

Exercice 6 |  sowtion Un arboriculteur posséde, au ler janvier 2020, 5000 pom-
miers. Chaque année, il arrache 4% des pommiers (endommagés) et en replante 300
nouveaux. On note P, le nombre de pommiers au ler janvier de 'année 2020 + n.
La superficie du terrain permet a I'arboriculteur d’avoir 6000 pommiers au maxi-
mum.

1. Donner P, et déterminer une relation de récurrence entre P,,,, et P,,.

2. Calculer, pour n € N, le terme P, et déterminer la limite de la suite (P,,).

3. > FEcrire un script Python permettant de représenter sur le méme graphique le
nombre de pommiers entre 2020 et 2050 et la droite d’équation y = 6000. Estimer
par lecture graphique en quelle année 'arboriculteur devra acquérir un nouveau
terrain pour pouvoir planter de nouveaux pommiers.

4. >_® Fcrire maintenant un script Python permettant de déterminer I'année pré-
cédente.

m Modélisation continue

Exercice 7 | Cinétique chimique d’ordre 2 solution On consideére une réaction
chimique notée A — B, on suppose que le réactif A disparait avec un taux pro-
portionnel (on note k € R le coefficient associé) a la concentration de réactif. Dé-
terminer la concentration [A] en réactif en fonction du temps, en supposant que la
concentration ne s'annule pas.

Exercice 8 | Propagation d’'une rumeur solution On tente de modéliser la ma-
niere dont une rumeur se répand en considérant que la vitesse de propagation est
proportionnelle au produit du pourcentage y € [0, 1] de ceux qui sont au courant de
la rumeur par le pourcentage de ceux qui, au contraire, ne sont pas au courant.

1. Ecrire une équation différentielle vérifiée par y. On admet dans la suite que la
seule solution s’annulant quelque part est la solution nulle, on résout doncl’équa-
tion différentielle sur 'ensemble des fonctions y ne s’annulant pas.

2. En déduire une équation différentielle vérifiée par z = %

Résoudre I'équation vérifiée par z et en déduire y.

4. [Application] Une petite ville compte 1000 habitants. A 8 heures du matin, 80
personnes ont entendu parler de la nouvelle du jour. A midi, la moitié de la ville
est au courant. A quel moment de la journée est-ce que 90% de la population sera
au courant de cette nouvelle? On arrondira le résultat a 10* pres, on précisera
aussi dans quelle unité il est exprimé.

w

Exercice 9 | Hauteur d’une baignoire soltion On considére une baignoire de
forme parallélépipédique dont la base est de dimensions ab que 'on remplit avec
un débit constant noté d. On note z(¢) la hauteur d’eau dans la baignoire a I'instant
t et V(t) son volume. On suppose que V(0) = 0.

La baignoire a une fissure au fond qui laisse s’échapper plus ou moins d’eau en fonc-
tion de la pression exercée par I'eau sur celle-ci. On rappelle que la pression au fond
de la baignoire est égale a p(z) = pgz. Le débit de la fuite estd; = ap aveca >0 et p
la pression qui s’y exerce. Toutes les grandeurs sont en unité SI.

1. Sionsuppose labaignoire suffisamment haute, montrer que le volume d’eau tend
vers un volume a I'équilibre V,, que I'on déterminera.

2. Sila baignoire a un volume V (que I'on suppose inférieur au volume d’équilibre),
au bout de combien de temps sera-t-elle pleine?

Devoir-maison fjl:[

Exercice 10 | Modele de VERHULST continu  solution On dit qu'une fonction P
suit un modele de Verhulst de taux 3, |, k si P est dérivable en t et vérifie :

V=0, P(t)=P-n) (P(t) - P(t)z), P(0) =P,.

K
Dansla suite on note r = —u. On cherche résoudre 1’équation (Verhulst) pour P(0) =
P, €]0,x](.

(Verhulst)

1. [Positivité] On cherche déja a prouver que pour tout ¢ = 0, P(¢) € ]0,x[. On
suppose que P est une solution, et on note f(t) = rP(¢) (1 - @) pour tout ¢ = 0.
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11) Montrer que f est dérivable sur R* puis justifier que f est solution d’'une
équation différentielle linéaire homogene du premier ordre a coefficients
continus.

1.2) Montrer que f(0) # 0 et en déduire que pour tout t =0, f () # 0.

13) Montrer que pour tout ¢ =0, P(¢) € ]0,x][.

. [Résolution]
21) Montrer qu’il existe deux constantes a, b € R? telles que :
K a b
VxeR~{0,x}, ———=—+

x(k—x) X k—x
2.2) Résoudre (Verhulst).
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SOLUTIONS DES EXERCICES

Solution (exercice 1)
1. C’est une suite arithmétique de raison 3 et de premier terme 2, ainsi :
n(n+1)

Enoncé

n
VneN, u,=2+3n, S=2(n+1)+3) k=2(n+1)+3 5
k=0

2. C'estune suite arithmétique de raison % etde premier terme 2, ainsi: Vne
N, u,=2+7%.0Ona:

S:2(n+1)+%§0k:2(n+1)+w.

3. C’est une suite arithm%tique de raison —5 et de premier terme 2, ainsi :

n n(n+1)

VneN, u,=2-5n, S=2(n+1)-5) k=2(n+1)-5——.

4. C’est une suite géométrique de raison 3 et de I;):roemier terme 2, ainsi :
VneN, u,=23" s:zfsk:z;"“—l.

5. C’est une suite géométrique de r;son % et de premier terme 2, ainsi :

1\ no1\k 1\n+1
VneN, u,,:z(—) , s:zz(—) :4(1—(—) )
2 =0 \2 2
6. C’est une suite géométrique de raison —5 et de premier terme 2, ainsi :
n 1
VneN, u,=2(-5)", s:zZ(—5)’“=§(1—(—5)"+1).
k=0

7. C’est une suite arithmético-géométrique. On applique la méthode vue en
cours pour trouver I'expression de u,, en fonction de n.
® (Calcul de la limite éventuelle. On suppose que (u,,) converge vers ¢. Alors
par passage a lalimite,ona3¢ +3=/¢ < ¢ =-3.
® Onposev, =u,—¥ = un+%.0naalors:

3 3 9 3
vn+1=un+1+§=3un+3+£:3un+§=3 un+§ =3v,,

donc (v,) est une suite géométrique de raison 3 et de premier terme v, =

Uy+35=1I.OnobtientdoncVneN, 2x3"
® Onendéduit: VmneN, un:yn—%:%xgn_%.

Onadeplus: S= %(3n+1 ~1)- 3(n2+1).

8. C’est une suite arithmético-géomeétrique. On obtient :
16( 1\» 2 32 1\»*1\ 2(n+1)
A -2 (- () 2

VneN,
9

9\ 2 9 27 2
9. C’est une suite arithmético-géométrique. On obtient :

VneN, u,=4(-1)"-2, S=2(1-(-1)"")-2(n+1).

Solution (exercice 2) tnoncé Toutes ces suites sont des suites linéaires
récurrentes d’'ordre deux, on les résout en étudiant I'équation caractéristique. Je
ne donne ici que le résultat.

1 VneN, u,=:(3""+(-1)")
2. VneN, u, =(2—§n)(—4)”,
3. VneN, u,=2"(cos(2)+sin(Z)).

Solution (exercice 3)
1. Comme toujours pour ce genre de question, on fait une récurrence.
On montre par récurrence sur n = 3 la propriété #(n): u, définietu, > 1.

Enonceé

Initialisation. pourn =3,ona: u; = -1 puis u, = -7 et uz = % > 1. Ainsi,
22(3) est vraie.
Hérédité. soit n = 3, on suppose la propriété vraie a l'ordre n, montrons que

22(n + 1) est vraie. Par hypothese de récurrence, on sait que u,, > 1, donc

u,—1+0etu,,, estbien défini. De plus, on a

u, —

u,+2
Ici on a utilisé le fait que u,, > 1 d’apres 22(n), et donc que u,, +2 > 0. On
arrive u,, > 1 qui est bien vrai, donc par équivalences, u,,,; > 1 est vrai aussi.
Ainsi, 2(n + 1) est vraie.
Conclusion : il résulte du principe de récurrence que Vn =3, u, > 1.

2. Lasuite (v,),en st bien définie car ug, u;, U, ne sont pas égaux a 1 et ensuite
onaVn = 3,u, > 1. Ainsi pour tout n € N, on a bien u#,, — 1 # 0 et v,, bien
défini.

3. SoitneN:

Uy > 1 = >l <<= b5u,-2>u,+2 < u,>1.

5u,-2-2u,-4
Upe1 —2 Upt2 _3u,-6 3u,-2 3

T Bup—2-u,-2 12 2
Uy —1 nun—+2n du,-4 4u,-1 4

Upt1 = Up-
. . . . 4 4 . . 3 .
Ainsi la suite (Vn)nel\l est une suite geometrlque de raison 1 et de premier

terme 2.

4. On en déduit la formule explicite de v,, :

VneN,

3 n
v, = Z(ZI) .
En remarquant que : u, (v, — 1) = v, — 2 et que la suite (v, ) ¢\ €était toujours
différente de 1, on obtient que :

U, —2
_v,,—l

232
-

vnelN, u, Uy
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Solution (exercice 4)
arithmético-géomeétrique.
1. Soit n € N. Alors :

Uns1 = \/E'un+1 - (n + 1)

Donc (v,) est géométrique de raison %, etdonc v, =

tout n € N. Ainsi, on déduit que
1

n

3-2n-1+$'
L 1 i
28,=Y——+—
L[5 ﬁ)

+ —_—
N

vneN, |u,=

(_zid)_i_Mn+1)

Solution (exercice 5)

Enoncé

1. Ona Qg = 1.8 puis d’apres I'énoncé : pour tout n € N,

C’est donc une suite arithmético-géométrique.
2. def Q(n):
Q=1.8
for  in range(l, n+l):
Q=0.7¥Q + 1.8

return Q
>>> Q(5)
5.294106

Enoncé Attention, (u,) n'est pas du tout

22
o3 V2 oo
on — on T 3,2n—1 p

[Q,.1 =0.7Q, +1.8]

3. Oncherche ¢ telle que ¢ = 0.7¢ +1.8. On trouve apres résolution ¢ = % =[6].

Solution (exercice 6)
1.
2.

Alors faisant la différence entre les relation Q,,,; = 0.7Q,, +1.8,¢ = 0.70+1.8,
pour n € N, on obtient que Q,,,; — ¢ = 0.7(Q,, — ) donc (Q,, — ¢) est géomé-
trique de raison 0.7, donc :

VneN, Q,-6=0.7"(Q,-6) < [Q,=6(1-0.7")]

>

def seuil(eps):
n=20
Q=1.8

while abs(Q-6) > eps:
Q=0.7¥Q + 1.8

n += 1
return n
>>> n = seuil (10**(-3))
>>> N
24

>>> Q(n) # c'est bien une valeur approchée de 6 a la |
— précision souhaitée
5.9991953588282

Enonce
D’apres I'énoncé : P, = 5000 et pour tout n € N, [P,,,; = 0.96P,, +300|.
On cherche ¢ telle que £ = 0.96¢ +300. On trouve apres résolution ¢ = 50 =
[7500]. Alors faisant la différence entre les relation P,,, = 0.96P,, +300,¢ =
0.96¢ + 300, pour 7 € N, on obtient que P,,,; — ¢ = 0.96(P,, — ¢) donc (P, — )
est géométrique de raison 0.06, donc :
vVneN, P,—7500=0.96"(5000—7500) <= [P, = 7500 —2600.(0.96)" |

Cette suite converge vers 7500 car |0.96] < 1.
>_®
def P(n):

P = 5000

for _in range(l, n+l):

P =0.96*P + 300
return P

300

plt.plot([P(n) for n in range(31)],
plt.plot([0, 30], [6000, 60007,

'bo')
"r:')
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6500 4 °®
6250 .
P L

5750 A L4

Par lecture graphique, on déduit qu'’il faut attendre 'année 2013 environ).
4. C’est une structure typique d’utilisation de boucle while.
def seuil():
P = 5000
n==~0
while P < 6000:
P =0.96*%P + 300
n+= 1
return n

>>> seuil()
13

Solution (exercice7) tnonce Le taux d’évolution est négatif, puisqu’ily a
disparition comme l'indique I'énoncé, et donc
[A] (1)
=—k-[A] ().
[A](7)
On peut aussi reformuler sans utiliser la définition du taux, en faisant un bilan
de concentrationentre tett+ h,t,h=0:

[Al(z+h) = [A](2) = h(k-[A](2)) - [A] (2),

donc en faisant 7 — 0, on retrouve que [A] est solution de
l 2

v =-ky"|
Supposons que la concentration ne s'annule pas, on obtient :

o AW,
vizo, | [A]Z(u)du—fokdu

1| .
C”[mouo‘kmh
1 1

=kt.
Al Ao

1

= —1
kt+ mim

Donc: [[A](%)

Solution (exercice 8) tronce
1. Lavitesse de propagation étant la dérivée, nous avons d’apres I’énoncé pour
une certaine constante k e R :

vieR, [Y(0)=ky(O1-y®)]

2. Par quotient, z est dérivable et 2’ = ;—Z donc en divisant I'équation différen-

tielle précédente par y?, on déduit :
1-
=k k(z-1).
y
Donc z vérifie [z = —kz + k.

3. On cherche une solution particuliere sous la forme d’'une constante, on
trouve que la constante 1 est solution, donc I'ensemble des solutions est :

[{teR* —Ke " +1|KeR}|

Donc y est de la forme : ‘y ‘teRY — ﬁ‘
4. On peut imaginer que 8 heures correspond a l'origine de I’échelle des temps
de sorte que l'on cherche y vérifiant y(0) = 80 ce qui est équivalentaK+1 = 8—10

d'out K = -2 Ainsi:

1
vEER, (D= T

80

1

On a comme condition : - =500 ce qui permet de fixer k :

1-Beik
79 1 499 x 80 1996 1. (1996
1=t o ey VO otk _4k:—<:>k=——ln(—).
80 500 500 x 79 1975 4 \1975
On cherche alors ¢ de sorte que
ke _ L 899 _ 79

— =9 0= 1—-—e "=z — = e
1— DBe-kt 80 900 900 80

80
3596
—) ~|4.41 heures.

On trouve alors: ¢ = —%ln(
3555

Solution (exercice 9) (cnonce
1. On rappelle qu'un débit est homogene a un volume sur un temps. Pour
mettre en équation le probléme, on fait un bilan de volume d’eau entre deux
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temps trés proches. Soient t € R™, h € R™. D’aprés I'énoncé, on a:
V(t + h) =V(¢) + volume d’eau ajouté — volume sortant
=V(t)+dxh—dsh
=V(t)+dx h—apgz(t)h
— V() +d x h - 2PEv(1)n.
ab

En passant V(¢) a gauche, puis en divisant par & et en faisant h — 0, on

trouve finalement que V est solution de :
y = —% y+d|
Dans la suite on notera : % = %. Le second membre est ici constant, on
peut donc chercher une solution particuliere sous forme d’'une constante,
1d convient. On déduit alors que V est de la forme

VteR*, V(t)=Ke '™+ (1d),

avecKeR. Or,V(0) =0doncK+td=0¢et:
veeR', |V(t)=Td(1-e"7)|

Ainsi, par regle usuelle sur les limites, on déduit que }Eloov(t) = .

>V(t) =abz(t)

. Sila baignoire a un volume V (que I'on suppose inférieur au volume d’équi-

libre), on doit résoudre en ¢ : V(¢) =V, c’est-a-dire :

AV Vv
Td(l—e‘t/T):V@ e t/T :1__01 — t:—Tln(l——d).
T T
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Correction Devoir-maison fﬁ (Chapitre (AN) 3)

Solution (exercice 10)
1. [Positivité]
On suppose que P est une solution, et on note f(¢) = rP(¢) (1

11)

1.2)

1.3)

Enonceé
0, P(¢) € 10,x[.
)

|-

On cherche déja a prouver que pour tout ¢ =

la fonction f est dérivable sur R* en tant que somme et produit de fonc-
tions dérivables. De plus, pour tout ¢ = 0,

£1(6) = rP(1) (1 - Q) +rP(t) (—%P’(t))

=r?P(t) (1 - M) - r—zP(t) (1 - M)
K K K

T

K K
=f(1)g(1),

oug(t) = r( Pm)

tion continue, donc | , une équation diffé-

rentielle linéaire homogeéne du premier ordre a coefficients continus.
Ona

£(0) = rPO(l— %) >0

car % € ]0,1[ par hypothese. Donc |f(0) # 0|, par ailleurs, d’apres la
question précédente, si on note Gla primitive de g qui s'annule en zéro,
alors

f(2) = £(0)-5Y,
or e%() 0 pour tout ¢ donc[f(¢) # 0 pour tout ¢ > 0].
NotonsQ = rX (1 - é), c’estun polynéme de degré deux, de graphe une
parabole orientée vers le bas, et de racines 0, k.

f=QoP.
On sait que P(0) €]0, k[, donc la valeur initiale de P se situe strictement
entre les racines de Q et f(0) > 0 (le polynome Q est positif entre ses
racines). Si en un certain ¢, P(¢) ¢]0, [ alors f(t) < 0. Puisque f est
continue, d’apres le théoréme des valeurs intermédiaires, il existerait ¢
tel que f(¢) = 0— contradiction. Donc [pour tout ¢ >0, P(¢) € ]0,[.|

+ pour tout ¢ > 0. Constatons que g est une fonc-

2. [Résolution]

21)

2.2)

Apres calculs, on trouve :

K 1 1
VxeR~{0,k}, |——=—+ .
x(k=x) x x-—-x

On sait que f ne s'annule pas, donc on peut commencer par diviser de
chaque coté I'équation différentielle par f. On résout alors :

P'(1) _P(1) K L

rP(t)( )) r P(r)(x=P(1))
D’apres la question précédente, elle est équivalente a
Pl
W1, 1\,
r \P(t) x—-P(1)
ou encore
1 P’(t)_ -P'(1) | _
P(t) «-P(t)|

‘ En primitivant de chaque c6té, on déduit I'existence d’'une constante
K € R satisfaisant

1
V=0, —(In|P(t)|-In|k—=P(¢)])=t+K.
r

Par propriété du log, en passant a I'exponentielle, et en utilisant le fait
que P(t) €]0, k[, on obtient finalement

Ker(t+K)

_ or(t+K) _
Vi=z0,———=e = P(t)——1+er(t+K) .




