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Chapitre (ALG) 7 Calcul matriciel

1 Matrices & Opérations . . . . . . . . . .

2 Matrices carrées . . . . . . . . . . . . . . . .

3 Exercices . . . . . . . . . . . . . . . . . . . . . . .
Être visionnaire c’est regarder
le monde au-delà du temps.
Mais on ne voit pas plus loin,
que les choix que l’on ne peut
pas comprendre.
—L’Oracle dansTheMatrix

Résumé & Plan
Le calcul matriciel est un puissant
outil pour traiter de nombreux pro-
blèmes. En analyse les suites ré-
currentes linéaires ou de systèmes
différentiels linéaires, en algèbre il
permet l’étude efficace des applica-
tions linéaires ou encore des sys-
tèmes d’équations linéaires. L’ob-
jectif de ce chapitre est de déve-
lopper les notions du calcul matri-
ciel qui nous permettront de traiter
les problèmes précédents plus tard
dans l’année.

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

Cadre
Ô

Dans tout le chapitre, l’ensemble𝕂 désignera ℝ ou ℂ, et 𝑛,𝑝 désignent deux
entiers supérieurs ou égaux à 1.

Commençons par introduire une notation importante que nous utiliserons dans le
chapitre.

Notation Symbole de Kronecker
Σ

Soient 𝑥,𝑦 deux éléments d’un ensemble E, alors le symbole de KRONECKER de
𝑥,𝑦 est défini par :

δ𝑥,𝑦 =
⎧
⎨
⎩

1 si 𝑥 = 𝑦,
0 sinon.

Exemple 1 Soit E = J1 , 𝑛K avec 𝑛 ∈ℕ⋆, et 𝑖, 𝑗,𝑘 ∈  J1 , 𝑛K.

• δ𝑖,𝑗 =
⎧
⎨
⎩

1 si 𝑖 = 𝑗,
0 sinon.

• 1−δ𝑖,𝑗 =
⎧
⎨
⎩

1−0 si 𝑖 ≠ 𝑗
1−1 sinon.

=
⎧
⎨
⎩

1 si 𝑖 ≠ 𝑗
0 sinon.

• δ𝑖,𝑗×δ𝑗,𝑘 =
⎧
⎨
⎩

1 si 𝑖 = 𝑗 = 𝑘,
0 sinon.

PEN-FANCY
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1 MATRICES & OPÉRATIONS

1.1 Généralités

Définition 1 | Matrice
Onappellematrice𝑛×𝑝à coefficients dans 𝕂, ondit encorede format𝑛×𝑝, toute
famille d’éléments de𝕂 indexée par J1 , 𝑛K× J1 , 𝑝K, c’est-à-dire une application
J1 , 𝑛K× J1 , 𝑝K⟶𝕂. On note une telle matrice :
• sous la forme A = (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
, ou plus simplement (A𝑖,𝑗)𝑖,𝑗 si le contexte est

clair.
• Ou encore sous la forme d’un tableau entre parenthèses à 𝑛 lignes et 𝑝 co-

lonnes :

A=
⎛⎜⎜⎜
⎝

A1,1 A1,2 A1,𝑝
A2,1 A2,2 A2,𝑝

A𝑛,1 A𝑛,2 A𝑛,𝑝

⎞⎟⎟⎟
⎠

.

• Pour (𝑖, 𝑗) ∈ J1,𝑛K×J1,𝑝K, onappelleA𝑖,𝑗 coefficient de la ligne 𝑖 et de la colonne
𝑗.

• Si𝑝 = 1, onparle de vecteur colonne,

et A= ⎛
⎝

A1,1
A2,1
⋮
A𝑛,1

⎞
⎠
.

• Si𝑛 = 1, on parle de vecteur ligne, et
A= (A1,1 A1,2 A1,𝑝).

• Si 𝑛 = 𝑝, on dit que la matrice est
carrée.

Remarque 1 (Lignes avec ou sans virgules?) En toute rigueur les éléments de
𝕂𝑝 (produit cartésien défini plus tôt dans l’année) sont notés (𝑥1,…,𝑥𝑝) alors
que ceux de𝔐1,𝑝 (𝕂) sont notés (𝑥1 𝑥𝑝). Mais dans les deux cas, ces éléments
sont définis comme des applications de J1 , 𝑝K dans 𝕂, on s’autorisera donc à
écrire : (𝑥1,…,𝑥𝑝) = (𝑥1 𝑥𝑝).

Attention
, • De même qu’on ne confond pas une suite 𝑢 (une famille) avec son 𝑛-ième

terme 𝑢𝑛 (pour 𝑛 ∈ℕ, un nombre réel),
• on ne confondra pas une matrice A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
(une famille) avec son coef-

ficient (𝑖, 𝑗) noté A𝑖,𝑗 (un élément de𝕂).

Notation
Σ • On note𝔐𝑛,𝑝 (𝕂) l’ensemble des matrices 𝑛×𝑝 à coefficients dans𝕂.
• Lorsque 𝑛 = 𝑝, on note plus simplement 𝔐𝑛 (𝕂) au lieu de 𝔐𝑛,𝑛 (𝕂) et on

note plus simplement A= (A𝑖,𝑗)1⩽𝑖,𝑗⩽𝑛 au lieu de A= (A𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑛

.

Dans les notations précédentes, le premier indice désignera toujours le numéro de
ligne, et le second le numéro de colonne.

Exemple 2

• (
5 0
2 8) ∈𝔐2,2 (ℝ) ⊂𝔐2,2 (ℂ), (

5 0 i

1+2i 8 ei
π
3
) ∈𝔐2,3 (ℂ),

• (1 −1 0) ∈ 𝔐1,3 (ℝ) est une matrice ligne, alors que
⎛⎜⎜⎜
⎝

1
1+ i
−2i
3

⎞⎟⎟⎟
⎠

∈ 𝔐3,1 (ℂ) est

une matrice colonne.

• (2𝑖+3𝑗)1⩽𝑖⩽3
1⩽𝑗⩽2

= ⎛⎜
⎝

2+3 2+6
4+3 4+6
8+3 8+6

⎞⎟
⎠
= ⎛⎜
⎝

5 8
7 10
11 14

⎞⎟
⎠
∈𝔐3,2 (ℝ) .

• Les écritures sous formede tableauxdeA= (𝑖− 𝑗)1⩽𝑖⩽3
1⩽𝑗⩽3

etB = (2𝑖+𝑗)1⩽𝑖⩽3
1⩽𝑗⩽2

sont :

PEN-FANCY

Exemple 3 On considère la matrice A =
⎛⎜⎜⎜
⎝

2 1 1
1 2

1
1 1 2

⎞⎟⎟⎟
⎠

de format 𝑛×𝑛. Écrire le

coefficient (𝑖, 𝑗) de la matrice A en fonction de δ𝑖,𝑗 pour tout (𝑖, 𝑗) ∈ J1 , 𝑛K2.
PEN-FANCY
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Définition 2 | Égalité matricielle
Soient A,B deux matrices. Alors A et B sont dites égales si :
• elles ont même taille, c’est-à-dire A,B ∈𝔐𝑛,𝑝 (𝕂) pour un certain (𝑛,𝑝) ∈ ℕ2,
• et : ∀(𝑖, 𝑗) ∈ J1 , 𝑛K× J1 , 𝑝K, A𝑖,𝑗 = B𝑖,𝑗.

Exemple 4 Soit

A= (
1 −1
0 2 ), B = (cos(0) eiπ

tan(0) 2 ), et C= ⎛⎜
⎝

1 −1
0 2
0 0

⎞⎟
⎠
.

On a A= Bmais A≠C et B ≠C.
PEN-FANCY

Notation Écriture en lignes/colonnes d’une matrice
Σ

SiA ∈𝔐𝑛,𝑝 (𝕂), alors on notera en ligne ou en colonnes de la manière suivante :

A= ⎛⎜
⎝
C1(A) … C𝑝(A) ⎞⎟

⎠
= ⎛⎜
⎝

L1(A)

L𝑛(A)
⎞⎟
⎠
.

Exemple 5 Pour A= (
−2 0 1
3 2 1), on a :

C1(A) = (
−2
3 ), C2(A) = (

0
2), C3(A) = (

1
1),

L1(A) = (−2 0 1), L2(A) = (3 2 1).

Matrices usuelles. Pour terminer, définissons quelques matrices usuelles. La
terminologie associée aux deux premières n’est pas anodine, il y a un lien avec les
applications linéaires identiques et les homothéties définies dans les ????, ce lien
sera explicité plus tard dans ce chapitre.

Définition 3 | Matrice nulle
On appellematrice nulle de𝔐𝑛,𝑝 (𝕂) la matrice𝑛×𝑝 ayant tous ses coefficients
égaux à zéro :

0𝑛,𝑝 = (0)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

= ⎛⎜
⎝

0 0

0 0
⎞⎟
⎠
.

Définition 4 | Matrice identité
On appellematrice identité de𝔐𝑛,𝑛 (𝕂) la matrice 𝑛×𝑛 n’ayant que des uns sur
la diagonale, et des zéros ailleurs :

I𝑛 = (δ𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

=
⎛⎜⎜⎜⎜
⎝

1 0

0 1

⎞⎟⎟⎟⎟
⎠

𝑛fois .

Définition 5 | Matrice homothétique
On appellematrice homothétique de𝔐𝑛,𝑛 (𝕂) de rapport λ ∈ 𝕂 la matrice 𝑛×𝑛
suivante :

λI𝑛 = (λδ𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

=
⎛⎜⎜⎜⎜
⎝

λ 0

0 λ

⎞⎟⎟⎟⎟
⎠

𝑛fois .

Définition 6 | Matrice ATTILA
On appellematrice ATTILA de𝔐𝑛,𝑛 (𝕂) la matrice 𝑛×𝑛 suivante :

J𝑛 = (1)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑛

= ⎛⎜
⎝

1 1

1 1
⎞⎟
⎠
.

Exemple 6

• 02,3 = (
0 0 0
0 0 0), 04,1 =

⎛⎜⎜⎜
⎝

0
0
0
0

⎞⎟⎟⎟
⎠

, 03 = ⎛⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟
⎠
,

• I2 = (
1 0
0 1), I3 = ⎛⎜

⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠
, J2 = (

1 1
1 1).

3



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Définition 7 | Matrices élémentaires (ou base canonique)
Pour tout 𝑘 ∈ J1, 𝑛K, et ℓ ∈ J1, 𝑝K, on appellematrice élémentaire d’indice (𝑘,ℓ),
notée E𝑘,ℓ, la matrice de𝔐𝑛,𝑝 (𝕂) constituée de zéros partout sauf pour le coef-
ficient en ligne 𝑘 et colonne ℓ, qui vaut un.

Exemple 7 (pour 𝑛 = 2,𝑝 = 3) Dans𝔐2,3 (ℝ), on a :

E1,1 = (
1 0 0
0 0 0) E1,2 = (

0 1 0
0 0 0) E1,3 = (

0 0 1
0 0 0)

E2,1 = (
0 0 0
1 0 0) E2,2 = (

0 0 0
0 1 0) E2,3 = (

0 0 0
0 0 1).

Remarque 2 (Réecriture avec le symbole de KRONECKER) Autrement dit,
E𝑘,ℓ = (δ𝑖,𝑘δ𝑗,ℓ)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
.

En effet, tous les coefficients sont nuls, sauf si :
δ𝑖,𝑘δ𝑗,ℓ = 1 ⟺ δ𝑖,𝑘 = 1 et δ𝑗,ℓ = 1 ⟺ 𝑖=𝑘,𝑗 = ℓ.

C’est-à-dire si le coefficient considéré est sur la ligne 𝑘 et la colonne ℓ.

1.2 Opérations sur les matrices

Addition et multiplication externe. On commence par deux opérations
très intuitives sur les matrices.

Définition 8 | Sommematricielle
Soient A = (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈ 𝔐𝑛,𝑝 (𝕂) et B = (B𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈ 𝔐𝑛,𝑝 (𝕂). On note A+B ∈

𝔐𝑛,𝑝 (𝕂) la matrice définie par :

A+B= (A𝑖,𝑗+B𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

.

Autrement dit, les coefficients deA+B sont obtenus en sommant ceux deA avec
ceux de B.

On peut également multiplier une matrice par un scalaire, et ainsi définir une opé-
ration externe sur𝔐𝑛,𝑝 (𝕂).

Définition 9 | Multiplication par un scalaire d’unematrice
Soit A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈𝔐𝑛,𝑝 (𝕂) et λ ∈𝕂. Alors la matrice λA est définie par :

λA = (λA𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑝

.

Autrement dit, les coefficients de λA sont obtenus en multipliant ceux de A par

λ.

En particulier, pour λ =−1, on arrive à la définition suivante.

Définition 10 | Matrice opposée
Soit A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈𝔐𝑛,𝑝 (𝕂). On appellematrice opposée de A la matrice −A.

Exemple 8 Calculer −2A+B où A= (
1 0 1

2
−2 3 − 3

2
) et B = (

3 −4 1
0 0 1).

PEN-FANCY

Exemple 9 Écrire (
1 1

2
−2 − 3

2
) en fonction de E1,1,E1,2,E2,1,E2,2.

PEN-FANCY

♥ Exemple 10 Soit A = (
1 1
0 2). Déterminer α,β ∈ ℝ tels que : A2 = A×A =

αA+βI2.
PEN-FANCY
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Remarque 3 (Matrice comme combinaison linéaire de matrices élémen-
taires) Plus généralement, si A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈𝔐𝑛,𝑝 (𝕂), alors :

A= ∑
1⩽𝑖,𝑗⩽𝑛

A𝑖,𝑗E𝑖,𝑗.

Exemple 11 (Produit-nul « avec un λ ») Soit X ∈ 𝔐𝑛,1 (𝕂) et λ ∈ 𝕂. Montrer
que : λX = 0𝑛,1 ⟺ λ=0 ou X= 0.
⟸
PEN-FANCY

⟹
PEN-FANCY

Les opérations +, . sur les matrices possède des propriétés similaires à celles des
nombres réels déjà rencontrées, dont la vérification ne présente pas de difficulté.

Proposition 1 | Propriétés de la somme
Soient (A,B,C) ∈∈𝔐𝑛,𝑝 (𝕂)3.
• [Associativité] (A+B)+C = A+(B+C).
• [Commutativité] A+B= B+A.
• [Élément neutre] A+ 0𝑛,𝑝 = 0𝑛,𝑝 +A = A. On dit que 0𝑛,𝑝 est un élément

neutre pour l’addition matricielle.
• [Élément opposé] A+(−A) = 0𝑛,𝑝.

Proposition 2 | Propriétés de la multiplication externe
Soient (A,B) ∈∈𝔐𝑛,𝑝 (𝕂)2 et (λ,μ) ∈ 𝕂2. Alors :
• [Associativité] (λμ).A = λ.(μ.A).
• [Élément neutre] 1.A = A. On dit que 1 est un élément neutre pour la mul-

tiplication externe.
• [Distributivité] (λ+μ) ⋅A = λ ⋅A+μ ⋅A, λ ⋅ (A+B) = λ ⋅A+λ ⋅B.

Multiplication interne. Passons à présent à une troisième opération : celle
du produit matriciel. Nous allons chercher cette fois-ici à multiplier deux matrices
entre elles. La définition ci-après peut paraître parachutéepour lemoment,mais elle
trouvera tout son sens dans le ?? où nous utiliserons les matrices pour traiter des
problèmes d’algèbre linéaire. Pour l’instant l’objectif n’est donc pas de comprendre
pourquoi on définit le produit matriciel ainsi, mais de savoir les calculer.

Définition 11 | Produit matriciel
Soient A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑝
∈𝔐𝑛,p (𝕂) et B = (B𝑖,𝑗)1⩽𝑖⩽𝑝

1⩽𝑗⩽𝑞
∈𝔐p,𝑞 (𝕂), donc telles que le

nombre de colonnes de A soit égal au nombre de lignes de B. Alors on appelle
matrice produit de A par B, notée A×B ou plus simplement AB, la matrice de
format 𝑛×𝑞 définie par :

A×B= (
𝑝
∑
𝑘=1

A𝑖,𝑘B𝑘,𝑗)
1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑞

, autrement dit :

∀(𝑖, 𝑗) ∈ J1 , 𝑛K× J1 , 𝑞K, (A×B)𝑖,𝑗 =
𝑝
∑
𝑘=1

A𝑖,𝑘B𝑘,𝑗.

Remarque 4 (Sur le format desmatrices) On remarque que le nombre de co-
lonnes de A doit obligatoirement être égal au nombre de lignes de B. On pourra
retenir le schéma suivant type « relation de CHASLES » pour connaître le format
de la matrice produit :

Matrice 𝑛×�𝑝 × Matrice�𝑝×𝑞 = Matrice 𝑛×𝑞

En particulier, le produit de deuxmatrices carrées de taille𝑛 est encore unema-
trice carrée de taille 𝑛.

Attention Existence du produit matriciel
,

Toujours vérifier les formats des matrices avant de calculer le produit matriciel
des deux.

5
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Remarque 5 (Visualisation du produit matriciel) Le produit matriciel peut
être illustré, au brouillon, de la façon suivante.

C𝑗
B11 B1𝑗 B1𝑞

B𝑘𝑗

B𝑝1 B𝑝𝑗 B𝑝𝑞

A11 A1𝑝

L𝑖 A𝑖1 A𝑖𝑘 A𝑖𝑝 C𝑖𝑗

A𝑛1 A𝑛𝑝

⎛⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟
⎠

C’est l’image précédente qu’il faut avoir en tête, mais dans la pratique on écrira tou-
jours les deux matrices sur une seule ligne. On retiendra en particulier que pour cal-
culer le coefficient (𝑖, 𝑗) du produit, on a besoin de regarder la 𝑖-ième ligne de la
première et la 𝑗-ième colonne de la deuxième.

Exemple 12 Calculer ⎛⎜
⎝

2 1
1 3
2 0

⎞⎟
⎠
×(

1 0 1
2 −1 3).

PEN-FANCY

Exemple 13 Calculer, si c’est possible, lesproduitsABetBAdans les cas suivants :

1. A= ⎛⎜
⎝

1 2 3
4 5 6
1 2 3

⎞⎟
⎠
, B = ⎛⎜

⎝

1 3
1 1
−1 2

⎞⎟
⎠
,

PEN-FANCY

2. A= (
1 2 3
4 5 6), B = ⎛⎜

⎝

1 3
1 1
−1 2

⎞⎟
⎠
,

PEN-FANCY

3. A= (1 3 7 9), B = (
1
0
−1
0
),

PEN-FANCY

4. A= (
1 0
0 0), B = (

0 1
0 0),

PEN-FANCY

Faire trois constats de ces calculs de produits.
• [Constat 1]

PEN-FANCY

• [Constat 2]
PEN-FANCY

• [Constat 3]

6
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PEN-FANCY

5. A= ⎛⎜
⎝

1 2 1
0 1 0
1 0 1

⎞⎟
⎠
, B = ⎛⎜

⎝

2 4 2
0 1 0
2 2 2

⎞⎟
⎠
.

PEN-FANCY

6. X= (
1
−1), A= (

1 1
1 1).

PEN-FANCY

[Constat]
PEN-FANCY

Résumons les différents constats faits précédemment.

Attention Mises en garde calculatoires
, • Vous avez vu au collège qu’un « un produit (de nombres réels) est nul si et

seulement si un de ses facteurs est nul » (le résultat est encore vrai pour des
complexes). Ceci est en revanche faux pour les matrices. En résumé, on ne
peut simplifier par A ci-dessous :

AB= AC��XX⟹B=C.
De-même, pour tout vecteur colonne X :

AX= 0��XX⟹X=0.

,

Note
En revanche, on pourra opérer à ces simplifications si A est
« inversible », voir plus bas.

• Le produit matriciel n’est pas commutatif, c’est-à-dire en règle généraleAB≠
BA.

Définition 12 | Matrices qui commutent
Soient A,B ∈𝔐𝑛,𝑛 (𝕂) deux matrices carrées. On dit que A et B commutent si

AB= BA.

Pour des « grosses » matrices, il peut être parfois judicieux d’utiliser la formule du
produit matriciel avec la somme pour alléger les calculs. Voyons deux exemples.

Exemple 14
• Pour A ∈𝔐2,2 (𝕂), calculer J2AJ2.

PEN-FANCY

• Conjecturer une formule pour J𝑛AJ𝑛 lorsqueA ∈𝔐𝑛,𝑛 (𝕂). La prouver en uti-
lisant l’expression en somme du produit matriciel.
PEN-FANCY
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Exemple 15 On considère la matrice A de𝔐𝑛,𝑛 (ℝ) ci-dessous :

A=
⎛⎜⎜⎜
⎝

1 1
2 2

𝑛 𝑛

⎞⎟⎟⎟
⎠

.

À l’aide de la formule du produit matriciel, déterminer l’expression du coeffi-
cient général des matrices ci-après. Soit (𝑖, 𝑗) ∈ J1 , 𝑛K2.
1. [AJ𝑛]𝑖,𝑗 =

PEN-FANCY

2. [J𝑛A]𝑖,𝑗 =

PEN-FANCY

Remarque 6 (Produit et écriture en colonne) Il peut être parfois utile de re-
tenir le produit matriciel de la manière suivante, lorsque la matrice de droite est
écrite en colonne.

AB= A×⎛⎜
⎝
C1(B) … C𝑞(B) ⎞⎟

⎠
= ⎛⎜
⎝
A×C1(B) … A×C𝑞(B) ⎞⎟

⎠
.

Les A×C𝑖(B), 𝑖 ∈ J1 , 𝑞K, sont des vecteurs colonnes par définition du produit
matriciel, qui forment les colonnes de la matrice produit AB. En effet, par défi-
nition la 𝑗-ème colonne de AB est

⎛⎜⎜⎜⎜⎜
⎝

𝑝
∑
𝑘=1

A1,𝑘B𝑘,𝑗

𝑝
∑
𝑘=1

A𝑛,𝑘B𝑘,𝑗

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

A1,1 A1,2 A1,𝑝
A2,1 A2,2 A2,𝑝

A𝑛,1 A𝑛,2 A𝑛,𝑝

⎞⎟⎟⎟
⎠

×⎛⎜
⎝

B1,𝑗

 B𝑝,𝑗

⎞⎟
⎠
= A×C𝑗(B).

Proposition 3 | Propriétés de la multiplication
Soient 𝑛,𝑞,𝑝,𝑟 trois entiers non nuls et (A,A′) ∈ 𝔐𝑛,𝑝 (𝕂)2, (B,B′) ∈ 𝔐𝑝,𝑞 (𝕂)2,
C ∈𝔐𝑞,𝑟 (𝕂) et λ ∈𝕂. Alors :
• [Linéarité à gauche] (A+λA′)×B = A×B+λA′×B,
• [Linéarité à droite] A×(B+λB′) = A×B+λA×B′.
• [Associativité] A×(BC) = (AB)C.
• [Neutre] Si 𝑛 = 𝑝, c’est-à-dire si A est une matrice carrée, alors :

I𝑛×A=A×I𝑛 =A.

Exemple 16 Constatons la dernière propriété déjà sur un exemple.

Notons A= (
𝑎 𝑏
𝑐 𝑑) ∈𝔐2,2 (𝕂). Alors :

• AI2 =
PEN-FANCY

• I2A=
PEN-FANCY

Preuve
• On a : A+λA′ ∈ 𝔐𝑛,𝑝 (𝕂) et B ∈ 𝔐𝑝,𝑞 (𝕂) donc (A+λA′) × B ∈ 𝔐𝑛,𝑞 (𝕂). On a aussi

A ∈𝔐𝑛,𝑝 (𝕂) ,B ∈𝔐𝑝,𝑞 (ℝ)doncA×B ∈𝔐𝑛,𝑞 (ℝ), de-mêmepourA′×B. Lesdeuxmatrices
ont donc même format. Soit maintenant (𝑖, 𝑗) ∈ J1 , 𝑛K× J1 , 𝑞K. Alors :

((A+λA′)×B)𝑖,𝑗 =
𝑝
∑
𝑘=1

(A+λA′)𝑖,𝑘B𝑘,𝑗

=
𝑝
∑
𝑘=1

(A𝑖,𝑘+λA′
𝑗,𝑘)B𝑘,𝑗

=
𝑝
∑
𝑘=1

(A𝑖,𝑘B𝑘,𝑗+λA′
𝑗,𝑘B𝑘,𝑗)

=
𝑝
∑
𝑘=1

A𝑖,𝑘B𝑘,𝑗+λ
𝑝
∑
𝑘=1

A′
𝑗,𝑘B𝑘,𝑗

= (AB)𝑖,𝑗+λ(A′B)𝑖,𝑗.

linéarité de la somme

• Identique à la précédente.
• Découle de l’associativité du produit de réels.
• Montrons par exemple que I𝑛×A=A, l’autre se prouvant de la même manière. On a déjà

I𝑛×A ∈𝔐𝑛,𝑛 (𝕂) et A ∈𝔐𝑛,𝑛 (𝕂), les deux matrices ont donc bien le même format.
PEN-FANCY
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Les propriétés précédentes sont donc analogues à celles déjà rencontrées sur les
nombres réelles dans le Chapitre (ALG) 2, avec une exception très importante : la
non-commutativité du produit matriciel.

Transposition matricielle. L’opération de transposition est une opération
qui réalise une « symétrie d’axe 𝑖 = 𝑗 » dans les coefficients de la matrice, c’est-à-dire
un échange entre les lignes et les colonnes.

Exemple 17 Transposer la matrice suivante selon ce principe : A = (
1 2 3
4 5 6).

Où se retrouve le coefficient A1,2 après transposition?
PEN-FANCY

Voyons à présent une définition plus formelle.

Définition 13 | Transposée
Soit A= (A𝑖,𝑗) ∈𝔐𝑛,𝑝 (𝕂) une matrice.
• On appelle transposée de A la matrice de 𝔐𝑝,𝑛 (𝕂), notée A⊤, telle que pour

tout 𝑖 ∈ J1 , 𝑝K et tout 𝑗 ∈ J1 , 𝑛K :
A⊤𝑖,𝑗 =A𝑗,𝑖.

• Autrement dit, le coefficient (𝑖, 𝑗) ∈ J1 , 𝑝K× J1 , 𝑛K de la matrice A⊤ est le co-
efficient (𝑗, 𝑖) de A.

En particulier, le nombre de lignes de A⊤ est le nombre de colonnes de A, et le
nombre de colonnes de A⊤ est le nombre de lignes de A.

Attention
,

Parfois certains livres ou sujets de concours notent la transposée à gauche, c’est-
à-dire ⊤A, mais cette notation a tendance à disparaitre au profit de la notation
anglo-saxonne de ce cours (et du programme).

Exemple 18 On a : (−2 0 1
3 2 1 )

⊤ = (−2 3
0 2
1 1

), (
1
⋮
1
)
⊤
= ( 1 … 1).

Proposition 4 | Propriétés de la transposition
• [Linéarité] Soient A,B ∈𝔐𝑛,𝑝 (𝕂), et λ,μ ∈ 𝕂. Alors :

(λA+μB)⊤ = λA⊤+μB⊤.
• [Involutivité] Soit A ∈𝔐𝑛,𝑝 (𝕂). Alors : (A⊤)⊤ =A.
• [Transposée d’un produit] Soient A ∈𝔐𝑛,𝑝 (𝕂) ,B ∈𝔐𝑝,𝑞 (𝕂), alors :

(A×B)⊤ = B⊤A⊤.

Attention À la formule d’un produit
,

La transposition échange l’ordre d’un produit.

Preuve
• Comme λA+μB ∈ 𝔐𝑛,𝑝 (𝕂), alors (λA+μB)⊤ ∈ 𝔐𝑝,𝑛 (𝕂). De-même A⊤ ∈ 𝔐𝑝,𝑛 (𝕂) et

B⊤ ∈𝔐𝑝,𝑛 (𝕂) donc λA⊤+μB⊤ ∈𝔐𝑝,𝑛 (𝕂).

PEN-FANCY

• Comme A ∈𝔐𝑛,𝑝 (𝕂), A⊤ ∈𝔐𝑝,𝑛 (𝕂), donc (A⊤)⊤ ∈𝔐𝑛,𝑝 (𝕂).

PEN-FANCY

• Comme AB ∈𝔐𝑛,𝑞 (𝕂), (A×B)⊤ ∈𝔐𝑞,𝑛 (𝕂), d’autre part A⊤ ∈𝔐𝑝,𝑛 (𝕂), B⊤ ∈𝔐𝑞,𝑝 (𝕂),
B⊤A⊤ ∈𝔐𝑞,𝑛 (𝕂).

PEN-FANCY

9
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Exemple 19 (Produits XX⊤ et X⊤X) Soit X = ⎛⎜
⎝

𝑥1

𝑥𝑛

⎞⎟
⎠
∈ 𝔐𝑛,1 (𝕂) avec 𝑛 ⩾ 1 et

𝑥𝑖 ∈ 𝕂 pour tout 𝑖 ∈ J1 , 𝑛K. Quel est le format de X⊤X? de XX⊤ ? Exprimer le
coefficient général de chacune des matrices.
PEN-FANCY

Exemple 20 (Produit X⊤.M.X) On considèreD= (
λ1 0
 0 λ2

) avec λ1,λ2 ∈ ℝ. Cal-

culer X⊤DX.
PEN-FANCY

On considère T = (
λ1 α
 0 λ2

) avec λ1,λ2,  α ∈ ℝ. Calculer X⊤TX.

PEN-FANCY

1.3 Et en Python?

Un TP sera consacré aux manipulations de matrices en Python, et aux principales
fonctions existantes. Un outil est dédié pour cela : le module numpy, qui crée notam-
ment des objets appelés tableaux numpy et qui permettent de traiter toute sorte de
calculsmatriciels.Nous faisonsune synthèsedes résultats qui seront vusplus tard.

TERMINALPython (Quelques manipulations matricielles en Python)
>>> import numpy as np

>>>

>>> # Création

>>> A = np.array([[1,2,3], [4,5,6]])

>>> A

array([[1, 2, 3],

       [4, 5, 6]])

>>> B = np.array([[2,3,4], [5,6,7]])

>>> B

array([[2, 3, 4],

       [5, 6, 7]])

>>> type(A)

<class 'numpy.ndarray'>

>>> A.dtype # type des éléments contenus dans A

dtype('int64')

>>> A[1][2]

np.int64(6)

>>> A[1, 2] # autre notation

np.int64(6)

>>> n, p = A.shape # ou np.shape(A) : format de A

>>> A[:, 2] # slicing

array([3, 6])

>>> C = A + B # somme

>>> C

array([[ 3, 5, 7],

       [ 9, 11, 13]])

>>> np.transpose(C) # Transposition

array([[ 3, 9],

       [ 5, 11],

10
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       [ 7, 13]])

>>> A @ np.transpose(B) #Produit Ou encore np.dot(A, \

↪ np.transpose(B))

array([[20, 38],

       [47, 92]])

>>> #Matrices usuelles :

>>> np.zeros((1, 4))

array([[0., 0., 0., 0.]])

>>> np.ones((2, 1)) #Attention : des tuples sont requis pour \

↪ ces deux fonctions

array([[1.],

       [1.]])

>>> np.eye(3, 3)

array([[1., 0., 0.],

       [0., 1., 0.],

       [0., 0., 1.]])

>>> #Mais cela fonctionne aussi :

>>> np.eye(3)

array([[1., 0., 0.],

       [0., 1., 0.],

       [0., 0., 1.]])

Comment créer une matrice sous numpy? On procède généralement en
deux étapes.

1. On initialise un tableau généralement de zéros (à l’aide de np.zeros) qui a le bon
format.

2. On complète les coefficients voulus, généralement à l’aide d’une boucle for.

Voyons un exemple.

Exemple 21 Soit 𝑛 ∈ℕ⋆ et A= (𝑎𝑖𝑗)1⩽𝑖,𝑗⩽𝑛 ∈𝔐𝑛 (ℝ) la matrice définie par :
∀(𝑖, 𝑗) ∈ {1,…𝑛}2, 𝑎𝑖𝑗 = (𝑖+ 𝑗)2.

Alors la fonction suivante code la matrice A.
def creer_matrice(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            A[i, j] = ((i+1)+(j+1))**2

    return A

>>> creer_matrice(4)

array([[ 4., 9., 16., 25.],

       [ 9., 16., 25., 36.],

       [16., 25., 36., 49.],

       [25., 36., 49., 64.]])

Ou bien :
def creer_matrice(n):

    A = np.zeros((n, n))

    for i in range(1, n+1):

        for j in range(1, n+1):

            A[i-1, j-1] = (i+j)**2

    return A

Attention
,

Il convient de faire très attention au décalage entre les indices mathématiques
(i+1, j+1 ici car i, j partent de 0), et informatiques ( i, j).

2 MATRICES CARRÉES

Dans cette section, nous discutons de résultats très spécifiques auxmatrices carrées.
Elles seront donc le plus souvent de format 𝑛×𝑛 avec 𝑛 ⩾ 1.

2.1 Matrices remarquables

Définition 14 | Matrice diagonale, triangulaire
Soit A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑛
∈𝔐𝑛,𝑛 (𝕂). Alors :

• on appelle coefficients diagonaux de la matrice A les coefficients de la forme
A𝑖,𝑖,1 ⩽ 𝑖 ⩽ 𝑛, ce sont ceux sur la diagonale de A (colorés en bleu infra) :

A=
⎛⎜⎜⎜
⎝

A1,1 A1,2 A1,𝑛
A2,1 A2,2 A2,𝑛

A𝑛,1 A𝑛,2 A𝑛,𝑛

⎞⎟⎟⎟
⎠

.

• On dit que A est unematrice diagonale de𝔐𝑛,𝑛 (𝕂) si :
∀(𝑖, 𝑗) ∈  J1 , 𝑛K2, 𝑖 ≠ 𝑗 ⟹ A𝑖,𝑗 = 0.

Autrement dit, si tous les coefficients de A sont nuls sauf peut-être ceux de la

11
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diagonale, A est donc de la forme :

⎛⎜⎜⎜
⎝

A1,1 0 0
0 A2,2

0
0 0 A𝑛,𝑛

⎞⎟⎟⎟
⎠

.

• On dit que A est une matrice triangulaire supérieure (resp. inférieure) de
𝔐𝑛,𝑛 (𝕂) si :

∀(𝑖, 𝑗) ∈  J1 , 𝑛K2, 𝑖 > 𝑗  (resp. 𝑖 < 𝑗) ⟹ A𝑖,𝑗 = 0.
Autrement dit, si tous les coefficients deA situés en-dessous (resp. au-dessus)
de la diagonale sont nuls, A est donc de la forme :

A=
⎛⎜⎜⎜
⎝

A1,1 A1,2 A1,𝑛
0

0 0 A𝑛,𝑛

⎞⎟⎟⎟
⎠

, resp. A=
⎛⎜⎜⎜
⎝

A1,1 0 0

0
A𝑛,1 A𝑛,𝑛

⎞⎟⎟⎟
⎠

.

Elle est dite strictement triangulaire supérieure (resp. strictement triangulaire
inférieure) si elle est triangulaire supérieure (resp. inférieure) à coefficients
diagonaux nuls.

Remarque 7 (Négations) Soit A = (A𝑖,𝑗)1⩽𝑖⩽𝑛
1⩽𝑗⩽𝑛

∈ 𝔐𝑛,𝑛 (𝕂). On peut écrire les

proposition logiques suivantes à l’aide de quantificateurs.
• «A n’est pas triangulaire supérieure »,

PEN-FANCY

• «A n’est pas diagonale ».
PEN-FANCY

Notation
Σ

SiA est diagonale de coefficients diagonaux𝑎1,…,𝑎𝑛 ∈𝕂, onnote généralement
A=Diag(𝑎1,…,𝑎𝑛).

Proposition 5 | Stabilité
• Le produit et la somme de deux matrices diagonales est une matrice diago-

nale.
• Le produit et la somme de deux matrices triangulaires supérieures (resp. in-

férieures) est une matrice triangulaire supérieure (resp. inférieure).
• La transposée d’une matrice triangulaire supérieure (resp. inférieure) est une

matrice triangulaire inférieure (resp. supérieure).

Définition 15 | Matrice symétrique/antisymétrique
Soit A= (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑛
∈𝔐𝑛,𝑛 (𝕂). On dit que :

• A est symétrique si A⊤ =A, c’est-à-dire si :
∀(𝑖, 𝑗) ∈ J1 , 𝑛K2, A𝑖,𝑗 =A𝑗,𝑖. (analogie : notion de fonction paire)

• A est antisymétrique si A⊤ =−A, c’est-à-dire si :
∀(𝑖, 𝑗) ∈ J1 , 𝑛K2, A𝑖,𝑗 =−A𝑗,𝑖. (analogie : notion de fonction impaire)

Exemple 22 A= ⎛⎜
⎝

5 2 3
2 −3 0
3 0 5

⎞⎟
⎠
est symétrique,B = ⎛⎜

⎝

0 −2 −3
2 0 1
3 −1 0

⎞⎟
⎠
est antisymétrique.

Remarque8 Les coefficients diagonauxd’unematrice antisymétrique sontnuls.
En effet, soit A = (A𝑖,𝑗)1⩽𝑖⩽𝑛

1⩽𝑗⩽𝑛
∈ 𝔐𝑛,𝑛 (𝕂) une matrice antisymétrique. Soit 𝑖 ∈

J1 , 𝑛K2, alors par définition :
A𝑖,𝑖 =−A𝑖,𝑖 ⟺ 2A𝑖,𝑖 = 0 ⟺ A𝑖,𝑖 = 0.

Exemple 23 Parmi les matrices suivantes, préciser leur nature diagonale, trian-
gulaire, symétrique etc. : I𝑛, J𝑛.
PEN-FANCY
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Exemple 24 SoitM∈𝔐𝑛,𝑛 (𝕂). Montrer que S =M⊤M est symétrique.
PEN-FANCY

2.2 Puissances & Nilpotence

Définition 16 | Puissance 𝑝-ième
Soit A ∈ 𝔐𝑛,𝑛 (𝕂) avec 𝑛 ⩾ 1 et 𝑘 ⩾ 0. On définit par récurrence la matrice A𝑝

pour tout 𝑝 ∈ℕ comme étant :
A0 = I𝑛, ∀𝑝 ∈ ℕ, A𝑝+1 =A×A𝑝 =A𝑝×A.

De manière plus explicite, il s’agit d’un produit de 𝑝matrices, toutes égales à A :
A𝑝 =A×⋯×A⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

𝑝-fois
.

Le calcul des puissances itérées d’une matrice est généralement difficile, nous ver-
rons dans cette section quelques techniques pour y parvenir.

Définition 17 | Matrice nilpotente
Soit A ∈𝔐𝑛,𝑛 (𝕂). Alors :
• A est dite nilpotente s’il existe 𝑝 ∈ℕ tel que A𝑝 = 0𝑛,𝑛.
• Dans ce cas, l’indice de nilpotence est le plus petit exposant 𝑘 vérifiant A𝑘 =

0𝑛,𝑛.

Exemple 25 Les matrices 0𝑛,𝑛 et I𝑛 sont-elles nilpotentes? Si oui, de quelle
ordre?
PEN-FANCY

Exemple 26

• Montrer queA= ⎛⎜
⎝

0 1 2
0 0 3
0 0 0

⎞⎟
⎠

est nilpotente. (Unematrice triangulaire supérieure avec

des zéros sur la diagonale est le cas typique de matrice nilpotente)

PEN-FANCY

• Montrer queB = (
1 1
−1 −1) est nilpotente. (Il existe donc desmatrices nilpotentes qui

ne sont pas strictement triangulaires supérieures)

PEN-FANCY

L’intérêt d’une matrice nilpotente est qu’il est facile de calculer ses puissances car
elles s’annulent toutes à partir d’un certain rang.

Exemple 27 Conjecturer une formule pour les puissances de I2, J2, puis I𝑛, J𝑛.
PEN-FANCY

Démontrer cette conjecture par récurrence sur l’indice de puissance.
PEN-FANCY

13
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Proposition 6 | Propriétés de la puissance
Soit A ∈𝔐𝑛,𝑛 (𝕂) et (𝑝,𝑞) ∈ ℕ2, on a :

A𝑝×A𝑞 =A𝑝+𝑞, (A𝑝)𝑞 =A𝑝𝑞.

Attention
,

En revanche, en règle générale (AB)𝑝 ≠ A𝑝B𝑝, sauf si les matrices A et B com-
mutent.

De manière générale, pour les matrices diagonales nous avons le résultat suivant.

Proposition 7 | Puissances d’unematrice diagonale
Soit D ∈ 𝔐𝑛,𝑛 (𝕂) une matrice diagonale de coefficients diagonaux λ1,…,λ𝑛 ∈
𝕂, c’est-à-dire :

D=Diag(λ1,…,λ𝑛) =
⎛⎜⎜⎜
⎝

λ1 0 0
0 λ2

0
0 0 λ𝑛

⎞⎟⎟⎟
⎠

,

alors pour tout 𝑘 ∈ℕ :

D𝑘 =Diag (λ𝑘1 ,…,λ𝑘𝑛) =
⎛⎜⎜⎜
⎝

λ𝑘1 0 0
0 λ𝑘2

0
0 0 λ𝑘𝑛

⎞⎟⎟⎟
⎠

.

Cette proposition parait anecdotique, et pourtant elle servira très régulièrement en
2ème année.

Preuve (Point clef — Récurrence sur 𝑘)
Faisons par exemple la preuve dans le cas 𝑛 = 2.
PEN-FANCY

Théorème 1 | Binôme de NEWTON pour les matrices ♥

Soit A,B ∈ 𝔐𝑛,𝑛 (𝕂)2 deux matrices carrées qui commutent, c’est-à-dire telles
que : AB= BA . Alors :

∀𝑝 ∈ℕ, (A+B)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)A𝑘B𝑝−𝑘.

Attention
,

L’hypothèsede commutativité est cruciale. En effet, (A+B)2 =A2+AB+BA+B2 ≠
A2+2AB+B2, sauf si A,B commutent.

Note
Pour des réels ou complexes la formule du binôme ne faisait pas
apparaitre une telle hypothèse, tout simplement car deux réels ou deux
complexes commutent toujours !

La preuve est strictement la même que pour les réelles et complexes.

Preuve (Point clef — Récurrence sur 𝑝)
Montrons par récurrence que :

∀𝑝 ∈ℕ, (A+B)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)A𝑘B𝑝−𝑘.

Initialisation. On a (A+B)0 = 1 et
0
∑
𝑘=0

(
0
𝑘
)A𝑘B0−𝑘 = (

0
0
)A0B0 = 1.

14
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Hérédité. Soit 𝑛 ∈ℕ, on suppose que (A+B)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)A𝑘B𝑛−𝑘. Alors :

(A+B)𝑛+1 = (A+B)
𝑛
∑
𝑘=0

(
𝑛
𝑘
)A𝑘B𝑛−𝑘

=
𝑛
∑
𝑘=0

(
𝑛
𝑘
)A𝑘+1B𝑛−𝑘+

𝑛
∑
𝑘=0

(
𝑛
𝑘
)BA𝑘B𝑛−𝑘

=
𝑛
∑
𝑘=0

(
𝑛
𝑘
)A𝑘+1B𝑛−𝑘+

𝑛
∑
𝑘=0

(
𝑛
𝑘
)A𝑘B𝑛+1−𝑘

=
𝑛+1
∑
𝑖=1

(
𝑛

𝑖−1
)A𝑖B𝑛−𝑖+1+

𝑛
∑
𝑘=0

(
𝑛
𝑘
)A𝑘B𝑛+1−𝑘

= (
𝑛
𝑛
)A𝑛+1B0+

𝑛
∑
𝑖=1

(
𝑛

𝑖−1
)A𝑖B𝑛−𝑖+1+

𝑛
∑
𝑘=1

(
𝑛
𝑘
)A𝑘B𝑛+1−𝑘+(

𝑛
0
)A0B𝑛+1−0

=A𝑛+1+
𝑛
∑
𝑘=1

((
𝑛

𝑘−1
)+(

𝑛
𝑘
))A𝑘B𝑛+1−𝑘+B𝑛+1

=A𝑛+1+
𝑛
∑
𝑘=1

(
𝑛+1
𝑘

)A𝑘B𝑛+1−𝑘+B𝑛+1

=
𝑛+1
∑
𝑘=0

(
𝑛+1
𝑘

)A𝑘B𝑛+1−𝑘.

linéarité de la somme

A,B commutent

𝑖 = 𝑘+1

formule de PASCAL

D’où le résultat par principe de récurrence.

La plupart du temps, les matrices A,B précédentes ne seront pas données explicite-
ment. Un premier enjeu sera donc de pouvoir décomposer une matrice donnée en
une somme A+B avec A,B qui commutent. Le plus souvent, afin de simplifier les
calculs, nous essaierons de choisir B nilpotente.

Méthode (ALG) 7.1 (Binôme et calculs des puissances)
• Si on arrive à écrire une matrice comme somme d’une matrice D diagonale

et d’une matrice nilpotente N (c’est-à-dire telle que N𝑘0 = 0 pour un certain
𝑘0 ∈ ℕ), qui commutent, on utilise la formule du binôme matricielle :

(D+N)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘.

Supposons queN est nilpotente d’ordre𝑘0, alors : N𝑘 = 0𝑛,𝑛 dès que𝑘 ⩾ 𝑘0.
Et on a :

(D+N)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘

=
𝑘0−1
∑
𝑘=0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘+

𝑝
∑
𝑘=𝑘0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

.

La seconde somme est toujours nulle : soit parce queN est nilpotente d’ordre

𝑘0 si 𝑝 ⩾ 𝑘0, soit par convention sur les sommes dans le cas 𝑝 < 𝑘0.
• On peut toujours écrire une matrice B sous la forme suivante :

B𝑝 = (B−I𝑛+I𝑛)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)(B−I𝑛)𝑘

= (B+I𝑛−I𝑛)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)(−1)𝑝−𝑘 (B+ I𝑛)𝑘 .

Exemple 28 Soit A = ⎛⎜
⎝

1 1 2
0 1 0
0 0 1

⎞⎟
⎠
∈ 𝔐3,3 (ℝ) . Montrer que A𝑝 = ⎛⎜

⎝

1 𝑝 2𝑝
0 1 0
0 0 1

⎞⎟
⎠

pour

tout 𝑝 ∈ℕ.
PEN-FANCY

Exemple 29 Soit A= ⎛⎜
⎝

𝑎 𝑏 0
0 𝑎 𝑏
0 0 𝑎

⎞⎟
⎠
∈𝔐3,3 (ℝ) . Calculer A𝑝 pour tout 𝑝 ∈ℕ.

PEN-FANCY
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Exemple 30 Soit A=
⎛⎜⎜⎜⎜⎜
⎝

0 1 1
1

1
1 1 0

⎞⎟⎟⎟⎟⎟
⎠

∈𝔐𝑛,𝑛 (ℝ). Calculer A𝑝 pour tout 𝑝 ∈ℕ.

PEN-FANCY

Calcul des puissances à l’aide d’un polynôme annulateur. Lors-
qu’une matrice satisfait une relation polynôme, on peut s’en servir pour calculer ses
puissances. Voyons cela au travers d’un exemple. (la méthode sera toujours détaillée par
des questions intermédiaires)

Exemple 31 Soit A= (
0 1
−2 3).

1. Vérifier que A2 = 3A−2I2.
PEN-FANCY

2. Montrer qu’il existe deux suites (𝑢𝑛) et (𝑣𝑛) telles que
∀𝑛 ∈ℕ, A𝑛 =𝑢𝑛A+𝑣𝑛I2.

Initialisation.
PEN-FANCY

Hérédité.
PEN-FANCY

3. EndéduireA𝑛 pour tout𝑛 ∈ℕ, enmontrant que (𝑢𝑛) satisfait une récurrence
linéaire d’ordre 2.
PEN-FANCY

16
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2.3 Inversion

Onavuque lamultiplicationmatriciellenous réserve certaines surprises, enparticu-
lier la simplification est impossible de manière systématique. Mais qu’entendait-on
par simplification?

Remarque 9 (Position du problème) On souhaite définir une nouvelle notion
permettant de simplifier par une matrice dans une égalité, c’est-à-dire :

�A×B=�A×C ⟹ B=C.
• Regardons le cas de réels. Soient (𝑏,𝑐) ∈ (ℝ)2 et 𝑎 ∈ ℝ∗ (non nul). Supposons

que :
𝑎𝑏 = 𝑎𝑐, et on souhaite prouver que 𝑏 = 𝑐.

Comme 𝑎 ≠ 0, on peut multiplier de chaque côté par 𝑎−1 = 1
𝑎 :

𝑎𝑏 = 𝑎𝑐 ⟹ (𝑎−1𝑎)𝑏 = (𝑎−1𝑎)𝑐 ⟹ 𝑏 = 𝑐.
• Pour desmatrices, onnedisposepar encore dematrice «A−1 ». Pour la définir,

deux idées possibles. Soit A ∈𝔐𝑛,𝑛 (𝕂).

⋄ [Mauvaise idée] Poser A−1 = ( 1
A𝑖,𝑗

)
1⩽𝑖,𝑗⩽𝑛

lorsque les coefficients sont

tous non nuls. Seulement on voit assez vite avec cette définition queA−1 ×

A ≠ I𝑛. Par exemple, si A= (
1 2
3 4) et B = (

1 1
2

1
3

1
4
), alors AB≠ I2.

⋄ [Bonne idée] Une propriété que vérifie𝑎−1 dansℝ, et parfaitement pro-
longeable aux matrices, est :

𝑎−1𝑎 = 𝑎𝑎−1 = 1.

On arrive alors directement à la notion de matrice inverse.

2.3.1 Généralités

Définition/Proposition 1 | Matrice inversible & Groupe linéaire ♥

• Une matrice A ∈ 𝔐𝑛,𝑛 (𝕂) est dite inversible s’il existe une matrice B ∈
𝔐𝑛,𝑛 (𝕂) telle que : A×B= B×A= I𝑛.

• Dans ce cas, B est aussi inversible, elle est unique, on l’appelle la matrice in-
verse de A, et on la note B = A−1.

Notation
Σ

On note GL𝑛(𝕂) l’ensemble des matrices inversibles, appelé groupe linéaire de
𝔐𝑛,𝑛 (𝕂).

On pourrait éventuellement considérer des matrices rectangulaires dans la défini-
tion précédente mais nous aurons très vite plus tard dans l’année des arguments
pour prouver qu’il n’existe que des matrices carrées inversibles. (Un argument pourrait
être donné dès maintenant si nous avions la trace d’une matrice au programme.)

Preuve (Unicité de l’inverse) Il nous faut prouver l’unicité de B : soient donc B,B′ deux
inverses de A. Alors : B= BI𝑛 =B(AB′) = (BA)B′ = I𝑛B′ =B′.

Puisque l’on multiplie tantôt à droite et tantôt à gauche, la notion d’inverse n’est va-
lable que pour des matrices carrées.

La définition mentionne qu’il faut avoir AB = BA = I𝑛, en pratique c’est un peu plus
simple

Théorème 2 | Inverse à droite/gauche
• Soit (A,B) ∈𝔐𝑛,𝑛 (𝕂)2, alors : AB= I𝑛 ⟺ BA= I𝑛.
• Par conséquent, pour A ∈𝔐𝑛,𝑛 (𝕂) :

A est inversible ⟺ ∃B∈𝔐𝑛,𝑛 (𝕂) , AB = I𝑛, (inverse à droite)

⟺ ∃B∈𝔐𝑛,𝑛 (𝕂) , BA = I𝑛. (inverse à gauche)

Nous admettons ce résultat, dont la preuve dépasse très largement le programmede
BCPST.

Exemple 32 Étudier l’inversibilité de la matrice nulle, de l’identité, puis des ma-
trices homothétiques.
PEN-FANCY
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Exemple 33 (Inverse donné) Soient C = (
2 i
−i 1), D = (

1 −i
i 2 ). Alors C est

inversible d’inverseD.
PEN-FANCY

Exemple 34 (Inverse non donné) Montrer que les matrices A= (
1 0
0 −1) et B =

(
−1 0
0 1) sont inversibles, en utilisant la définition.

PEN-FANCY

Attention Une somme de matrices inversibles n’est pas forcément inversible
,

Les matrices A et B définies dans l’exemple précédent sont inversibles mais leur
somme ne l’est pas, car égale à la matrice nulle qui n’est pas inversible.

Proposition 8 | Propriétés de l’inversion
• [Inverse d’un produit] Soient A,B ∈ 𝔐𝑛,𝑛 (𝕂) inversibles, alors A×B est

inversible et : (A×B)−1 = B−1×A−1.
• [Inverse d’un inverse] SoitA ∈𝔐𝑛,𝑛 (𝕂) inversible. AlorsA−1 est inversible

d’inverse elle-même : (A−1)−1 =A.
• [Transposition et inversion commutent] Soit A ∈ 𝔐𝑛,𝑛 (𝕂) inversible.

Alors A⊤ est inversible aussi et l’on a : (A⊤)−1 = (A−1)⊤ .

Attention À la formule d’un produit
,

L’inversion échange l’ordre d’un produit, comme pour la transposition.

Preuve (Point clef — Vérifier la définition d’unematrice inverse)

• PEN-FANCY

• PEN-FANCY

• PEN-FANCY

Revenons à présent à la motivation initiale : celle de pouvoir simplifier des matrices
dans des égalités.

Proposition 9 | Simplification par unematrice inversible
Soit A ∈𝔐𝑛,𝑛 (𝕂) une matrice inversible. Alors :
• ∀B,C ∈𝔐𝑛,𝑝 (𝕂), AB= AC ⟹ B=C.
• ∀X ∈𝔐𝑛,1 (𝕂), AX= 0𝑛,1 ⟹ X=0𝑛,1.

Attention à ne pas oublier d’analyser l’inversibilité. Nous avons déjà vu des contre-
exemples dans le cas contraire.

18
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Preuve
• PEN-FANCY

• PEN-FANCY

♥ Exemple 35 Soit A ∈𝔐𝑛,𝑛 (𝕂) une matrice nilpotente. Peut-elle être inver-
sible?
PEN-FANCY

Inversibilité de matrices remarquables. Les inversibilités mentionnées
ci-après pourront être utilisées sans justification supplémentaire. Nous admettons
pour le moment celle concernant les matrices triangulaires.

Proposition 10 | Inversibilité dematrices diagonales & triangulaires
Soit (λ1,…,λ𝑛) ∈ 𝕂𝑛.
• [Cas diagonal] SoitM=Diag(λ1,…,λ𝑛). Alors :

M est inversible ⟺ ∀𝑖 ∈ J1 , 𝑛K, λ𝑖 ≠ 0.
Dans ce cas, nous avons :

M−1 =Diag(
1
λ1
,…,

1
λ𝑛

) .

• [Cas triangulaire] SoitM=
⎛⎜⎜⎜
⎝

λ1 ⋆ ⋆
0 λ2

⋆
0 0 λ𝑛

⎞⎟⎟⎟
⎠

ou
⎛⎜⎜⎜
⎝

λ1 0 0
⋆ λ2

0
⋆ ⋆ λ𝑛

⎞⎟⎟⎟
⎠

. Alors :

M est inversible ⟺ ∀𝑖 ∈ J1 , 𝑛K, λ𝑖 ≠ 0.

En revanche, dans le cas triangulaire, il n’y a pas d’expression simple de l’inverse.

Preuve Faisons pour simplifier la preuve dans le cas 𝑛 = 2. Elle est identique dans le cas
général.
• ⟸

PEN-FANCY

⟹

PEN-FANCY

• Admis provisoirement. On peut déduire le résultat pour les triangulaires inférieures à
l’aide des supérieures en transposant.

2.3.2 Premières techniques de calcul Onprésente des techniques de cal-
cul très proches de la définition dans cette section. La méthode principale, dite
d’« échelonnement », sera vue dans le ??.

Avec la définition. Cette technique a été employée dans l’Exemple 34. On
cherche l’inverse sous la forme B = (B𝑖,𝑗)1⩽𝑖⩽𝑛,

1⩽𝑗⩽𝑛
et on injecte ces inconnues dans le

problème AB = BA = I𝑛. En revanche, cette méthode est vite compliquée à mettre
en oeuvre dès que les matrices sont de taille au moins 3×3.

Calcul d’un inverse à l’aide d’un polynôme annulateur. Cette
méthode est basée sur l’existence d’une relation polynomiale en la matrice.
Découvrons-là au travers d’un exemple.

Exemple 36 SoitM=⎛⎜
⎝

2 −2 1
2 −3 2
−1 2 0

⎞⎟
⎠
.

• La matriceM vérifie la relationM2+2M−3I3 = 03.

19
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PEN-FANCY

• On déduit alors queM est inversible et on peut calculer son inverse.

Indication : Onmontrera queM−1 = ⎛⎜
⎝

4
3

−2
3

1
3

2
3

−1
3

2
3

−1
3

2
3

2
3

⎞⎟
⎠

PEN-FANCY

Attention Factorisation matricielle
,

Attention à la factorisation par une matrice A ∈𝔐𝑛,𝑛 (𝕂) :
• par exemple A3+A2+A=A(A2+A+ I𝑛 ) ,
• et non A(A2+A+ 1) qui n’a pas de sens.  (on ne peut ajouter un réel à une ma-

trice !)

De manière générale, formalisons cela dans une méthode.

Méthode (ALG) 7.2 (Inverse matriciel à l’aide d’un polynôme annula-
teur) Supposons qu’il existe 𝑎0,…,𝑎𝑝 ∈ 𝕂, et soit A ∈ 𝔐𝑛,𝑛 (𝕂) une matrice
carrée vérifiant :

𝑎0I𝑛+𝑎1A+…+𝑎𝑝A𝑝 = 0𝑛. (⋆)
On dit que P ∶ 𝑥⟼𝑎0+𝑎1𝑥+…+𝑎𝑝𝑥𝑝 est un polynôme annulateur de A.
• Si 𝑎0 = 0 : alors on montre par l’absurde que A n’est pas inversible.

• Si 𝑎0 ≠ 0 : alors on montre que A est inversible. En effet, (⋆) est équivalente
à 𝑎1A+…+𝑎𝑝A𝑝 =−𝑎0I𝑛, puis étant donné que 𝑎0 est non nul :

A(−
𝑎1
𝑎0
I𝑛+…−

𝑎𝑝
𝑎0
A𝑝−1) = I𝑛.

LamatriceAest alors inversible (onamontré l’existenced’un inverseàdroite)
d’inverse −𝑎1

𝑎0
I𝑛+…− 𝑎𝑝

𝑎0
A𝑝−1.

Attention
,

Il est fondamental que 𝑎0, c’est-à-dire le coefficient devant l’identité, soit non
nul.

Exemple 37
• Une matrice nilpotente vérifie une relation du type A𝑝 = 0 avec 𝑝 un entier,

elle n’est pas inversible (nous l’avion déjà prouvé). On le retrouve avec la mé-
thode précédente puisque le coefficient devant l’identité est nul.

• Montrer que si A2−A= 0 et A≠ I𝑛 alors A n’est pas inversible.
PEN-FANCY

• Montrer que J𝑛 n’est pas inversible.
PEN-FANCY

Cas particulier de la dimension deux. Passons à présent aux petites ma-
trices de tailles 2×2.

Définition 18 | Déterminant d’unematrice 2×2

Soit A = (
𝑎 𝑏
𝑐 𝑑) ∈𝔐2,2 (𝕂). On appelle déterminant de A, noté detA, la quantité

detA= 𝑎𝑑−𝑏𝑐.
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Définition/Proposition 2 | Inversibilité d’unematrice 2×2&Déterminant♥

• Soit A= (
𝑎 𝑏
𝑐 𝑑) ∈𝔐2,2 (𝕂). Alors : A est inversible ⟺ det(A) ≠ 0.

• En cas d’inversibilité, on a : A−1 =
1

det(A)
(
𝑑 −𝑏
−𝑐 𝑎 ).

Preuve Soit A= (
𝑎 𝑏
𝑐 𝑑) et B= (

𝑑 −𝑏
−𝑐 𝑎 ). Calculons AB.

AB= (
𝑎 𝑏
𝑐 𝑑)×(

𝑑 −𝑏
−𝑐 𝑎 ) = (

𝑎𝑑−𝑏𝑐 0
0 𝑎𝑑−𝑏𝑐) = det(A)× I2.

• Supposons det(A) ≠ 0, alors A× ( 1
det(A)B) = I2. La matrice A est donc inversible et A−1 =

1
det(A) (

𝑑 −𝑏
−𝑐 𝑎 ).

• Supposons que det(A) = 0. Si A était inversible, alors AB = 02,2 entraînerait A−1AB = 02,2,
c’est-à-dire B= 02,2 ce qui est clairement absurde. Ainsi A n’est pas inversible.

On déduit donc le résultat.

Exemple 38 Retrouver l’inversibilité des matrices de l’Exemple 34 à l’aide du
déterminant, en précisant l’inverse.
PEN-FANCY

Exemple 39 Soit A = (
1 2
0 3) et λ ∈ 𝕂. Quand est-ce que la matrice A−λI2 est

inversible?
PEN-FANCY

Exemple 40 Soit A ∈ 𝔐2,2 (𝕂) une matrice inversible. Exprimer det (A−1) en
fonction de detA.
PEN-FANCY

2.4 Matrices semblables

Définition 19 | Matrices semblables
• SoientA etB deuxmatrices de𝔐𝑛,𝑛 (𝕂). AlorsA etB sont dites semblables s’il

existe une matrice inversible P ∈GL𝑛(𝕂) telle que : A= PBP−1.
• Si𝕂= ℂ, deux matrices sont dites semblables sur ℝ s’il existe une matrice in-

versible P ∈GL𝑛(ℝ) telle que A= PBP−1.

Notation
Σ

On notera A∼ B lorsque deux matrices sont semblables.

Proposition 11 | Puissances et matrices semblables [H.P]
SoientA etBdeuxmatrices semblables de𝔐𝑛,𝑛 (𝕂), c’est-à-dire telles qu’il existe
une matrice inversible P ∈𝔐𝑛,𝑛 (𝕂) , A= PBP−1. Alors :

∀𝑛 ∈ℕ, A𝑛 = (PBP−1)𝑛 = PB𝑛P−1.

Ce résultat est indiqué comme [H.P] (vous ne pouvez pas l’utiliser tel quel),mais est
extrêmement classique, il est donc important d’en connaître la preuve. L’idée intui-
tive est la suivante : il y a une simplification terme par terme.

(PBP−1)𝑛 = (PB��P−1)× (�PB��P−1)×⋯×(�PBP−1) = PB𝑛P−1.

Preuve (Point clef — Récurrence sur𝑛)

PEN-FANCY
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Nous verrons dans de futurs chapitres une interprétation de la relation de similitude
entre deux matrices. Nous nous intéressons seulement ici à une application calcu-
latoire.

Définition 20 | Diagonalisable, Trigonalisable
Soit A ∈𝔐𝑛,𝑛 (𝕂).
• La matriceA est dite diagonalisable si elle est semblable à une matrice diago-

nale, c’est-à-dire s’il existeD ∈𝔐𝑛,𝑛 (𝕂) diagonale, et P ∈𝔐𝑛,𝑛 (𝕂) inversible
de sorte que : A= PDP−1. De manière équivalente :

A est diagonalisable ⟺ ∃P∈GL𝑛(𝕂), P−1AP est diagonale.
Diagonaliser A c’est trouver un choix deD,P qui convient.

• Une matrice A ∈ 𝔐𝑛,𝑛 (𝕂) est dite trigonalisable si elle est semblable à une
matrice triangulaire supérieure, c’est-à-dire s’il existe T ∈ 𝔐𝑛,𝑛 (𝕂) triangu-
laire supérieure, et P ∈ 𝔐𝑛,𝑛 (𝕂) inversible de sorte que : A = PTP−1. De
manière équivalente :

A est trigonalisable ⟺ ∃P∈GL𝑛(𝕂), P−1AP est triangulaire.
Trigonaliser A c’est trouver un choix de T,P qui convient.

En première année, les matrices P et D seront toujours données, en seconde année
vous aurez des méthodes pour savoir si une matrice est diagonalisable ou pas, et le
cas échéant déterminer D,P. La trigonalisation ne sera quant à elle pas étudiée en
BCPST de manière générale.

Exemple 41
1. Déterminer les matrices semblables à l’identité.

PEN-FANCY

2. Justifier que la matrice nulle est diagonalisable, la matrice identité ainsi que
toute matrice diagonale.
PEN-FANCY

À quoi peut bien servir de diagonaliser une matrice? Une application importante
est la possibilité de pouvoir calculer les puissances facilement (cette application en
induit beaucoup d’autres, notamment en analyse sur les suites,mais nous le verrons
plus tard).

Méthode (ALG) 7.3 (Comment trouver les puissances d’une matrice diagona-
lisable?)
1. Diagonaliser la matrice A : vérifier la relation A = PDP−1 avecD diagonale et

P inversible. En première année les matricesD,P seront toujours données.
2. CalculerD𝑛 pour tout 𝑛 ∈ℕ.
3. A𝑛 = PD𝑛P−1, que l’onmontre généralementpar récurrence, on endéduitA𝑛.

Appliquons cette démarche sur un exemple.

Exemple 42 Considérons J2 = (
1 1
1 1) et P = (

1 1
−1 1).

1. Vérifier que P est inversible et calculer P−1.
PEN-FANCY

2. Montrer que J2 est diagonalisable.
PEN-FANCY

3. Prouver par récurrence que pour tout 𝑛 ∈ℕ, J𝑛2 = PD𝑛P−1.
PEN-FANCY
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4. En déduire J𝑛2 pour tout 𝑛 ∈ ℕ. Constater que l’on retrouve bien l’expression
établie dans un précédent exemple.
PEN-FANCY

Exemple 43 Considérons A= ⎛⎜
⎝

5 1 2
−1 7 2
1 1 6

⎞⎟
⎠

et P = ⎛⎜
⎝

1 1 1
1 −1 1
−1 1 1

⎞⎟
⎠
.

1. Vérifier que P est inversible et que P−1 = ⎛⎜
⎝

1
2 0 −1

2
1
2

−1
2 0

0 1
2

1
2

⎞⎟
⎠
.

PEN-FANCY

2. Montrer que A est diagonalisable.
PEN-FANCY

3. On a pour tout 𝑛 ∈ℕ, A𝑛 = PD𝑛P−1 : même preuve que précédemment.
4. En déduire que :

∀𝑛 ∈ℕ, A𝑛 = ⎛⎜
⎝

22𝑛−1+2𝑛−13𝑛 23𝑛−1−2𝑛−13𝑛 −22𝑛−1+23𝑛−1

22𝑛−1−2𝑛−13𝑛 23𝑛−1+2𝑛−13𝑛 −22𝑛−1+23𝑛−1

−22𝑛−1+2𝑛−13𝑛 23𝑛−1−2𝑛−13𝑛 22𝑛−1+23𝑛−1
⎞⎟
⎠
.

PEN-FANCY

Traitement matriciel d’une récurrence linéaire sur un exemple. Il
est possible de reformuler une récurrence linéaire d’ordre deux ou plus à l’aide de
matrices, mais pour simplifier nous ferons la présentation uniquement pour l’ordre
deux.

Exemple44 (Traitementmatricield’unesuite récurrente linéaire) Onconsi-
dère la suite définie par 𝑢0 = 0, 𝑢1 = 1, et :

∀𝑛 ∈ℕ, 𝑢𝑛+2 =−
1
2
𝑢𝑛+

3
2
𝑢𝑛+1.

Cette dernière égalité est équivalente à la suivante :

∀𝑛 ∈ℕ, (
𝑢𝑛+1
𝑢𝑛+2

) = (
𝑢𝑛+1

− 1
2𝑢𝑛+

3
2𝑢𝑛+1

) = (
0 1
− 1
2

3
2
)(

𝑢𝑛
 𝑢𝑛+1

).

23



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

24
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Ainsi, en définissant

X𝑛 = (
𝑢𝑛
 𝑢𝑛+1

), A = (
0 1
− 1
2

3
2
),

nous obtenons la récurrence vectorielle ci-après :

∀𝑛 ∈ℕ, X𝑛+1 =AX𝑛, X0 = (
𝑢0
𝑢1
) = (

0
1).

Trouver𝑢𝑛 en fonction de𝑛 ∈ℕ revient donc à trouverX𝑛 en fonction de𝑛, puis
à regarder la première coordonnée de X𝑛.
• (♥) On déduit alors par récurrence que : ∀𝑛 ∈ℕ, X𝑛 =A𝑛X0.

Initialisation.
PEN-FANCY

Hérédité.
PEN-FANCY

• On calcule ensuite A𝑛 en diagonalisant la matrice A. On montrera que A =

PDP−1 avec P = ⎛
⎝

1
√2

2
√5

1
√2

1
√5

⎞
⎠
etD= (

1 0
0 1

2
).

PEN-FANCY

• On peut ensuite conclure.
PEN-FANCY

On peut garder en tête de cet exemple :

Récurrence linéaire d’ordre 2
dans ℝ ⇔ Récurrence géométrique (d’ordre

1) dans𝔐2,1 (ℝ)
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Remarque 10
• Les calculs précédents s’étendent naturellement aux récurrences d’ordre su-

périeur, le vecteur colonne X𝑛 aura simplement une dimension plus grande
que 2.

• De façon générale, si (𝑢𝑛) est une suite récurrente linéaire d’ordre𝑝 ∈ℕ, alors
le vecteur X𝑛 introduit aura un format 𝑝×1.

FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (ALG) 7.1 (Binôme et calculs des puissances)
• Si on arrive à écrire une matrice comme somme d’une matrice D diagonale

et d’une matrice nilpotente N (c’est-à-dire telle que N𝑘0 = 0 pour un certain
𝑘0 ∈ ℕ), qui commutent, on utilise la formule du binôme matricielle :

(D+N)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘.

Supposons queN est nilpotente d’ordre𝑘0, alors : N𝑘 = 0𝑛,𝑛 dès que𝑘 ⩾ 𝑘0.
Et on a :

(D+N)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘

=
𝑘0−1
∑
𝑘=0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘+

𝑝
∑
𝑘=𝑘0

(
𝑝
𝑘
)D𝑝−𝑘N𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

.

La seconde somme est toujours nulle : soit parce queN est nilpotente d’ordre
𝑘0 si 𝑝 ⩾ 𝑘0, soit par convention sur les sommes dans le cas 𝑝 < 𝑘0.

• On peut toujours écrire une matrice B sous la forme suivante :

B𝑝 = (B−I𝑛+I𝑛)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)(B−I𝑛)𝑘

= (B+I𝑛−I𝑛)𝑝 =
𝑝
∑
𝑘=0

(
𝑝
𝑘
)(−1)𝑝−𝑘 (B+ I𝑛)𝑘 .

Méthode (ALG) 7.2 (Inverse matriciel à l’aide d’un polynôme annula-
teur) Supposons qu’il existe 𝑎0,…,𝑎𝑝 ∈ 𝕂, et soit A ∈ 𝔐𝑛,𝑛 (𝕂) une matrice
carrée vérifiant :

𝑎0I𝑛+𝑎1A+…+𝑎𝑝A𝑝 = 0𝑛. (⋆)
On dit que P ∶ 𝑥⟼𝑎0+𝑎1𝑥+…+𝑎𝑝𝑥𝑝 est un polynôme annulateur de A.
• Si 𝑎0 = 0 : alors on montre par l’absurde que A n’est pas inversible.
• Si 𝑎0 ≠ 0 : alors on montre que A est inversible. En effet, (⋆) est équivalente

à 𝑎1A+…+𝑎𝑝A𝑝 =−𝑎0I𝑛, puis étant donné que 𝑎0 est non nul :

A(−
𝑎1
𝑎0
I𝑛+…−

𝑎𝑝
𝑎0
A𝑝−1) = I𝑛.
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LamatriceAest alors inversible (onamontré l’existenced’un inverseàdroite)
d’inverse −𝑎1

𝑎0
I𝑛+…− 𝑎𝑝

𝑎0
A𝑝−1.

Méthode (ALG) 7.3 (Comment trouver les puissances d’une matrice diagona-
lisable?)
1. Diagonaliser la matrice A : vérifier la relation A = PDP−1 avecD diagonale et

P inversible. En première année les matricesD,P seront toujours données.
2. CalculerD𝑛 pour tout 𝑛 ∈ℕ.
3. A𝑛 = PD𝑛P−1, que l’onmontre généralementpar récurrence, on endéduitA𝑛.

QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Question Réponse Commentaire

Inversibilité d’une matrice
carrée 2×2

M= (
𝑎 𝑏
𝑐 𝑑) est inversible si, et

seulement si, detM=𝑎𝑑−𝑏𝑐 ≠ 0

Connaitre aussi la
définition : il existe
N de même format
queM telle que
MN=NM= I2

Définition d’une matrice
carrée inversible

Il existeN de même format queM
telle queMN=NM= I𝑛

Ne pas oublier les
deux égalités,
même si
théoriquement on
peut se passer de
l’une d’entre elles
(voir une
remarque du
cours)

Matrices semblables :
définition

A,B sont deux matrices semblables
s’il existe P inversible telle que
A= PBP−1
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3 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Savoir calculer avec les matrices (sommes, produits, transposés) . . . . . . . . . . . . . . . . ⬜
2. Connaître définition et propriétés des matrices inversibles . . . . . . . . . . . . . . . . . . . . . .⬜
3. Savoir déterminer la puissance 𝑛ième d’une matrice :
• par récurrence, en conjecturant l’expression générale . . . . . . . . . . . . . . . . . . . . . . . .⬜
• par la formule du binôme de NEWTON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜
• par diagonalisation, lorsque celle-ci est donnée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

3.1 Généralités & opérations sur les matrices

Exercice 1 ∣ [Solution] On considère les matrices suivantes :

A= ⎛⎜
⎝

2 1
0 2
−1 0

⎞⎟
⎠
, B = (

0 2 1
2 2 1), C = ⎛⎜

⎝

2 −1 0
0 2 0
−1 0 2

⎞⎟
⎠
, X = ⎛⎜

⎝

𝑥
𝑦
𝑧
⎞⎟
⎠
∈𝔐3,1 (ℝ) .

Calculer, lorsque cela est possible,A+B,AB, BA,A2,AC, B⊤A⊤,CA,C2, (C−2I3)3,XB
et B⊤X.

Exercice 2 ∣ [Solution] Soit 𝑛 ∈ ℕ⋆ et A = (A𝑖,𝑗)1⩽𝑖,𝑗⩽𝑛 ∈ 𝔐𝑛 (ℝ). Représenter la
matrice A dans les cas suivants :

1. ∀(𝑖, 𝑗) ∈ {1,…𝑛}2, A𝑖,𝑗 =max(𝑖, 𝑗),
2. ∀(𝑖, 𝑗) ∈ {1,…𝑛}2, A𝑖,𝑗 = 1 si 𝑖 ⩽ 𝑗, A𝑖,𝑗 = 0 sinon,
3. ∀(𝑖, 𝑗) ∈ {1,…𝑛}2, A𝑖,𝑗 = |𝑖− 𝑗|,
4. ∀(𝑖, 𝑗) ∈ {1,…𝑛}2, A𝑖,𝑗 = (𝑖−1)𝑛+𝑗.

On pourra, en cas de besoin, commencer par se placer dans le cas particulier 𝑛 = 2 ou
3Dans chaque cas,

• TERMINALPython écrire une fonction d’en-tête creer_matrice(n) qui renvoie un tableau
numpy de format 𝑛×𝑛 correspondant à la matrice. Les faire afficher pour 𝑛 = 4.

• Démontrer certaines propriétés sur la matrice A, en travaillant sur le terme géné-
ral.

3.2 Puissances de matrice carrée

Exercice 3 ∣ [Solution] Soient les deux matrices suivantes :

B = ⎛⎜
⎝

0 1 3
0 0 2
0 0 0

⎞⎟
⎠
, C = ⎛⎜

⎝

2 1 3
0 2 2
0 0 2

⎞⎟
⎠
.

1. Calculer B3. La matrice B est-elle inversible?
2. Calculer les puissances 𝑛-ièmes de C.

Exercice 4 ∣ Puissances par récurrence [Solution] Soit : A= ( 1 −1 −1
−1 1 −1
−1 −1 1

).

1. Soit 𝑛 ∈ℕ. Montrer que A𝑛 est de la forme : A𝑛 = (
𝑎𝑛 𝑏𝑛 𝑏𝑛
𝑏𝑛 𝑎𝑛 𝑏𝑛
𝑏𝑛 𝑏𝑛 𝑎𝑛

).

2. Déterminer 𝑎𝑛 et 𝑏𝑛 en fonction de 𝑛 ∈ℕ.

Exercice 5 ∣ Puissances avec binôme [Solution] On considère :

A= ⎛⎜
⎝

6 4 0
−4 −2 0
0 0 2

⎞⎟
⎠
, et on pose : B = A−2I3.

Calculer B𝑛 et A𝑛 pour tout 𝑛 ∈ℕ∗.

Exercice 6 ∣ Puissances par polynôme annulateur [Solution]

Soit : N= ⎛⎜
⎝

2 −2 1
2 −3 2
−1 2 0

⎞⎟
⎠
.

1. Calculer N2. Donner une relation entre N2, N et I3. N est-elle inversible? Si oui,
donner son inverse.
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2. Montrer qu’il existe deux suites (𝑢𝑛) et (𝑣𝑛) telles que
∀𝑛 ∈ℕ, N𝑛 =𝑢𝑛N+𝑣𝑛I.

3. En déduire 𝑢𝑛 et 𝑣𝑛 en fonction de 𝑛. Puis donner l’expression de N𝑛 pour tout
𝑛 ∈ℕ.

4. [Application] Soient (𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ et (𝑧𝑛)𝑛∈ℕ trois suites de réels telles que
𝑥0 = 𝑦0 = 1 et 𝑧0 = 0 et pour tout 𝑛 ∈ℕ,

⎧⎪
⎨⎪
⎩

𝑥𝑛+1 = 2𝑥𝑛−2𝑦𝑛+𝑧𝑛
𝑦𝑛+1 = 2𝑥𝑛−3𝑦𝑛+2𝑧𝑛
𝑧𝑛+1 =−𝑥𝑛+2𝑦𝑛.

Calculer 𝑥𝑛, 𝑦𝑛 et 𝑧𝑛 en fonction de 𝑛.

Exercice 7 ∣ Puissances par polynôme annulateur [Solution] Soit :

A= ⎛
⎝

0 1/𝑎 1/𝑎2 1/𝑎3

𝑎 0 1/𝑎 1/𝑎2

𝑎2 𝑎 0 1/𝑎
𝑎3 𝑎2 𝑎 0

⎞
⎠

avec 𝑎 ∈ ℝ⋆.

1. Calculer A2 et montrer que A2 est combinaison linéaire de A et I4.
2. En déduire que A est inversible et calculer A−1.
3. Montrer qu’il existe pour tout𝑛 ∈ℕ,𝑎𝑛,𝑏𝑛 vérifiantA𝑛 = 𝑎𝑛A+𝑏𝑛I4. Que peut-on

dire de la suite (𝑎𝑛−𝑏𝑛) ?
4. Soit 𝑐𝑛 = (−1)𝑛𝑏𝑛, trouver une relation de récurrence entre 𝑐𝑛+1 et 𝑐𝑛. En déduire

A𝑛.

Exercice 8 ∣ Puissances par diagonalisation [Solution]

1. [Généralités] Soit A une matrice carrée diagonalisable, c’est-à-dire qu’il existe
P une matrice inversible telle que P−1AP =D oùD est diagonale.
1.1) Exprimer A en fonction deD.
1.2) Soit 𝑛 ∈ ℕ. Rappeler la formule du cours, établie par récurrence, reliant A𝑛

en fonction de P, P−1 etD𝑛.
1.3) Montrer queA inversible si et seulement siD est inversible et, qu’on a alors :

A−1 = PD−1P−1.

2. [Application] SoitM= (
0 1
2 −1) et P = (

1 −1
1 2 ).

2.1) Vérifier que P est inversible et calculer P−1.
2.2) Vérifier queM est diagonalisable et calculer la matrice diagonale associée.
2.3) Étudier l’inversibilité deM.
2.4) CalculerM𝑛 pour tout 𝑛 ∈ℕ.

3.3 Inversibilité de matrice carrée

Exercice 9 ∣ [Solution] On considère les matrices suivantes :

A= (
1 0
0 0), B = (

0 1
0 0), C = (

1 1
0 0).

1. Calculer AB et BA. Qu’en déduire?
2. Calculer A2 et CB. Les matrices A et B sont-elles inversibles? On n’utilisera pas le

déterminant dans cette question.
3. La matrice C est-elle inversible?

Exercice 10 ∣ [Solution] Soit la matrice M= (
𝑎 𝑏
𝑐 𝑑).

1. Montrer queM2 = (𝑎+𝑑)M−(𝑎𝑑−𝑏𝑐)I2.
2. En déduire une condition nécessaire et suffisante pour que M soit inversible et

déterminer alorsM−1. On posera Δ= 𝑎𝑑−𝑏𝑐.

Exercice 11 ∣ Matrices de rotation [Solution] Soit ℛ l’ensemble des matrices qui

s’écrivent sous la forme Mθ = (
cosθ −sinθ
sinθ cosθ ).

1. Montrer que le produit de deux éléments deℛ est un élément deℛ.
2. Montrer que deux matrices deℛ commutent.
3. Montrer que I2 ∈ℛ.
4. Montrer que tout élément deℛ est inversible et que son inverse est encore dans

ℛ.

Pour toutX ∈𝔐2,1 (ℝ), le vecteurMθX correspondà la rotation (àmontrer avec unpeu
de trigonométrie) du vecteur X d’angle θ. Ceci permet d’interpréter géométriquement
les résultats précédents.

Exercice 12 ∣ [Solution] Soit : A= ⎛⎜
⎝

0 1 1
1 0 1
1 1 0

⎞⎟
⎠
.

1. Calculer A2 et l’écrire en fonction de A et de I3.
2. La matrice A est-elle inversible? Si oui, calculer son inverse.
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Exercice 13 ∣ [Solution] Pour chacune des matrices suivantes, étudier si elle est
inversible ou pas et lorsqu’elle est inversible, donner son inverse.

1. M∈𝔐3 (ℝ) vérifiant : M4−4M2+M−5I3 = 03.
2. A ∈𝔐3 (ℝ) telle que A5−A= 03 et telle que A4 ≠ I3.

Exercice 14 ∣ [Solution] Soient 𝑎,𝑏,𝑐,𝑑 des réels non tous nuls, et :

M= (
𝑎 −𝑑 𝑐 −𝑏
𝑑 𝑎 −𝑏 −𝑐
−𝑐 𝑏 𝑎 −𝑑
𝑏 𝑐 𝑑 𝑎

).

1. Calculer le produit matricielM⊤×M.
2. La matriceM est-elle inversible? Si oui, calculerM−1.

Exercice 15 ∣ Identité moins nilpotente [Solution] Soit 𝑛 ∈ℕ et𝕂=ℝ ou ℂ.

1. Soit A ∈𝔐𝑛,𝑛 (𝕂). Montrer que :

∀𝑝 ∈ℕ, I𝑛−A𝑝+1 = (I𝑛−A)×
𝑝
∑
𝑘=0

A𝑘.

2. SoitN ∈𝔐𝑛,𝑛 (𝕂) une matrice nilpotente. Montrer que I𝑛−N est inversible.

3. [Application] Considérons la matrice B = (
1 −𝑎 0 0
0 1 −𝑎 0
0 0 1 −𝑎
0 0 0 1

) ∈ 𝔐4,4 (𝕂) . Montrer

que B est inversible et donner son inverse.

Exercice 16 ∣ BOMB [Solution] Soit A ∈𝔐𝑛 (ℝ) telle que : AA⊤A= I𝑛.

1. Montrer que A−1 est symétrique. En déduire que A est aussi symétrique.
2. Supposons qu’il existe P inversible vérifiant P⊤P = I𝑛, et telle que A= P⊤DP, oùD

est diagonale à coefficients réels. Montrer que A= I𝑛.

Exercice 17 ∣ BOMB Applicationmatricielle [Solution] Soit 𝑓 l’application

𝑓

||||

|

ℝ ⟶ 𝔐3 (ℝ,)

𝑥 ⟼ ⎛⎜
⎝

1 0 𝑥
−𝑥 1 −𝑥2

2
0 0 1

⎞⎟
⎠
.

On rappelle que GL3(ℝ) désigne l’ensemble des matrices inversibles de format 3×
3.

1. L’application 𝑓 est-elle injective?
2. Soit (𝑥,𝑦) ∈ ℝ2. Calculer 𝑓(𝑥)𝑓(𝑦) et montrer que 𝑓(𝑥)𝑓(𝑦) ∈ 𝑓(ℝ).
3. En déduire :

3.1) ⎛⎜
⎝

1 0 𝑥
−𝑥 1 −𝑥2

2
0 0 1

⎞⎟
⎠

𝑛

pour tout 𝑥 ∈ ℝ, et

3.2) que ⎛⎜
⎝

1 0 𝑥
−𝑥 1 −𝑥2

2
0 0 1

⎞⎟
⎠

est inversible pour tout 𝑥 ∈ ℝ et donner son inverse. A-

t-on 𝑓(ℝ) =GL3(ℝ)?

3.4 Devoir-maisonLaptop-House

Exercice 18 ∣ Une suite récurrente linéaire d’ordre 3 [Solution] On se propose
d’étudier la suite réelle récurrente linéaire d’ordre 3 (𝑢𝑛)𝑛≥0 définie par :

𝑢0 = 0, 𝑢1 = 0, 𝑢2 = 1 et pour tout entier naturel 𝑛, 𝑢𝑛+3 = 2𝑢𝑛+2− 5
4𝑢𝑛+1+

1
4𝑢𝑛.

On pose A= 1
4
⎛⎜
⎝

8 −5 1
4 0 0
0 4 0

⎞⎟
⎠

et pour tout entier naturel 𝑛, X𝑛 = ⎛⎜
⎝

𝑢𝑛+2
𝑢𝑛+1
𝑢𝑛

⎞⎟
⎠
.

1. Déterminer X0 et X1.

2. 2.1) Justifier pour tout entier naturel 𝑛, l’égalité : X𝑛+1 =AX𝑛.
2.2) En déduire à l’aide d’un raisonnement par récurrence que pour tout 𝑛 ∈ℕ,

X𝑛 =A𝑛X0.
3. Soit P,Q et T les matrices suivantes :

P = ⎛⎜
⎝

1 1 4
1 2 4
1 4 0

⎞⎟
⎠
, Q = ⎛⎜

⎝

16 −16 4
−4 4 0
−2 3 −1

⎞⎟
⎠

et T =
1
2
⎛⎜
⎝

2 0 0
0 1 2
0 0 1

⎞⎟
⎠
.

3.1) Calculer le produit PQ.
En déduire que la matrice P est inversible et déterminer sa matrice inverse
P−1.

3.2) Calculer le produit PTP−1.
3.3) Montrer alors par récurrence que pour tout entier naturel 𝑛, A𝑛 = PT𝑛P−1.
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4. SoitD la matrice définie par :D= 1
2
⎛⎜
⎝

2 0 0
0 1 0
0 0 1

⎞⎟
⎠
. On poseN= T−D.

4.1) Donner la matriceN et calculerN2.
4.2) Déterminer pour tout entier 𝑘 ≥ 2, la matriceN𝑘.
4.3) CalculerDN etND.

4.4) Montrer que pour tout entier naturel 𝑛, on a : T𝑛 = ( 12
𝑛)⎛⎜
⎝

2𝑛 0 0
0 1 2𝑛
0 0 1

⎞⎟
⎠
.

4.5) En déduire pour tout entier naturel 𝑛, l’expression de la matrice A𝑛.
5. 5.1) Déduire des questions précédentes l’expression de 𝑢𝑛 en fonction de 𝑛.

5.2) Déterminer la limite de la suite (𝑢𝑛)𝑛≥0.
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SOLUTIONS DES EXERCICES

Solution (exercice 1) [Énoncé]On obtient :

A+B impossible :A etBpas demême
taille.

• AB= ⎛⎜
⎝

2 6 3
4 4 2
0 −2 −1

⎞⎟
⎠
.•

BA= (
−1 4
3 6).• A2 impossible : A n’est pas carrée.•

AC impossible : A ∈ 𝔐32 (ℝ), C ∈
𝔐3 (ℝ).

• B⊤A⊤ = ⎛⎜
⎝

2 4 0
6 4 −2
3 2 −1

⎞⎟
⎠
.•

CA= ⎛⎜
⎝

4 0
0 4
−4 −1

⎞⎟
⎠
.• C2 = ⎛⎜

⎝

4 −4 0
0 4 0
−4 1 4

⎞⎟
⎠
.•

C−2I3 = ⎛⎜
⎝

0 −1 0
0 0 0
−1 0 0

⎞⎟
⎠

et (C−2I3)3 =

033.

• XB impossible : X ∈ 𝔐31 (ℝ), B ∈
𝔐23 (ℝ).

•

B⊤X impossible : B⊤ ∈ 𝔐32 (ℝ), X ∈
𝔐31 (ℝ).

•

Solution (exercice 2) [Énoncé]

A=

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 𝑛
2 2 3 4 𝑛
3 3 3 4 𝑛
4 4 4 4 𝑛

𝑛 𝑛 𝑛 𝑛 𝑛

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,1. A=
⎛⎜⎜⎜
⎝

1 1 1
0

1
0 0 1

⎞⎟⎟⎟
⎠

,2.

A=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 𝑛−1
1 0 1 2 𝑛−2
2 1 0 1 𝑛−3
3 2 1 0

2
1

𝑛−1 2 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,3.

A=
⎛⎜⎜⎜
⎝

1 𝑛
𝑛+1 𝑛+2 2𝑛

𝑛2−𝑛+1 𝑛2

⎞⎟⎟⎟
⎠

4.

Passons à présent à la création avec Python. L’idée est de : créer un tableau
numpy de zéros de la bonne taille, puis de le compléter à l’aide d’une boucle
for (consulter le TP d’Informatique associé pour plus de détails). Attention au
décalage d’indice entre l’indicage Mathématique et l’indicage numpy.
def creer_matrice1(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            A[i, j] = max(i+1, j+1)

    return A

def creer_matrice2(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(i, n):

            A[i, j] = 1

    return A

def creer_matrice3(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            A[i, j] = abs((i+1) - (j+1))

    return A

def creer_matrice4(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            A[i, j] = (i*n)+(j+1)

    return A

>>> creer_matrice1(4)

array([[1., 2., 3., 4.],

       [2., 2., 3., 4.],

       [3., 3., 3., 4.],
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       [4., 4., 4., 4.]])

>>> creer_matrice2(4)

array([[1., 1., 1., 1.],

       [0., 1., 1., 1.],

       [0., 0., 1., 1.],

       [0., 0., 0., 1.]])

>>> creer_matrice3(4)

array([[0., 1., 2., 3.],

       [1., 0., 1., 2.],

       [2., 1., 0., 1.],

       [3., 2., 1., 0.]])

>>> creer_matrice4(4)

array([[ 1., 2., 3., 4.],

       [ 5., 6., 7., 8.],

       [ 9., 10., 11., 12.],

       [13., 14., 15., 16.]])

Solution (exercice 3) [Énoncé]

1. On obtient B2 = ⎛⎜
⎝

0 0 2
0 0 0
0 0 0

⎞⎟
⎠

et B3 = 03 et ainsi : ∀𝑛 ⩾ 3, B𝑛 = 03. La matrice

B est donc nilpotente.
Mais B n’est pas inversible. En effet, supposons par l’absurde que B est
inversible, alors B−1 existe donc et on peut multiplier de chaque côté à
gauche de l’égalité B3 = 03 par B−1. On obtient alors en utilisant que
BB−1 = I3 que : B2 = 03. Absurde car B2 ≠ 03. Contradiction. Donc
la matrice B n’est pas inversible.

2. On remarque que :C= 2I3+B. Comme lamatrice I3 commute avec toutes les
matrices carrées de taille 3, on a : BI3 = B = I3B et on peut donc appliquer
le binôme de NEWTON. Soit 𝑛 ∈ℕ, on obtient donc

C𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)B𝑘(2I3)𝑛−𝑘 =

𝑛
∑
𝑘=0

(
𝑛
𝑘
)2𝑛−𝑘B𝑘.

Onutilise alors le fait que lamatriceB est nilpotente et on obtient pour𝑛 ⩾ 3 :

C𝑛 =
2
∑
𝑘=0

(
𝑛
𝑘
)2𝑛−𝑘B𝑘 = 2𝑛I3+2𝑛−1𝑛B+2𝑛−2

𝑛(𝑛−1)
2

B2

= ⎛⎜
⎝

2𝑛 2𝑛−1𝑛 2𝑛−2𝑛(𝑛+5)
0 2𝑛 2𝑛𝑛
0 0 2𝑛

⎞⎟
⎠
.

Solution (exercice 4) [Énoncé]

1. Il s’agit là encore de démontrer l’existence de deux suites. Montrons par ré-
currence sur 𝑛 ∈ℕ la propriété

𝒫(𝑛) ∶ « il existe deux nombres réels𝑎𝑛 et𝑏𝑛 tels queA𝑛 = ⎛⎜
⎝

𝑎𝑛 𝑏𝑛 𝑏𝑛
𝑏𝑛 𝑎𝑛 𝑏𝑛
𝑏𝑛 𝑏𝑛 𝑎𝑛

⎞⎟
⎠
».

Initialisation. pour 𝑛 = 0 :
D’un côté, on a : A0 = I3. Les deux nombres 𝑎0 = 1 et 𝑏0 = 0 conviennent.
Ainsi,𝒫(0) est vraie.
Hérédité. soit𝑛 ∈ℕfixé. On suppose la propriété vraie à l’ordre𝑛, montrons
qu’elle est vraie à l’ordre𝑛+1. Par hypothèse de récurrence, on sait donc qu’il
existe 𝑎𝑛 ∈ ℝ et 𝑏𝑛 ∈ ℝ tels que

A𝑛 = ⎛⎜
⎝

𝑎𝑛 𝑏𝑛 𝑏𝑛
𝑏𝑛 𝑎𝑛 𝑏𝑛
𝑏𝑛 𝑏𝑛 𝑎𝑛

⎞⎟
⎠
.

De plus, un calcul donne :

A𝑛+1 =A×A𝑛 = ⎛⎜
⎝

𝑎𝑛−2𝑏𝑛 −𝑎𝑛 −𝑎𝑛
−𝑎𝑛 𝑎𝑛−2𝑏𝑛 −𝑎𝑛
−𝑎𝑛 −𝑎𝑛 𝑎𝑛−2𝑏𝑛

⎞⎟
⎠
.

Ainsi, il suffit de poser : 𝑎𝑛+1 = 𝑎𝑛−2𝑏𝑛 et 𝑏𝑛+1 =−𝑎𝑛 et𝒫(𝑛+1) est vraie.
Conclusion : il résulte du principe de récurrence l’existence de deux suites

(𝑎𝑛)𝑛∈ℕ et (𝑏𝑛)𝑛∈ℕ telles que : A𝑛 = ⎛⎜
⎝

𝑎𝑛 𝑏𝑛 𝑏𝑛
𝑏𝑛 𝑎𝑛 𝑏𝑛
𝑏𝑛 𝑏𝑛 𝑎𝑛.

⎞⎟
⎠
. On a de plus :

𝑎0 = 1,𝑏0 = 0, ∀𝑛 ∈ ℕ, 𝑎𝑛+1 = 𝑎𝑛−2𝑏𝑛, 𝑏𝑛+1 =−𝑎𝑛.
2. En utilisant la relation de récurrence des deux suites, on obtient : 𝑎𝑛+2 =

𝑎𝑛+1 +2𝑎𝑛 pour tout 𝑛 ∈ ℕ. C’est une suite récurrente d’ordre 2, l’équation
caractéristique est : 𝑟2−𝑟 −2 = 0, le discriminant est Δ= 9 et les solutions
sont donc : −1 et 2. On obtient ainsi

∀𝑛 ∈ℕ, 𝑎𝑛 = α(−1)𝑛+β2𝑛.
On trouve avec les conditions initiales que α = 1

3 et β = 2
3 . Ainsi, on obtient :

∀𝑛 ∈ℕ, 𝑎𝑛 =
1
3
(−1)𝑛+

2
3
2𝑛 .

Comme : ∀𝑛 ∈ ℕ⋆,𝑏𝑛 = −𝑎𝑛−1, on en déduit que 𝑏𝑛 = 1
3(−1)

𝑛− 1
32

𝑛 pour
tout𝑛 ∈ℕ⋆. Onvérifieque cette relation est aussi vraie pour𝑛 = 0. Onobtient
ainsi l’expression des puissances 𝑛-ièmes de A (à faire).
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Solution (exercice 5) [Énoncé]

• B = ⎛⎜
⎝

4 4 0
−4 −4 0
0 0 0

⎞⎟
⎠
= 4C avec C = ⎛⎜

⎝

1 1 0
−1 −1 0
0 0 0

⎞⎟
⎠
. On voit après calculs que

C2 = 03,3 donc que C est nilpotente d’ordre 2, ainsi B2 = 16C2 = 03,3. Donc :

B𝑛 =  
⎧⎪⎪
⎨⎪⎪
⎩

I3 si 𝑛 = 0
B si 𝑛 = 1
03,3 sinon.

.

• Ainsi, commeA= B+2I3, que B et 2I3 commutent, on a d’après la formule du
binôme :

A𝑛 = (B+2I3)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)B𝑘(2I3)𝑛−𝑘

=
𝑛
∑
𝑘=0

(
𝑛
𝑘
)2𝑛−𝑘B𝑘 =

1
∑
𝑘=0

(
𝑛
𝑘
)2𝑛−𝑘B𝑘+

𝑛
∑
𝑘=2

(
𝑛
𝑘
)2𝑛−𝑘B𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= 2𝑛B0+𝑛2𝑛−1B

= ⎛⎜
⎝

4𝑛2𝑛−1+2𝑛 4𝑛2𝑛−1 0
−4𝑛2𝑛−1 2𝑛−4𝑛2𝑛−1 0

0 0 2𝑛
⎞⎟
⎠
.

Solution (exercice 6) [Énoncé] Par laméthode de récurrence et laméthode
où l’on connaît une relation entre les puissances.

1. Le calcul donne : N2 = ⎛⎜
⎝

−1 4 −2
−4 9 −4
2 −4 3

⎞⎟
⎠
. En cherchant (𝑎,𝑏) ∈ ℝ2 tel que 𝑎N+

𝑏I3 = N2, c’est-à-dire, en calculant 𝑎N+𝑏I3 et en identifiant les coefficients
avecN2, on obtient : N2 =−2N+3I3 .
Comme on connaît une relation entre les puissances de N, on sait tout de
suite siN est inversible ou pas. Ici, on a :N( 13(N+2I3)) = I3 et ( 13(N+2I3))N =
I3. Ainsi,N est inversible et son inverse est :

N−1 =
1
3
(N+2I3) =

1
3
⎛⎜
⎝

4 −2 1
2 −1 2
−1 2 2

⎞⎟
⎠
.

2. C’est la méthode classique pour calculer les puissances 𝑛-ièmes d’une ma-
trice.
Montrons par récurrence sur 𝑛 ∈ℕ la propriété

𝒫(𝑛) ∶ «∃(𝑢𝑛,𝑣𝑛) ∈ ℝ2 tels queN𝑛 =𝑢𝑛N+𝑣𝑛I3».

Initialisation. pour 𝑛 = 0 :
D’un côté, on a :N0 = I3 et de l’autre côté, on a :𝑢0N+𝑣0I3. Il suffitdeprendre :
𝑢0 = 0 et 𝑣0 = 1.
Hérédité. Soit𝑛 ∈ℕfixé.On suppose la propriété vraie à l’ordre𝑛,montrons
qu’elle est vraie à l’ordre 𝑛+1. On a :N𝑛+1 =N×N𝑛. Par hypothèse de récur-
rence, on sait qu’il existe deux nombres 𝑢𝑛 et 𝑣𝑛 tels que : N𝑛 = 𝑢𝑛N+𝑣𝑛I3.
On obtient donc :

N𝑛+1 =N(𝑢𝑛N+𝑣𝑛I3) = 𝑢𝑛N2+𝑣𝑛N.
Il suffit alors d’utiliser :N2 =−2N+3I3 et on obtient :

N𝑛+1 = (−2𝑢𝑛+𝑣𝑛)N+3𝑢𝑛I3.
En posant 𝑢𝑛+1 = −2𝑢𝑛 +𝑣𝑛 ∈ ℝ et 𝑣𝑛+1 = 3𝑢𝑛 ∈ ℝ, on a bien l’existence de
𝑢𝑛+1 ∈ ℝ et de 𝑣𝑛+1 ∈ ℝ tels que :N𝑛+1 =𝑢𝑛+1N+𝑣𝑛+1I3.
Conclusion : il résulte du principe de récurrence l’existence de deux suites
(𝑢𝑛) et (𝑣𝑛) telles que : ∀𝑛 ∈ℕ, N𝑛+1 =𝑢𝑛N+𝑣𝑛I3.
Cette démonstration par récurrence nous donne aussi la relation de récur-
rence vérifiée par les deux suites. On a en effet

𝑢0 = 0, 𝑣0 = 1, ∀𝑛 ∈ ℕ ∶ 𝑢𝑛+1 =−2𝑢𝑛+𝑣𝑛, 𝑣𝑛+1 = 3𝑢𝑛.
3. Différentes méthodes peuvent être utilisées là. La méthode classique est de

se ramener à une suite récurrente linéaire d’ordre deux pour la suite (𝑢𝑛). En
effet, on a :

∀𝑛 ∈ℕ, 𝑢𝑛+2 =−2𝑢𝑛+1+3𝑢𝑛.
De plus, on peut calculer les deux conditions initiales et on a : 𝑢0 = 1 et
𝑢1 = −2𝑢0 + 𝑣0 = −2. L’équation caractéristique est alors : 𝑟2 + 2𝑟 − 3 = 0,
le discriminant est Δ = 16 et les solutions sont : 𝑥1 = −3 et 𝑥2 = 1. Ainsi, on
obtient : ∀𝑛 ∈ℕ, 𝑢𝑛 = α(−3)𝑛+β.
On calcule α et β grâce aux conditions initiales et on obtient :

∀𝑛 ∈ℕ, 𝑢𝑛 =
−1
4
(−3)𝑛+

1
4
.

En utilisant alors le fait que : ∀𝑛 ∈ ℕ⋆,𝑣𝑛 = 3𝑢𝑛−1, on obtient

𝑣𝑛 =
1
4
(−3)𝑛+

3
4

pour tout 𝑛 ∈ℕ⋆. On vérifie de plus que la relation est tou-

jours vraie pour 𝑛 = 0.
On peut alors calculer les puissances 𝑛-ièmes de N en utilisant N𝑛 = 𝑢𝑛N+
𝑣𝑛I3 :

N= (
−1
4
(−3)𝑛+

1
4
)N+(

1
4
(−3)𝑛+

3
4
)I3

=
1
4
(1−(−3)𝑛)⎛⎜

⎝

2 −2 1
2 −3 2
−1 2 0

⎞⎟
⎠
+
1
4
(3+(−3)𝑛)⎛⎜

⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠
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=
1
4
⎛⎜
⎝

5−(−3)𝑛 2(−3)𝑛−2 1−(−3)𝑛

2−2(−3)𝑛 4(−3)𝑛 2−2(−3)𝑛

(−3)𝑛−1 2−2(−3)𝑛 3+(−3)𝑛
⎞⎟
⎠

4. On pose X𝑛 = ⎛⎜
⎝

𝑥𝑛
𝑦𝑛
𝑧𝑛

⎞⎟
⎠
, et on écrit la relation de récurrence sous forme matri-

cielle : X𝑛+1 = NX𝑛. On conjecture alors X𝑛 = N𝑛X0, et on démontre par ré-
currence cette relation (à faire). On obtient alors :

X𝑛 = ⎛⎜
⎝

𝑥𝑛
𝑦𝑛
𝑧𝑛

⎞⎟
⎠
=N𝑛⎛⎜

⎝

1
1
0
⎞⎟
⎠
=

1
4
⎛⎜
⎝

3+(−3)𝑛

2+2(−3)𝑛

1−(−3)𝑛
⎞⎟
⎠
.

Solution (exercice 7) [Énoncé]

1. Par simple calcul, on a

A2 =
⎛⎜⎜⎜
⎝

0 1/𝑎 1/𝑎2 1/𝑎3

𝑎 0 1/𝑎 1/𝑎2

𝑎2 𝑎 0 1/𝑎
𝑎3 𝑎2 𝑎 0

⎞⎟⎟⎟
⎠

.
⎛⎜⎜⎜
⎝

0 1/𝑎 1/𝑎2 1/𝑎3

𝑎 0 1/𝑎 1/𝑎2

𝑎2 𝑎 0 1/𝑎
𝑎3 𝑎2 𝑎 0

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

3 2
𝑎

2
𝑎2

2
𝑎3

2𝑎 3 2
𝑎

2
𝑎2

2𝑎2 2𝑎 3 2
𝑎

2𝑎3 2𝑎2 2𝑎 3

⎞⎟⎟⎟⎟
⎠

,

d’où l’on tire A2 = 2A+3I4.
2. On obtient alors A(A−2I4) = 3I4 soit

A(
A
3
−
2I4
3
) = (

A
3
−
2I4
3
)A = I4.

Ainsi, A est inversible d’inverse A
3 −

2I4
3 soit

A−1 =
⎛⎜⎜⎜⎜
⎝

−2
3

1
3.𝑎

1
3.𝑎2

1
3.𝑎3

𝑎
3

−2
3

1
3.𝑎

1
3.𝑎2

𝑎2
3

𝑎
3

−2
3

1
3.𝑎

𝑎3
3

𝑎2
3

𝑎
3

−2
3

⎞⎟⎟⎟⎟
⎠

.

3. Montrons l’existence par récurrence sur 𝑛 ∈ℕ.
Initialisation. Pour 𝑛 = 0, on pose 𝑎0 = 0,𝑏0 = 1 car A0 = I4.
Hérédité. Supposons l’existence de 𝑎𝑛,𝑏𝑛 en un certain rang 𝑛, ainsi

A𝑛 = 𝑎𝑛A+𝑏𝑛I4,⟹ A𝑛+1 = 𝑎𝑛A2+𝑏𝑛A= 𝑎𝑛(2A+3I4)+𝑏𝑛A,  
soit en factorisant A𝑛+1 = (2𝑎𝑛+𝑏𝑛)A+3𝑎𝑛I4. On pose alors

𝑎𝑛+1 = 2𝑎𝑛+𝑏𝑛, 𝑏𝑛+1 = 3𝑎𝑛 .
D’où la propriété au rang 𝑛 + 1, et pour tout 𝑛 ∈ ℕ,
il existe 𝑎𝑛,𝑏𝑛 vérifiant A𝑛 = 𝑎𝑛A+𝑏𝑛I4. Que peut-on dire de la suite

(𝑎𝑛−𝑏𝑛) ? Pour tout 𝑛 ∈ℕ,
𝑎𝑛+1−𝑏𝑛+1 = 2𝑎𝑛+𝑏𝑛−3𝑎𝑛 =−(𝑎𝑛−𝑏𝑛),

donc la suite (𝑏𝑛−𝑎𝑛) est géométrique de raison 1 , avec 𝑎0−𝑏0 =−1, d’où
∀𝑛 ∈ℕ, 𝑏𝑛−𝑎𝑛 = (−1)𝑛+1.

4. Soit 𝑐𝑛 = (−1)𝑛𝑏𝑛, et 𝑛 ∈ℕ. Alors
𝑐𝑛+1 = (−1)𝑛+1𝑏𝑛+1 = (−1)𝑛+1(3𝑎𝑛) = 3(−1)𝑛+1(𝑏𝑛−(−1)𝑛+1)

= 3(−1)𝑛+1𝑏𝑛−3 =−3𝑐𝑛−3.
Il s’agit alors d’une suite arithmético-géométrique. On cherche alors ℓ de
sorte que

ℓ =−3ℓ−3 ⟺ ℓ=−
3
4
.

Donc pour tout 𝑛 ∈ℕ, en faisant la différence des deux lignes du système

{ 𝑐𝑛+1 =−3𝑐𝑛−3,
ℓ = −3ℓ−3 ,

on trouve que (𝑐𝑛−ℓ) est géométrique de raison −3. Donc
𝑐𝑛−ℓ = (−3)𝑛(𝑐0−ℓ),

soit
𝑐𝑛 = 3𝑛(−1)𝑛

7
4
−
3
4
.

D’où :
𝑏𝑛 = (−1)𝑛𝑐𝑛 = 3𝑛

7
4
−(−1)𝑛

3
4
, 𝑎𝑛 =

1
3
𝑏𝑛+1 = 3𝑛

7
4
−(−1)𝑛+1

1
4
.

En conclusion :
A𝑛 = (3𝑛

7
4
−(−1)𝑛+1

1
4
)A+(3𝑛

7
4
−(−1)𝑛

3
4
)I4,

ce qui fournit après de longs calculs :

A𝑛 =

⎛⎜⎜⎜⎜⎜
⎝

3.(−1)𝑛+3𝑛
4

−(−1)𝑛+3𝑛
4.𝑎

−(−1)𝑛+3𝑛
4.𝑎2

−(−1)𝑛+3𝑛
4.𝑎3

−(−1)𝑛.𝑎+3𝑛.𝑎
4

3.(−1)𝑛+3𝑛
4

−(−1)𝑛+3𝑛
4.𝑎

−(−1)𝑛+3𝑛
4.𝑎2

−(−1)𝑛.𝑎2+3𝑛.𝑎2
4

−(−1)𝑛.𝑎+3𝑛.𝑎
4

3.(−1)𝑛+3𝑛
4

−(−1)𝑛+3𝑛
4.𝑎

−(−1)𝑛.𝑎3+3𝑛.𝑎3
4

−(−1)𝑛.𝑎2+3𝑛.𝑎2
4

−(−1)𝑛.𝑎+3𝑛.𝑎
4

3.(−1)𝑛+3𝑛
4

⎞⎟⎟⎟⎟⎟
⎠

.

Solution (exercice 8) [Énoncé]

1. 1.1) OnaP−1AP =D⟹PP−1AP = PD⟹AP= PD⟹APP−1 = PDP−1 ⟹
A=PDP−1 .

1.2) Voir cours.
1.3) On peut procéder par double implication.

⟹ Si A est inversible. Alors D = P−1AP est aussi inversible en tant
que produit de matrices inversibles.
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⟸ Si D est inversible, alors A = PDP−1 est inversible comme pro-
duit de matrices inversibles.
Donc : A inversible ⟺ D inversible . De plus, le cours livre :

A−1 = (PDP−1)−1 = (P−1)−1D−1P−1 = PD−1P−1 .

2. 2.1) On a det(M) = 3 ≠ 0 donc P est inversible et P−1 = (
2
3

1
3

− 1
3

1
3
).

2.2) On calcule P−1MP et on vérifie qu’elle est bien diagonale. Le calcul

donne : P−1MP = (
1 0
0 −2). Ainsi M est bien diagonalisable et on note

D= (
1 0
0 −2) . On a :M=PDP−1.

2.3) On sait de plus tout de suite que M est inversible car D est inversible
car elle est diagonale et qu’elle n’a aucun 0 sur sa diagonale. De plus,

on sait alors que :M−1 = PD−1P−1 = (
1
2

1
2

1 0).

2.4) On a vu que : ∀𝑛 ∈ℕ, M𝑛 = PD𝑛P−1. OrD est diagonale doncD𝑛 =

(
1 0
0 (−2)𝑛) pour tout 𝑛 ∈ℕ.

Ainsi, on obtient pour les puissances 𝑛-ièmes deM :

∀𝑛 ∈ℕ, M𝑛 = ( 2+(−2)
𝑛

3
1−(−2)𝑛

3
2(1−(−2)𝑛)

3
1+2(−2)𝑛

3 ) .

Solution (exercice 9) [Énoncé]

1. Le calcul matriciel donne AB = (
0 1
0 0) et BA = 02. Les matrices

A et B ne commutent pas .
2. Le calcul matriciel donne : A2 =A et CB= B.
• Inversibilité de A : par l’absurde, si A est inversible, alors A−1 existe et on

peut donc multiplier à gauche par A−1 l’égalité A(A − I2) = 02. Comme
A−1 ×A = I2 et A−1 × 02 = 02, on obtient : A− I2 = 03 ⟺ A = I2. Ab-
surde car A ≠ I2. Ainsi par un raisonnement par l’absurde, on a montré
que A n’est pas inversible.

• Inversibilité deB : on obtient :CB−B= 02 ⟺(C−I2)B = 02. Par l’absurde,
si B est inversible, alors B−1 existe et on peut donc multiplier à droite par
B−1 l’égalité (C−I2)B = 02. CommeBB−1×= I2 et 02×B−1 = 02, on obtient :
C−I2 = 03 ⟺ C= I2. Absurde car C≠ I2. Ainsi par un raisonnement par
l’absurde, on a montré que B n’est pas inversible.

3. C est une matrice triangulaire supérieure avec un 0 sur la diagonale donc
C n’est pas inversible .

Solution (exercice 10) [Énoncé]

1. On calcule (𝑎+𝑑)M−(𝑎𝑑−𝑏𝑐)I2 d’un côté etM2 de l’autre et on obtient bien
le résultat voulu.

2. On fait deux cas selon la valeur de Δ.
• On suppose queΔ≠ 0. On a alors :M2−(𝑎+𝑑)M=−(𝑎𝑑−𝑏𝑐)I2, à savoir,

comme Δ≠ 0 :

M((𝑎+𝑑)I2−M) = (𝑎𝑑−𝑏𝑐)I2 ⟺ M(
1

𝑎𝑑−𝑏𝑐
((𝑎 +𝑑)I2−M)) = I2.

De même en effectuant le produit matriciel dans l’autre sens. Ainsi M
est bien inversible et son inverse est : M−1 = 1

𝑎𝑑−𝑏𝑐((𝑎 + 𝑑)I2 − M) =

1
𝑎𝑑−𝑏𝑐(

𝑑 −𝑏
−𝑐 𝑎 ).

• On suppose queΔ= 0. Montrons par l’absurde queM n’est pas inversible.
On suppose que M est inversible. On a alors : M2 = (𝑎 +𝑑)M, à savoir :
M(M− (𝑎 +𝑑)I2) = 02. Mais comme par hypothèse M est inversible, on
peut multiplier à gauche de chaque côté par M−1. On obtient alors : M−
(𝑎+𝑑)I2 = 02. On obtient alors en calculant coefficient par coefficient 𝑎 =
𝑏 = 𝑐 = 𝑑 = 0, contradiction, car la matrice nulle n’est pas inversible. On
en déduit donc que si Δ= 0, alorsM n’est pas inversible.

On a donc bien démontré que :M inversible si et seulement siΔ≠ 0. De plus,

on a vu que siM est inversible, alors on a : M−1 = 1
𝑎𝑑−𝑏𝑐(

𝑑 −𝑏
−𝑐 𝑎 ) .

Solution (exercice 11) [Énoncé]

1. On prend donc deux éléments quelconques de ℛ. Soit donc Mθ et Mα élé-
ments deℛ avec (θ,α) ∈ ℝ2. On a :

MθMα = (
cosθcosα− sinθsinα −(cosθsinα+cosαsinθ)
cosθsinα+cosαsinθ cosθcosα− sinθsinα )

= (
cos(θ+α) −sin(θ+α)
sin(θ+α) cos(θ+α) ) =Mθ+α.

2. Soit (θ,α) ∈ ℝ2, on calcule le produit MθMα et MαMθ. D’après le calcul fait
précédemment et en utilisant le fait que α+θ = θ+α, on a

MθMα =Mθ+α =MαMθ.
3. Il suffit de prendre θ = 0 et on obtient bien que : I2 =M0 ∈ℛ.
4. Soit un élément Mθ de ℛ. On cherche s’il existe une matrice M telle que

MθM = I2 = MMθ. Or on sait que I2 = M0 et que : MθMα = Mθ+α = MαMθ.
On voit ainsi que pour queMθ+α soit égal à I2, il suffit de prendre α = −θ. On
obtient ainsi queMθ est bien inversible et que (Mθ)−1 =M−θ . Cet inverse est
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donc bien dansℛ.

Solution (exercice 12) [Énoncé]

1. Un calcul donne : A2 = ⎛⎜
⎝

2 1 1
1 2 1
1 2 2

⎞⎟
⎠
. On remarque alors que : A2 =A+2I3.

2. On connaît une relation entre les puissances de A, on sait donc tout de suite
si A est inversible ou pas. Ici, on a A( 12(A−I3)) = I3 et ( 12(A−I3))A = I3. Ainsi

A est inversible d’inverse : A−1 = 1
2 (A−I3) =

1
2
⎛⎜
⎝

−1 1 1
1 −1 1
1 1 −1

⎞⎟
⎠
.

Solution (exercice 13) [Énoncé]

1. On a : M(M3 −4M+ I3) = 5I3 ⟺ M×[ 15(M
3−4M+I3)] = I3 et de même :

[ 15(M
3−4M+I3)] ×M = I3. Ainsi on a trouvé une matrice C ∈ 𝔐3 (ℝ) telle

que :M×C= I3. Donc par définition d’une matrice inversible, on sait queM
est inversible et que M−1 =C= 1

5(M
3−4M+I3) .

2. On a : A(A4 − I3) = 03. Par l’absurde, si A est inversible, alors A−1 existe et
on peut donc multiplier à gauche par A−1 l’égalité A(A4 − I3) = 03. Comme
A−1×A= I3 etA−1×03 = 03, on obtient :A4−I3 = 03 ⟺ A4 = I3. Absurde car
par hypothèse, on sait que :A4 ≠ I3. Ainsi par un raisonnement par l’absurde,
on a montré que A n’est pas inversible .

Solution (exercice 14) [Énoncé]

1. On obtient
M⊤M

=⎛
⎝

𝑎2+𝑏2+𝑐2+𝑑2 0 0 0
0 𝑎2+𝑏2+𝑐2+𝑑2 0 0
0 0 𝑎2+𝑏2+𝑐2+𝑑2 0
0 0 0 𝑎2+𝑏2+𝑐2+𝑑2

⎞
⎠

= (𝑎2+𝑏2+𝑐2+𝑑2)I4.
2. Comme les𝑎,𝑏,𝑐,𝑑 sont non tousnuls, on a𝑎2+𝑏2+𝑐2+𝑑2 ≠ 0. Onendéduit

M⊤

𝑎2+𝑏2+𝑐2+𝑑2M = I4 et de même M M⊤

𝑎2+𝑏2+𝑐2+𝑑2 = I4. Donc M est inversible, et
M−1 = 1

𝑎2+𝑏2+𝑐2+𝑑2M
⊤ .

Solution (exercice 15) [Énoncé]

1. Soit A ∈𝔐𝑛,𝑛 (𝕂). On développer :

(I𝑛−A)×
𝑝
∑
𝑘=0

A𝑘 =
𝑝
∑
𝑘=0

A𝑘−
𝑝
∑
𝑘=0

A𝑘+1

=
𝑝
∑
𝑘=0

A𝑘−
𝑝+1
∑
𝑘=1

A𝑘

=A0−A𝑝+1 = I𝑛−A𝑝+1.
téléscopage

Donc :

∀𝑝 ∈ℕ⋆, I𝑛−A𝑝+1 = (I𝑛−A)×
𝑝
∑
𝑘=0

A𝑘 .

2. Supposons que A est nilpotente, alors il existe 𝑘 ∈ ℕ⋆ tel que A𝑘 = 0. Posons
𝑝 = 𝑘−1 ⩾ 0. La question précédente fournit :

I𝑛−N𝑝+1 = I𝑛−N𝑘 = I𝑛 = (I𝑛−A)
𝑘−1
∑
𝑘=0

A𝑘.

Donc :

I𝑛−N est inversible , (I𝑛−N)−1 =
𝑘−1
∑
𝑘=0

A𝑘 .

3. [Application] Onpeut décomposerB = I4−𝑎N oùN= (
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

). Lamatrice

N est nilpotente et vérifieN4 = 04,4. Ainsi, lamatrice−𝑎N est aussi nilpotente
et vérifie (−𝑎N)4 = 04,4. Donc d’après la question précédente,B est inversible
d’inverse I4+(−𝑎N)+(−𝑎N)2+(−𝑎N)3. Après calculs on trouve :

B−1 = (
1 𝑎 𝑎2 𝑎3
0 1 𝑎 𝑎2
0 0 1 𝑎
0 0 0 1

) .

Solution (exercice 16) [Énoncé]

1. Par hypothèse, A est inversible d’inverse A⊤.A. Mais A⊤.A est symétrique,
donc A−1 est symétrique c’est-à-dire ⊤(A−1) = A−1. Or, ⊤(A−1) = (A⊤)−1,
donc (A⊤)−1 =A−1 d’où l’on tire A⊤ =A, c’est-à-dire que A est symétrique .

2. Supposons qu’il existe P inversible vérifiant P⊤P = I𝑛, et telle que A = P⊤DP,
où D est diagonale à coefficients réels. En remplaçant dans l’hypothèse, on
trouve :

P⊤D3P = I𝑛 ⟺ D3 = I𝑛.
Donc tous les coefficients diagonaux (réels) deD sont solution de l’équation
𝑥3 = 1, qui n’admet que 1 pour solution. DoncD= I𝑛. On conclut ensuite :

A= P⊤DP= P⊤P = I𝑛 .
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Solution (exercice 17) [Énoncé]

1. Oui. Soient 𝑥,𝑥′ ∈ ℝ, tels que 𝑓(𝑥) = 𝑓(𝑥′). Alors −𝑥 = −𝑥′, 𝑥 = 𝑥′ et −𝑥2
2 =

−𝑥′2
2 , ceci implique bien 𝑥 = 𝑥′. Donc 𝑓 est injective.

2. Soient 𝑥,𝑦 deux réels. Alors un simple produit matriciel prouve que
𝑓(𝑥)𝑓(𝑦) = 𝑓(𝑥 +𝑦) ∈ 𝑓(ℝ) car 𝑥 +𝑦 ∈ ℝ. Donc 𝑓(𝑥)𝑓(𝑦) ∈ 𝑓(ℝ) pour tout
𝑥,𝑦 ∈ ℝ.

3. 3.1) Par récurrence évidente : 𝑓(𝑥)𝑛 = 𝑓(𝑛𝑥) = ⎛⎜
⎝

1 0 𝑛𝑥
−𝑛𝑥 1 −𝑛2𝑥2

2
0 0 1

⎞⎟
⎠
.

3.2) Premier point : est-ce que toute matrice de la forme 𝑓(𝑥), 𝑥 ∈ ℝ est
inversible? Oui, puisqu’en choisissant 𝑦 = −𝑥 dans la question précé-
dente, on déduit 𝑓(𝑥)𝑓(−𝑥) = 𝑓(𝑥 − 𝑥) = 𝑓(0) = I3. Donc pour tout
𝑥 ∈ ℝ :

𝑓(𝑥) est inversible et : 𝑓(𝑥)−1 = 𝑓(−𝑥) = ⎛⎜
⎝

1 0 −𝑥
+𝑥 1 −𝑥2

2
0 0 1

⎞⎟
⎠
.

Deuxième point : est-ce que toute matrice inversible est de la forme

𝑓(𝑥)? Non, considérer par exemple T = ⎛⎜
⎝

1 1 1
0 1 1
0 0 1

⎞⎟
⎠
, alors T est inver-

sible (triangulaire avec trois coefficients diagonaux non nuls) et n’est
pas de la forme 𝑓(𝑥) puisque le coefficient (1,2) est non nul. Donc
𝑓(ℝ3) ≠GL3(ℝ).
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Correction Devoir-maisonLaptop-House (Chapitre (ALG) 7)

Solution (exercice 18) [Énoncé]

1. On a X0 = ⎛⎜
⎝

𝑢2
𝑢1
𝑢0

⎞⎟
⎠
= ⎛⎜
⎝

1
0
0
⎞⎟
⎠

. De plus,𝑢3 = 2𝑢2− 5
4𝑢1+

1
4𝑢0 = 2, donc X1 = ⎛⎜

⎝

𝑢3
𝑢2
𝑢1

⎞⎟
⎠
=

⎛⎜
⎝

2
1
0
⎞⎟
⎠

.

2. 2.1) Les relations
⎧⎪
⎨⎪
⎩

𝑢𝑛+3 = 2𝑢𝑛+2− 5
4𝑢𝑛+1+

1
4𝑢𝑛

𝑢𝑛+2 =𝑢𝑛+2
𝑢𝑛+1 =𝑢𝑛+1

s’écrivent matricielle-

ment sous la forme : ⎛⎜
⎝

𝑢𝑛+3
𝑢𝑛+2
𝑢𝑛+1

⎞⎟
⎠

= ⎛⎜
⎝

2 − 5
4

1
4

1 0 0
0 1 0

⎞⎟
⎠

⎛⎜
⎝

𝑢𝑛+2
𝑢𝑛+1
𝑢𝑛

⎞⎟
⎠
, c’est-à-dire

X𝑛+1 =AX𝑛 puisque ⎛⎜
⎝

2 − 5
4

1
4

1 0 0
0 1 0

⎞⎟
⎠
= 1

4
⎛⎜
⎝

8 −5 1
4 0 0
0 4 0

⎞⎟
⎠
= A.

2.2) Initialisation. Comme A0 = I3, la propriété est bien initialisée.
Hérédité. Soit 𝑛 ∈ℕ tel que X𝑛 =A𝑛X0. Alors :
X𝑛+1 =AX𝑛

=AA𝑛X0 =A𝑛+1X0.
hypothèse de réc.

On a donc par principe de récurrence : ∀𝑛 ∈ℕ, X𝑛 =A𝑛X0 .
3. 3.1) On trouve

PQ = ⎛⎜
⎝

1 1 4
1 2 4
1 4 0

⎞⎟
⎠

⎛⎜
⎝

16 −16 4
−4 4 0
−2 3 −1

⎞⎟
⎠
= ⎛⎜
⎝

4 0 0
0 4 0
0 0 4

⎞⎟
⎠
= 4I3 .

Onendéduit queP× 1
4Q= 1

4PQ= I3, cequimontreque P est inversible ,
avec P−1 = 1

4Q .
3.2) On trouve

PT =
1
2
⎛⎜
⎝

1 1 4
1 2 4
1 4 0

⎞⎟
⎠

⎛⎜
⎝

2 0 0
0 1 2
0 0 1

⎞⎟
⎠
= ⎛⎜
⎝

1 1
2 3

1 1 4
1 2 4

⎞⎟
⎠
,

puis PTP−1 =
1
4
⎛⎜
⎝

1 1
2 3

1 1 4
1 2 4

⎞⎟
⎠

⎛⎜
⎝

16 −16 4
−4 4 0
−2 3 −1

⎞⎟
⎠
=
1
4
⎛⎜
⎝

8 −5 1
4 0 0
0 4 0

⎞⎟
⎠
= A.

On obtient que A= PTP−1 .
3.3) Posons, pour tout 𝑛 ∈ℕ,ℋ(𝑛) ∶ A𝑛 = PT𝑛P−1.

Initialisation. PT0P−1 = PI3P−1 = PP−1 = I3, doncℋ(0) est vraie.
Hérédité. Supposons ℋ(𝑛) vraie pour 𝑛 fixé dans ℕ, de sorte que
A𝑛 = PT𝑛P−1. On en déduit que :

A𝑛+1 =A𝑛A= (PT𝑛P−1) (PTP−1) = PT𝑛 (P−1P)TP−1 = PT𝑛+1P−1

car P−1P = I3. D’où le résultat par le principe de récurrence.

4. 4.1) On a que N= ⎛⎜
⎝

0 0 0
0 0 1
0 0 0

⎞⎟
⎠

. On trouve N2 = ⎛⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟
⎠

.

4.2) Pour tout entier 𝑘 ≥ 2, N𝑘 =N2×N𝑘−2 = 0×N𝑘−2 = 0 (matrice nulle).

4.3) On trouve DN= ⎛⎜
⎝

0 0 0
0 0 1

2
0 0 0

⎞⎟
⎠
=ND .

4.4) De N = T−D, on déduit T = D+N. Puisque DN = ND (D et N com-
mutent), la formule du binôme donne, pour tout entier 𝑛 ≥ 2,
T𝑛 = (D+N)𝑛 = ∑𝑛

𝑘=0 (
𝑛
𝑘)D

𝑛−𝑘N𝑘. Puisque, pour tout 𝑘 ≥ 2, N𝑘 = 0, la
somme se réduit aux termes correspondant à 𝑘 = 0 et à 𝑘 = 1.
Puisque (𝑛0)D

𝑛N0 =D𝑛, et (𝑛1)D
𝑛−1N=𝑛D𝑛−1N, on a :

T𝑛 =D𝑛+𝑛D𝑛−1N .
D étant diagonale, on a :

D𝑛 = (
1
2
)
𝑛 ⎛⎜
⎝

2𝑛 0 0
0 1 0
0 0 1

⎞⎟
⎠
, et D𝑛−1 = (

1
2
)
𝑛−1 ⎛⎜

⎝

2𝑛−1 0 0
0 1 0
0 0 1

⎞⎟
⎠
,

d’où :D𝑛−1N= ( 12 )
𝑛−1 ⎛⎜

⎝

0 0 0
0 0 1
0 0 0

⎞⎟
⎠
. Il vient :

T𝑛 = (
1
2
)
𝑛 ⎛⎜
⎝

2𝑛 0 0
0 1 0
0 0 1

⎞⎟
⎠
+𝑛×(

1
2
)
𝑛−1 ⎛⎜

⎝

0 0 0
0 0 1
0 0 0

⎞⎟
⎠

= (
1
2
)
𝑛 ⎛⎜
⎝

⎛⎜
⎝

2𝑛 0 0
0 1 0
0 0 1

⎞⎟
⎠
+2𝑛⎛⎜

⎝

0 0 0
0 0 1
0 0 0

⎞⎟
⎠

⎞⎟
⎠
= (

1
2
)
𝑛 ⎛⎜
⎝

2𝑛 0 0
0 1 2𝑛
0 0 1

⎞⎟
⎠
.

On voit (remplacer 𝑛 par 0, puis par 1) que la formule est aussi vraie
pour 𝑛 = 0 et 𝑛 = 1, elle est donc vraie pour tout entier 𝑛 ≥ 0.
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4.5) Soit 𝑛 ∈ℕ. On trouve :

PT𝑛 = (
1
2
)
𝑛 ⎛⎜
⎝

1 1 4
1 2 4
1 4 0

⎞⎟
⎠

⎛⎜
⎝

2𝑛 0 0
0 1 2𝑛
0 0 1

⎞⎟
⎠

= (
1
2
)
𝑛 ⎛⎜
⎝

2𝑛 1 2𝑛+4
2𝑛 2 4𝑛+4
2𝑛 4 8𝑛

⎞⎟
⎠

puis :

A𝑛 = PT𝑛P−1 = (
1
2
)
𝑛 ⎛⎜
⎝

2𝑛 1 2𝑛+4
2𝑛 2 4𝑛+4
2𝑛 4 8𝑛

⎞⎟
⎠
×
1
4
⎛⎜
⎝

16 −16 4
−4 4 0
−2 3 −1

⎞⎟
⎠

= (
1
2
)
𝑛 ⎛⎜
⎝

4×2𝑛−𝑛−3 3
2𝑛−4×2

𝑛+4 2𝑛− 1
2𝑛−1

4×2𝑛−2𝑛−4 3𝑛−4×2𝑛+5 2𝑛−𝑛−1
4×2𝑛−4𝑛−4 6𝑛−4×2𝑛+4 2𝑛−2𝑛

⎞⎟
⎠

5. 5.1) Soit 𝑛 ∈ℕ. On obtient 𝑢𝑛 en calculant le vecteur colonne X𝑛 par la for-

muleX𝑛 =A𝑛X0. CommeX0 = ⎛⎜
⎝

1
0
0
⎞⎟
⎠
, on obtientX𝑛 en recopiant simple-

ment la première colonne de A𝑛. Ainsi, X𝑛 = ( 12 )
𝑛 ⎛⎜
⎝

4×2𝑛−𝑛−3
4×2𝑛−2𝑛−4
4×2𝑛−4𝑛−4

⎞⎟
⎠

et

en particulier, puisque X𝑛 = ⎛⎜
⎝

𝑢𝑛+2
𝑢𝑛+1
𝑢𝑛

⎞⎟
⎠

: 𝑢𝑛 = ( 12 )
𝑛 (4×2𝑛−4𝑛−4) .

5.2) Onsait quepour tout𝑛 ∈ℕ :𝑢𝑛 = 4− 4𝑛
2𝑛−

4
2𝑛 .Ondéduit que 𝑢𝑛 −−−−−→𝑛⟶∞

4
car 2𝑛 −−−−−→

𝑛⟶∞
∞ et par croissances comparées.
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