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Chapitre (AN) 4
Suites : généralités et
comportement asymptotique

1 Généralités . . . . . . . . . . . . . . . . . . . . .

2 Limite d’une suite . . . . . . . . . . . . . . .

3 Suites remarquables . . . . . . . . . . . .

4 TERMINALPython Informatique . . . . . . . . . . . . .

5 Exercices . . . . . . . . . . . . . . . . . . . . . . .
Si l’on considère les suites
récurrentes de moyenne
arihmétique et géométrique,
i.e.

𝑥𝑛+1 =
𝑥𝑛+𝑦𝑛

2
, 𝑦𝑛+1 =√𝑥𝑛+𝑦𝑛,

alors :
𝑥𝑛 −−−−−→𝑛⟶∞

ℓ, 𝑦𝑛 −−−−−→𝑛⟶∞
ℓ, 𝑜 ∶

ℓ =
π
4
(𝑥0+𝑦0) ∫

π
2

0
[1−(

𝑥0−𝑦0
𝑥0+𝑦0

)
2
sin2(θ)]

− 1
2
dθ.

—Le saviez-vous?

Résumé & Plan
Ce chapitre vise à renforcer l’étude
des suites amorcée au lycée. Nous
verrons notamment les définitions
de convergence/divergence d’une
suite, ainsi que les théorèmes géné-
raux permettant d’étudier la nature
d’une suite. On poursuit par l’étude
de certaines suites particulières : les
suites implicites et les suites récur-
rentes de la forme 𝑢𝑛+1 = 𝑓(𝑢𝑛). On
introduit enfin la notion de suites
équivalentes, qui permettra notam-
ment de lever certaines formes in-
déterminées dans des calculs de li-
mites.

• Les énoncés importants (hors définitions) sont indiqués par un♥.
• Les énoncés et faits à la limite du programme, mais très classiques parfois, seront

indiqués par le logo [H.P] . Si vous souhaitez les utiliser à un concours, il faut donc
en connaître la preuve ou laméthodemise en jeu. Ils doivent être considérés comme
un exercice important.

• Les preuves déjà tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent être lues uniquement par les curieuses et curieux. Nous n’en
parlerons pas en cours.

1 GÉNÉRALITÉS

1.1 Définitions

Définition 1 | Suite réelle
Une suite réelle est une application de J𝑛0 , +∞J, pour un certain𝑛0 ∈ ℕ, dansℝ :

𝑢 | J𝑛0 , +∞J ⟶ ℝ
𝑛 ⟼ 𝑢𝑛

• La suite 𝑢 ∶ J𝑛0 , +∞J⟶ℝ est notée (𝑢𝑛)𝑛⩾𝑛0 .
• la valeur 𝑢𝑛0 est appelé le premier terme de la suite.
• Pour tout entier 𝑛 ⩾𝑛0, 𝑢𝑛 est le terme de rang 𝑛 de la suite.

La plupart du temps, nous aurons 𝑛0 = 0 ou éventuellement 1.

Notation Abus de ...
Σ

Parfois onnotera seulement (𝑢𝑛) au lieu de (𝑢𝑛)𝑛⩾𝑛0 . Cela signifiera donc impli-
citement que l’on considère le plus petit entier 𝑛0 telle que l’expression 𝑢𝑛 soit
définie pour tout 𝑛 ⩾𝑛0.

Notation
Σ
• L’ensemble des suites définies à partir de 𝑛0 est ℝJ𝑛0 ,+∞J, notation déjà ren-

contrée pour les applications.
• Dans le cas 𝑛0 = 0, on notera ℝℕ l’ensemble des suites définies surℕ.

Attention
,

De-même qu’il ne faut pas confondre une fonction 𝑓 et l’image 𝑓(𝑥) de 𝑥 par 𝑓,
on prendra garde de bien distinguer la suite (𝑢𝑛) de son terme général d’ordre
𝑛 noté lui 𝑢𝑛 sans parenthèse.
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Puisqu’une suite est une application (et même une application à valeurs dans ℝ),
toutes les notions définies dans le Chapitre (ALG) 6 existent pour les suites. Pour y
voir plus clair, on les reformule explicitement dans ce chapitre.

Définition 2 | Graphe
Soient 𝑛0 ∈ ℕ et (𝑢𝑛)𝑛⩾𝑛0 une suite, on appelle graphe de (𝑢𝑛)𝑛⩾𝑛0 ou nuage de
points de (𝑢𝑛)𝑛⩾𝑛0 le sous ensemble noté𝒞𝑢 de ℝ2 défini par :

𝒞𝑢 = {(𝑛,𝑢𝑛) |𝑛 ⩾ 𝑛0}.

On peut représenter une suite
de deux manières différentes :

DROITE RÉELLE

0 1 𝑢0𝑢1𝑢2 𝑢3 𝑢4𝑢5

GRAPHE

𝑛

𝑢𝑛

1
0 1 2 3 4 5

𝑢0

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

•

•

•

•

•

•

Cadre
Ô

Dans la suite,afinde simplifier laprésentationdans lesdéfinitionset lespro-
positions, nous considérons (sauf exceptions), si cela n’est pas précisé, que
les suites sont définies surℕ. Les définitions s’étendent en général sans pro-
blème pour des suites définies seulement à partir d’un certain rang 𝑛0 ∈ ℕ∗.

On rappelle également de manière informelle qu’une suite peut être définie selon
des modes différents :

• de façon explicite, i.e. on connaît le terme général de la suite en fonction de𝑛, par
exemple 𝑢𝑛 = 2𝑛 −𝑛3 pour tout entier naturel 𝑛 (le calcul de 𝑢𝑛 pour tout entier
naturel 𝑛 est « facile », il suffit de remplacer 𝑛 par la valeur souhaitée),

• par récurrence, i.e. le terme 𝑢𝑛+1 est défini en fonction des termes précédents,
par exemple 𝑢𝑛+1 = cos(𝑢𝑛) pour tout entier naturel 𝑛 (l’étude de la suite est
alors plus délicate). Nous avons déjà étudié certaines de ces suites dans le Cha-
pitre (AN) 3.

Exemple 1
• Soit (𝑢𝑛)𝑛∈ℕ la suite définie surℕ par 𝑢𝑛 = 1

2𝑛+1 . Alors :

𝑢0 =
1

2×0+1
= 1, 𝑢1 =

1
2×1+1

=
1
3
, 𝑢2 =

1
5
,…etc.

• Soit (𝑢𝑛)𝑛∈ℕ la suite définie par :

∀𝑛 ∈ℕ, 𝑢𝑛 =
1

2𝑢𝑛+1
, 𝑢0 = 1.

Calculer 𝑢1,𝑢2,𝑢3.
PEN-FANCY

Définition 3 | Opérations
Pour tout (𝑢𝑛) ∈ ℝℕ, (𝑣𝑛) ∈ ℝℕ et λ ∈ ℝ, on définit alors :
• [Somme] la suite 𝑢+𝑣 par : ∀𝑛 ∈ℕ, (𝑢+𝑣)𝑛 =𝑢𝑛+𝑣𝑛.
• [Multiplication scalaire] La suite λ𝑢 par : ∀𝑛 ∈ℕ, (λ𝑢)𝑛 = λ𝑢𝑛.
• [Produit] La suite 𝑢×𝑣 par : ∀𝑛 ∈ℕ, (𝑢×𝑣)𝑛 =𝑢𝑛×𝑣𝑛
• [Quotient] La suite 𝑢

𝑣 , si la suite 𝑣 ne s’annule pas (c’est-à-dire 𝑣𝑛 ≠ 0 pour
tout 𝑛 ∈ℕ), par : ∀𝑛 ∈ℕ, (𝑢𝑣 )𝑛 =

𝑢𝑛
𝑣𝑛

.

1.2 Suites bornées

Définition 4 | Borne
• Soient𝑚,M∈ ℝ. On dit qu’une suite (𝑢𝑛) est :

⋄ majorée parM si : ∀𝑛 ∈ℕ, 𝑢𝑛 ⩽M,
⋄ minorée par𝑚 si : ∀𝑛 ∈ℕ, 𝑢𝑛 ⩾𝑚.

• On dit qu’une suite (𝑢𝑛) est :
⋄ majorée si : ∃M ∈ ℝ,∀𝑛 ∈ ℕ, 𝑢𝑛 ⩽M,
⋄ minorée si : ∃𝑚 ∈ ℝ,∀𝑛 ∈ ℕ, 𝑢𝑛 ⩾𝑚.

• Elle est dite bornée si elle est majorée et minorée.

Attention
,

Les minorants𝑚 et majorantsM sont des quantités indépendantes de 𝑛.
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Proposition 1 | Borne et valeur absolue
Soit (𝑢𝑛) une suite. Alors :

(𝑢𝑛) est bornée ⟺ ∃M∈ℝ+, ∀𝑛 ∈ ℕ, |𝑢𝑛| ⩽M.
⟺ ∃M∈ℝ+, ∀𝑛 ∈ ℕ, −M⩽𝑢𝑛 ⩽M.

Dans la pratique, on utilise plutôt cette proposition pour montrer qu’une suite est
bornée. La rédaction est souvent plus simple en exploitant les propriétés de la valeur
absolue.

Preuve On se contente de la première équivalence, la seconde étant une propriété clas-
sique de la valeur absolue (voir Chapitre (ALG) 2). Notons E = {𝑢𝑛 |𝑛 ∈ ℕ} l’ensemble des
valeurs. Alors on constate que :

(𝑢𝑛) est bornée ⟺ E est borné.
Or, d’après une propriété du Chapitre (ALG) 2, un sous-ensemble de ℝ est borné si, et seule-
ment si, les valeurs absolues sont majorées, c’est-à-dire :

∃M ∈ ℝ+, ∀𝑥 ∈ E, |𝑥| ⩽M.
Puisque E = {𝑢𝑛 |𝑛 ∈ ℕ}, c’est exactement :

∃M ∈ ℝ+, ∀𝑛 ∈ ℕ, |𝑢𝑛| ⩽M.

Exemple 2
1. La suite (𝑢𝑛)définie pour tout𝑛 ∈ℕ∗ par𝑢𝑛 = 1

𝑛 estminorée par 0 etmajorée
par 1 (en effet, si 𝑛 ⩾ 1 alors 0 ⩽ 1

𝑛 ⩽ 1). Elle est donc bornée.
2. La suite (𝑢𝑛)𝑛∈ℕ∗ définie par 𝑢𝑛 =

(−1)𝑛
𝑛 est bornée car :

∀𝑛 ∈ℕ∗, |𝑢𝑛| =
1
𝑛
⩽ 1.

3. Les suites ( 1
𝑛2+2 )𝑛∈ℕ et ( 1𝑛

𝑛
∑
𝑘=1

1
𝑘
)
𝑛∈ℕ∗

sont bornées.

• PEN-FANCY

• PEN-FANCY

4. La suite (e𝑛) est minorée par 0 mais non majorée. En effet, supposons par
l’absurde qu’elle le soit.
PEN-FANCY

Corollaire 1 | Somme et produit de suites bornées
Soient (𝑢𝑛) et (𝑣𝑛)deux suites bornées. Alors, les suites (𝑢𝑛+𝑣𝑛) et (𝑢𝑛×𝑣𝑛) sont
bornées.

Preuve NotonsM,M′ ∈ ℝ+ de sorte que :
∀𝑛 ∈ℕ, |𝑢𝑛| ⩽M, |𝑣𝑛| ⩽M′.

PEN-FANCY

Remarque 1 Si (𝑢𝑛) et (𝑣𝑛) sontmajorées, a-t-on (𝑢𝑛+𝑣𝑛) et (𝑢𝑛×𝑣𝑛)majorées?
• OUI pour la somme :

PEN-FANCY

3
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• NON, en règle générale, pour le produit. En effet, considérer par exemple les
suites𝑢(−𝑛) et (−𝑛2), elles sont toutes deux majorées par zéro et pourtant le
produit (𝑛3) ne l’est pas.

Définition 5 | à partir d’un certain rang
• Pour tout 𝑛 ∈ ℕ, soit 𝒫𝑛 une propriété. On dit qu’elle est vraie à partir d’un

certain rang s’il existe 𝑛0 ∈ ℕ, tel que𝒫𝑛 soit vraie pour tout 𝑛 ⩾𝑛0.
• On notera aussi : «𝒫𝑛 est vraie APCR ».

Exemple 3
1. Montrer que (√𝑛)

𝑛∈ℕ
est minorée par cinq APCR. Expliciter un tel rang.

PEN-FANCY

2. La suite (𝑢𝑛) définie pour tout𝑛 ∈ℕ par𝑢𝑛 = ln(𝑛+1)+10cos𝑛 est à termes
strictement positifs APCR. Expliciter un tel rang.
PEN-FANCY

3. Montrer qu’une suite majorée APCR est majorée. Commençons par faire un
dessin.
PEN-FANCY

Cet exemple se généralise en la proposition qui suit.

Proposition 2 | Enlever des APCR
• Toute suite majorée APCR est majorée.
• Toute suite minorée APCR est majorée.
• Toute suite bornée APCR est bornée.

1.3 Suites monotones

Définition 6 | Monotonie, Constance
Soit (𝑢𝑛) une suite.
• On dit que (𝑢𝑛) est croissante (resp. strictement croissante) si :

∀𝑛 ⩾ 0, 𝑢𝑛 ⩽𝑢𝑛+1 (resp. ∀𝑛 ⩾ 0, 𝑢𝑛 <𝑢𝑛+1).
• On dit que (𝑢𝑛) est décroissante (resp. strictement décroissante) si :

∀𝑛 ⩾ 0, 𝑢𝑛 ⩾𝑢𝑛+1 (resp. ∀𝑛 ⩾ 0, 𝑢𝑛 >𝑢𝑛+1).
• On dit que (𝑢𝑛) est monotone (resp. strictement monotone) si elle est crois-

sante ou décroissante (resp. strictement croissante ou strictement décrois-
sante).

• On dit qu’une suite (𝑢𝑛) est constante si :
∀𝑛 ⩾ 0, 𝑢𝑛+1 =𝑢𝑛.

En d’autres termes : ∀𝑛 ⩾ 0, 𝑢𝑛 =𝑢0.
• On dit qu’une suite (𝑢𝑛) est stationnaire si elle est constante APCR, i.e. si :

∃𝑛0 ∈ ℕ, ∀𝑛 ⩾ 𝑛0, 𝑢𝑛+1 =𝑢𝑛.
En d’autres termes : ∃𝑛0 ∈ ℕ, ∀𝑛 ⩾ 𝑛0, 𝑢𝑛 =𝑢𝑛0 .

• De manière équivalente, une suite (𝑢𝑛) est stationnaire si elle est constante
APCR.

4
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Exemple 4
• La suite ((𝑛−15)2) est croissante APCR.

PEN-FANCY

• La suite (3+⌊ 4
2𝑛 ⌋)𝑛∈ℕ est stationnaire. Expliciter l’entier 𝑛0 de la définition

précédente.
PEN-FANCY

Méthode (AN) 4.1 (Trouver la monotonie d’une suite)
• [Cas 1 : fonction dérivable] Si 𝑢𝑛 = 𝑓(𝑛) avec 𝑓 dérivable, on étudie la

fonction. Les monotonies coïncident.
• [Cas 2 : expression avec des sommes/différences principalement] Pour

étudier lamonotonie d’une suite, laméthode la plus fréquente est de calculer
𝑢𝑛+1−𝑢𝑛 et étudier son signe.
⋄ si 𝑢𝑛+1−𝑢𝑛 ⩾ 0 pour tout 𝑛 ∈ℕ, alors la suite (𝑢𝑛) est croissante,
⋄ si 𝑢𝑛+1−𝑢𝑛 ⩽ 0 pour tout 𝑛 ∈ℕ, alors la suite (𝑢𝑛) est décroissante.
En outre, lorsque la suite (𝑢𝑛) est définie par 𝑢𝑛 = 𝑓(𝑛) (i.e. de façon expli-
cite), le sens de variation de (𝑢𝑛) est le même que celui de 𝑓 sur [0;+∞[.

• [Cas 3 : expression avec des puissances/produits/quotients principale-
ment] Si une suite (𝑢𝑛) est à termes strictement positifs, elle est :
⋄ croissante si : ∀𝑛 ∈ℕ, 𝑢𝑛+1

𝑢𝑛
⩾ 1,

⋄ décroissante si : ∀𝑛 ∈ℕ, 𝑢𝑛+1
𝑢𝑛

⩽ 1.
Ce critère est utile seulement si 𝑢𝑛+1

𝑢𝑛
donne une expression simple (notam-

ment en cas de présence de factorielles, de puissances...).

Exemple 5 (Suite explicite) Déterminer la monotonie de la suite (𝑢𝑛) définie
par : ∀𝑛 ∈ℕ, 𝑢𝑛 = (𝑛+1)e−𝑛.
PEN-FANCY

Exemple 6 (Suite explicite) Étudier, avec les deux méthodes, la monotonie de
la suite (𝑢𝑛) définie par : ∀𝑛 ∈ℕ, 𝑢𝑛 = 2𝑛

𝑛+1 .
• PEN-FANCY

• PEN-FANCY

Exemple 7 (Suite récurrente) La suite définie par 𝑢0 = −2 et pour tout 𝑛 ∈
ℕ, 𝑢𝑛+1 =𝑢𝑛+e−𝑛+1 est monotone.
PEN-FANCY

Exemple 8 (Somme de RIEMANN) Soit, pour tout 𝑛 ⩾ 1, 𝑢𝑛 =∑𝑛
𝑘=1

1
𝑘2 .

• La suite (𝑢𝑛) est strictement croissante.
PEN-FANCY

5
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• La suite (𝑢𝑛) est majorée.
⋄ [Échec]

PEN-FANCY

⋄ [Succès] Constatons tout d’abord que pour tout 𝑘 ⩾ 2,
1
𝑘2

⩽
1

𝑘(𝑘−1)
=

1
𝑘−1

−
1
𝑘
.

PEN-FANCY

PEN-FANCY

♥ Exemple 9 (Généralisation : somme partielle) Soit (𝑢𝑛) une suite. Alors

(S𝑛) définie par :

∀𝑛 ∈ℕ, S𝑛 =
𝑛
∑
𝑘=0

𝑢𝑘 est appelée la somme partielle de la suite (𝑢𝑛).

Montrer que : (𝑢𝑛) est positive ⟹ (S𝑛) est croissante .
PEN-FANCY

(Dans l’exemple précédent, la suite ( 1
𝑛2 ) était positive.)

Par définition de suite croissante, on obtient directement la proposition suivante.

Proposition 3 | Monotonie et majoration / minoration
• Une suite croissante est minorée (par son premier terme).
• Une suite décroissante est majorée (par son premier terme).

2 LIMITE D’UNE SUITE

2.1 Généralités

Comme pour les fonctions, on aimerait définir une notion de limite pour les suites.
Puisque qu’une suite est une application définie sur des entiers, il n’y aura pas de
limite en un point (qui revient simplement à faire prendre à 𝑛 une valeur particu-
lière). De-même, il n’y aura pas de limite en −∞ car nos suites sont ici définies sur
des entiers positifs.

Définition 7 | Convergence
Soient ℓ ∈ ℝ et (𝑢𝑛) une suite.
• On dit que (𝑢𝑛) est convergente de limite ℓ si :

∀ε > 0 , ∃𝑛0 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ |𝑢𝑛−ℓ| < ε ,

6
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c’est-à-dire « aussi petit que soit ε > 0, 𝑢𝑛 est aussi proche que l’on veut de ℓ ,
APCR ».

Note
Rappelons que :
|𝑢𝑛−ℓ| < ε ⟺ −ε<𝑢𝑛−ℓ < ε ⟺ 𝑢𝑛 ∈ ]ℓ−ε,ℓ+ε[

Note
Il est possible de remplacer «< ε » par «⩽ ε » dans la définition. Les
deux sont équivalentes.

• Le réel ℓ est appelé la limite de la suite (𝑢𝑛). On note ℓ = lim
𝑛⟶∞

𝑢𝑛, ou encore
𝑢𝑛 −−−−−→𝑛⟶∞

ℓ.
• On dit que (𝑢𝑛) est convergente s’il existe un réel ℓ tel que 𝑢𝑛 −−−−−→𝑛⟶∞

ℓ.

𝑛

ℓ

𝑢𝑛0

𝑛0

ℓ+ε

ℓ−ε

Attention
, • Ne pas parler de la limite d’une suite sans avoir justifié son existence.
• Une limite ne dépend pas de 𝑛.

Par définition de la limite, on a la propriété suivante.

Proposition 4 | Convergence et convergence vers zéro
Soient ℓ ∈ ℝ et (𝑢𝑛) une suite. Alors :

𝑢𝑛 −−−−−→𝑛⟶∞
ℓ ⟺ 𝑢𝑛−ℓ−−−−−→𝑛⟶∞

0.

Preuve
𝑢𝑛 −−−−→𝑛⟶∞

ℓ ⟺ ∀ε> 0, ∃𝑛0 ∈ ℕ, ∀𝑛 ⩾𝑛0, |𝑢𝑛−ℓ| < ε

𝑢𝑛−ℓ−−−−→𝑛⟶∞
0 ⟺ ∀ε> 0, ∃𝑛0 ∈ ℕ, ∀𝑛 ⩾𝑛0, |(𝑢𝑛−ℓ)−0| < ε.

D’où l’équivalence.

Méthode (AN) 4.2 (Montrer que 𝑢𝑛 −−−−−→𝑛⟶∞
ℓ avec la définition de la limite)

1. Se donner ε > 0.
2. Résoudre l’inéquation |𝑢𝑛−ℓ| < ε en 𝑛 ∈ ℕ. L’ensemble des solutions

contient un ensemble de la forme J𝑛0 , ∞J, avec 𝑛0 ∈ ℕ. On a alors prouvé
que : ∀𝑛 ∈ℕ, 𝑛 ⩾𝑛0 ⟹ |𝑢𝑛−ℓ| < ε.

3. Ceci étant vrai pour tout ε > 0, on a montré que : 𝑢𝑛 −−−−−→𝑛⟶∞
ℓ.

Exemple 10 Montrons, avec la définition, que : lim
𝑛⟶∞

(1+ 1
𝑛 ) = 1.

PEN-FANCY

Proposition 5 | Encadrement d’une suite convergente vers ℓ ≠ 0
• Si (𝑢𝑛) converge vers ℓ > 0 , alors :

∃𝑛0 ∈ ℕ, ∀𝑛 ⩾ 𝑛0,
ℓ
2
⩽ 𝑢𝑛 ⩽

3ℓ
2
.

En particulier, 𝑢𝑛 est strictement positive APCR.
• Si (𝑢𝑛) converge vers ℓ < 0 , alors :

∃𝑛0 ∈ ℕ, ∀𝑛 ⩾ 𝑛0,
3ℓ
2
⩽ 𝑢𝑛 ⩽

ℓ
2
.

En particulier, 𝑢𝑛 est strictement négative APCR.

Preuve

0 ℓ
2

ℓ 3ℓ
2

Par hypothèse,
∀ε > 0, ∃𝑛0 ∈ ℕ, ∀𝑛 ∈ℕ, 𝑛 ⩾ 𝑛0 ⟹ |𝑢𝑛−ℓ| < ε.

Prenons ensuite ε = ℓ
2 (car ℓ > 0). Alors :

∃𝑛0 ∈ ℕ, ∀𝑛 ∈ℕ, 𝑛 ⩾ 𝑛0 ⟹ |𝑢𝑛−ℓ| <
ℓ
2
.

Or, pour tout 𝑛, |𝑢𝑛−ℓ| < ℓ
2 ⟺ − ℓ

2 < 𝑢𝑛 −ℓ < ℓ
2 , ce qui fournit l’inégalité cherchée. Le

cas négatif s’obtient en utilisant le cas positif appliqué à la suite (−𝑢𝑛).

Exemple 11
• Notons : 𝑢𝑛 = 1− 𝑛4

e𝑛 pour tout 𝑛 ∈ℕ.
• Nous serons capable de montrer que : lim

𝑛⟶∞
𝑢𝑛 = 1, donc 𝑢 est strictement

7
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positive APCR. Le montrer par le calcul en trouvant un tel rang n’est en re-
vanche pas du tout évident ! Des calculs de limites peuvent donc rendre de
précieux services.

Attention
,

On ne peut rien dire pour une suite convergeant vers zéro, par exemple
( (−1)

𝑛

𝑛 )
𝑛∈ℕ∗

converge vers 0 (nous serons capable de le montrer plus tard) et change
pourtant alternativement de signe.

Définition 8 | Divergence vers ±∞, Divergence
• Soit (𝑢𝑛) une suite. On dit que (𝑢𝑛) diverge vers+∞ et on note 𝑢𝑛 −−−−−→𝑛⟶∞

+∞
si : ∀A ∈ ℝ , ∃𝑛0 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ 𝑢𝑛 >A.
C’est-à-dire : « 𝑢𝑛 est aussi grand que l’on veut , APCR ».

Note
Il est possible de remplacer «A ∈ ℝ » par «A ∈ ℝ+ » dans la définition.
Les deux sont équivalentes.

• Soit (𝑢𝑛) une suite. On dit que (𝑢𝑛) diverge vers−∞ et on note 𝑢𝑛 −−−−−→𝑛⟶∞
−∞

si : ∀A ∈ ℝ , ∃𝑛0 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ 𝑢𝑛 <A.
C’est-à-dire : « 𝑢𝑛 est aussi petit que l’on veut , APCR ».

Note
Il est possible de remplacer «A ∈ ℝ » par «A ∈ ℝ− » dans la définition.
Les deux sont équivalentes.

• Une suite est dite divergente si elle n’est pas convergente.

Attention Diverger ne signifie pas tendre vers ±∞
,

Il existe des suites qui ne convergent pas et qui nedivergent pas vers±∞ : ce sont
celles n’ayant pas de limite. Par exemple, la suite (𝑢𝑛) définie par 𝑢𝑛 = (−1)𝑛𝑛2

pour tout 𝑛 ∈ℕ. (Nous pourrons le montrer plus tard)

Illustrons par exemple le cas d’une divergence vers +∞.

𝑛

A
𝑢𝑛0

𝑛0

Méthode (AN) 4.3 (Montrer que 𝑢𝑛 −−−−−→𝑛⟶∞
+∞ avec la définition de la limite)

1. Se donner A ∈ ℝ.
2. Résoudre l’inéquation 𝑢𝑛 > A en 𝑛 ∈ ℕ. L’ensemble des solutions contient

un ensemble de la forme J𝑛0 ,∞J, avec𝑛0 ∈ ℕ. On a alors prouvé que : ∀𝑛 ∈
ℕ, 𝑛 ⩾𝑛0 ⟹ 𝑢𝑛 >A.

3. Ceci étant vrai pour tout A ∈ ℝ, on a montré que : 𝑢𝑛 −−−−−→𝑛⟶∞
+∞.

Exemple 12 Montrons, avec la définition, que : lim
𝑛⟶+∞

√𝑛=∞.

PEN-FANCY

Définition 9 | Nature
Déterminer la nature d’une suite c’est déterminer si elle converge ou diverge.

2.2 Propriétés des limites

Théorème 1 | Unicité de la limite
La limite d’une suite, si elle existe, est unique.

Intuitivement, converger vers ℓ ≠ ℓ′ signifie se retrouver pour 𝑛 assez grand dans
des intervalles arbitrairement petits autour de ℓ et ℓ′ — ce qui n’est bien sûr pas
possible (il suffit de les choisir suffisamment petits pour être d’intersection vide).
Cette intuition est formalisée dans la preuve qui suit.

Preuve Faisons la preuve dans le cas d’une limite finie. Raisonnons par l’absurde et sup-
posons que 𝑢𝑛 −−−−→𝑛⟶∞

ℓ, 𝑢𝑛 −−−−→𝑛⟶∞
ℓ′ et par exemple ℓ < ℓ′. Posons ε = ℓ′−ℓ

3 > 0. Alors par
définition de la limite, il existe deux entiers 𝑛1,𝑛2 tels que :

∀𝑛 ⩾𝑛1, 𝑢𝑛 ∈ ]ℓ−ε,ℓ+ε[, ∀𝑛 ⩾ 𝑛2, 𝑢𝑛 ∈ ]ℓ′−ε,ℓ′+ε[.
donc en posant 𝑛0 =max{𝑛1,𝑛2}, on a :

∀𝑛 ⩾𝑛0, 𝑢𝑛 ∈ ]ℓ−ε,ℓ+ε[∩ ]ℓ′−ε,ℓ′+ε[.
Or ℓ+ε < ℓ′−ε puisque :

ℓ+ε < ℓ′−ε ⟺
ℓ′+2ℓ

3
<
2ℓ′+ℓ

3
⟺ ℓ<ℓ′.

Donc : ]ℓ−ε,ℓ+ε[  ∩ ]ℓ′−ε,ℓ′+ε[ = ∅ — contradiction, car cette intersection devrait
contenir 𝑢𝑛0 .

8
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Théorème 2 | Limite et bornes
• Les suites qui divergent vers +∞ sont minorées.
• Les suites qui divergent vers −∞ sont majorées.
• Les suites qui convergent sont bornées.

Preuve
• Soit (𝑢𝑛) telle que lim

𝑛⟶∞
𝑢𝑛 = +∞. Par définition, il existe 𝑛0 ∈ ℕ tel que pour tout 𝑛 ⩾

𝑛0, 𝑢𝑛 ⩾ 1. Elle est donc minorée APCR, et donc minorée d’après la Proposition 2.
• Soit (𝑢𝑛) telle que lim

𝑛⟶∞
𝑢𝑛 = −∞. Par définition, il existe 𝑛0 ∈ ℕ tel que pour tout 𝑛 ⩾

𝑛0, 𝑢𝑛 ⩽ 1. Elle est donc majorée APCR, et donc majorée d’après la Proposition 2.
• Soit (𝑢𝑛) telle que lim

𝑛⟶∞
𝑢𝑛 = ℓ ∈ ℝ. Par définition, il existe 𝑛0 ∈ ℕ tel que pour tout

𝑛 ⩾ 𝑛0, |𝑢𝑛−ℓ| ⩽ 1. Par l’inégalité triangulaire pour tout 𝑛 ⩾ 𝑛0, |𝑢𝑛| = |𝑢𝑛−ℓ+ℓ| ⩽
|𝑢𝑛−ℓ| + |ℓ| ⩽ 1+ |ℓ|. Posons alors M = max (|𝑢0| , |𝑢1| ,…, |𝑢𝑛0−1| ,1+ |ℓ|). On a alors
pour tout 𝑛 ∈ℕ,|𝑢𝑛| ⩽M donc (𝑢𝑛) est bornée.

Intuitivement, pour 𝑛 assez grand la suite est confinée dans un intervalle autour de
la limite ℓ donc bornée.Mais avant, nous n’avons qu’un nombre fini de valeurs donc
elle sera globalement bornée.

Attention
,

La réciproque est fausse : considérer par exemple la suite ((−1)𝑛). Nous justifie-
rons plus tard qu’elle n’a même pas de limite.

Théorème 3 | Passage à la limite dans les inégalités larges
Soient (𝑢𝑛) et (𝑣𝑛) deux suites réelles convergentes. Alors :
• 𝑢𝑛 ⩽ 𝑣𝑛 (au moins APCR) ⟹ lim

𝑛⟶∞
𝑢𝑛 ⩽ lim

𝑛⟶∞
𝑣𝑛,

• 𝑢𝑛<𝑣𝑛 (au moins APCR)��XX⟹ lim
𝑛⟶∞

𝑢𝑛 < lim
𝑛⟶∞

𝑣𝑛 en règle générale,
• 𝑢𝑛<𝑣𝑛 (au moins APCR) ⟹ lim

𝑛⟶∞
𝑢𝑛 ⩽ lim

𝑛⟶∞
𝑣𝑛 en revanche.

Preuve
• Notons ℓ = lim

𝑛⟶∞
𝑢𝑛 et ℓ′ = lim

𝑛⟶∞
𝑣𝑛. Procédons par l’absurde et supposons que ℓ > ℓ′.

Alors 𝑢𝑛−𝑣𝑛 −−−−→𝑛⟶∞
ℓ−ℓ′ > 0, et par Proposition 5, 𝑢𝑛−𝑣𝑛 > 0 APCR. C’est absurde.

• En effet, si 𝑢𝑛 = − 1
𝑛 et 𝑣𝑛 = 1

𝑛 par exemple, alors on a bien 𝑢𝑛 < 𝑣𝑛 pour tout 𝑛 ∈ ℕ⋆ et
pourtant lim

𝑛⟶∞
𝑢𝑛 = 0 = lim

𝑛⟶∞
𝑣𝑛.

• Si 𝑢𝑛 < 𝑣𝑛, alors 𝑢𝑛 ⩽ 𝑣𝑛. On conclut alors en utilisant le 1er point.

Opérations sur les limites. Soient (𝑢𝑛)et , (𝑣𝑛)deux suites admettant toutes
les deux une limite en+∞. Dans toute la suite, ℓ et ℓ′ désignent deux nombres réels.
« FI » désigne une indétermination du résultat de la limite indiqué dans le tableau
(à traiter au cas par cas). Chaque résultat présent dans chaque case du tableau peut
être démontré en vérifiant la définition de la limite, nous l’admettrons.

LIMITE DE (𝑢𝑛+𝑣𝑛)

lim
𝑛⟶∞

𝑣𝑛

lim
𝑛⟶∞

𝑢𝑛 −∞ ℓ +∞

−∞ −∞ −∞ FI

ℓ′ −∞ ℓ+ℓ′ +∞

+∞ FI +∞ +∞

LIMITE DE (𝑢𝑛×𝑣𝑛)

lim
𝑛⟶∞

𝑣𝑛

lim
𝑛⟶∞

𝑢𝑛 −∞ ℓ ≠ 0 ℓ = 0 +∞

−∞ +∞ −∞ si ℓ > 0
+∞ si ℓ < 0

FI −∞

ℓ′ ≠ 0 −∞ si ℓ′ > 0
+∞ si ℓ′ < 0

ℓ×ℓ′ 0 +∞ si ℓ′ > 0
−∞ si ℓ′ < 0

ℓ′ = 0 FI 0 0 FI

+∞ −∞ +∞ si ℓ > 0
−∞ si ℓ < 0

FI +∞

LIMITE DE
𝑢𝑛
𝑣𝑛

lim
𝑛⟶∞

𝑣𝑛

lim
𝑛⟶∞

𝑢𝑛 −∞ ℓ ≠ 0 ℓ = 0 +∞

−∞ FI 0 0 FI

ℓ′ ≠ 0 −∞ si ℓ′ > 0
+∞ si ℓ′ < 0

ℓ
ℓ′

0 +∞ si ℓ′ > 0
−∞ si ℓ′ < 0

ℓ′ = 0− +∞ −∞ si ℓ > 0
+∞ si ℓ < 0

FI −∞

ℓ′ = 0+ −∞ +∞ si ℓ > 0
−∞ si ℓ < 0

FI +∞

+∞ FI 0 0 FI

Attention Pour retenir, mais sans l’écrire
, • On pourra penser très fort, mais sans jamais l’écrire sur une copie, que :

1
∞

= 0,
1
0+

=+∞,
1
0−

=−∞.

9
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formes indéterminées « FI » sont les suivantes :
∞−∞, 0×∞,

0
0
,

∞
∞
.

Tout cela avec des gros guillemets donc.

La plupart des techniques vues pour les fonctions sont utilisables pour les suites,
dont celle de l’expression conjuguée. Voici quelques exemples.

Exemple 13 Calculer la limite des suites de terme général donné par :
• 𝑢𝑛 =𝑛2+2𝑛−3

PEN-FANCY

• 𝑣𝑛 =−𝑛2+2𝑛−3
PEN-FANCY

• 𝑤𝑛 = (3−5𝑛)(𝑛3−4)
PEN-FANCY

• 𝑥𝑛 = 2𝑛+4
1
𝑛−5

PEN-FANCY

• 𝑦𝑛 = 2−5𝑛
4𝑛+7

PEN-FANCY

• 𝑧𝑛 = −3𝑛3−10𝑛+4
2𝑛2+3𝑛+1

PEN-FANCY

• Déterminer la limite de la suite (√𝑛+1−√𝑛)
𝑛∈ℕ

. On a ici une forme indé-
terminée avec une différence de racines. L’idée est, comme pour les fonctions,
d’utiliser la quantité conjuguée :

√𝑛+1−√𝑛=
(√𝑛+1−√𝑛)(√𝑛+1+√𝑛)

√𝑛+1+√𝑛

=
𝑛+1−𝑛

√𝑛+1+√𝑛
=

1
√𝑛+1+√𝑛

.

Par quotient de limites, on obtient donc : lim
𝑛⟶∞

√𝑛+1−√𝑛= 0.

2.3 Nature par majoration, minoration et encadrement

Théorème 4 | Théorème d’encadrement (ou des gendarmes) ♥

On considère (𝑢𝑛), (𝑣𝑛) et (𝑤𝑛) telles que :
⎧
⎨
⎩

(i) 𝑢𝑛 ⩽ 𝑣𝑛 ⩽𝑤𝑛 (au moins APCR)

(ii) les deux suites (𝑢𝑛) et (𝑤𝑛) convergent vers une même limite ℓ ∈ ℝ.
Alors : 𝑣𝑛 −−−−−→𝑛⟶∞

ℓ.

𝑛

ℓ

10
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Preuve Soit ε > 0. Par hypothèse sur (𝑢𝑛) et (𝑤𝑛), il existe 𝑛1 ∈ ℕ et 𝑛2 ∈ ℕ tels que pour
tout 𝑛 ∈ℕ :

𝑛 ⩾𝑛1 ⟹ ℓ−ε⩽𝑢𝑛 ⩽ ℓ+ε et 𝑛 ⩾𝑛2 ⟹ ℓ−ε⩽𝑤𝑛 ⩽ ℓ+ε.
Par ailleurs, il existe 𝑛3 ∈ ℕ tel que pour 𝑛 ⩾ 𝑛3 : 𝑢𝑛 ⩽ 𝑣𝑛 ⩽ 𝑤𝑛. Ainsi, en posant 𝑛0 =
max{𝑛1,𝑛2,𝑛3}, on a pour tout 𝑛 ⩾ 𝑛0 : ℓ− ε ⩽ 𝑢𝑛 ⩽ 𝑣𝑛 ⩽ 𝑤𝑛 ⩽ ℓ+ ε. Ainsi, (𝑣𝑛) converge
vers ℓ.

Remarque 2 Pour pouvoir appliquer le théorème des gendarmes, on utilise le
plus souvent :
• un encadrement de cos, de sin. En effet, on a :

∀𝑥 ∈ ℝ, −1 ⩽ cos(𝑥) ⩽ 1, −1 ⩽ sin(𝑥) ⩽ 1.
• Ouunencadrementde la partie entière. Eneffet, on a (voirChapitre (ALG) 2) :

∀𝑥 ∈ ℝ, 𝑥−1 ⩽ ⌊𝑥⌋ ⩽ 𝑥.
On rappelle que cela est une conséquence de la définitionde la partie entière,
qui est quant à elle (moins utile dans les problèmes de limites) :

∀𝑥 ∈ ℝ, ⌊𝑥⌋ ⩽ 𝑥 < ⌊𝑥⌋+1.

Exemple 14 Étudier la nature de la suite (𝑢𝑛)𝑛∈ℕ⋆ = ( sin(𝑛)𝑛 )
𝑛∈ℕ∗

.

PEN-FANCY

Exemple 15 Soit 𝑥 ∈ ℝ. Déterminer : lim
𝑛⟶∞

⌊𝑛𝑥⌋
𝑛 .

PEN-FANCY

Remarque 3 (Densité deℚ dans ℝ) On a obtenu : ∀𝑥 ∈ ℝ, lim
𝑛⟶∞

⌊𝑛𝑥⌋
𝑛 =

𝑥, tout nombre réel est donc limite d’une suite de nombres rationnels, on
dit que ℚ est dense dans ℝ. La densité de ℚ dans ℝ est parfois utile pour
généraliser sur ℝ une propriété valable surℚ.

Exemple 16 Étudier la nature de la suite (𝑢𝑛)𝑛∈ℕ⋆ = (∑𝑛
𝑘=1

𝑛
𝑛2+𝑘 )𝑛∈ℕ∗

.

1 ⩽ 𝑘 ⩽ 𝑛 ⟺
1

√1+𝑛2
⩾

1
√𝑛2+𝑘

⩾
1

√𝑛2+𝑛
.

Puis en sommant, on obtient
𝑛

√1+𝑛2
⩾𝑢𝑛 ⩾

𝑛
√𝑛2+𝑛

.

Enmettant en facteur 𝑛2 dans la racine carrée, on obtient :

lim
𝑛⟶+∞

𝑛
√1+𝑛2

= 1 = lim
𝑛⟶+∞

𝑛
√𝑛2+𝑛

.

Ainsi, d’après le théorème des gendarmes, on obtient que la suite (𝑢𝑛)𝑛∈ℕ⋆

converge et que : lim
𝑛⟶+∞

𝑢𝑛 = 1.

Corollaire 2 | Version valeur absolue & Bornée «×→0 »
• On considère (𝑢𝑛), (𝑣𝑛) telles que :

⎧
⎨
⎩

(i) |𝑢𝑛| ⩽ 𝑣𝑛 (au moins APCR)

(ii) 𝑣𝑛 −−−−−→𝑛⟶∞
0,

⟹ 𝑢𝑛 −−−−−→𝑛⟶∞
0.

• Le produit d’une suite bornée et d’une suite convergeant vers zéro est une
suite convergeant vers zéro.

Preuve
• L’hypothèsedonne : ∀𝑛 ∈ℕ, −𝑣𝑛 ⩽𝑢𝑛 ⩽ 𝑣𝑛 (en effet, (𝑣𝑛) est positiveparhypothèse,

au moins APCR). Donc puisque 𝑣𝑛 −−−−→𝑛⟶∞
0, −𝑣𝑛 −−−−→𝑛⟶∞

0 donc par théorème d’encadre-
ment 𝑢𝑛 −−−−→𝑛⟶∞

0.
• Soit (𝑢𝑛) une suite bornée disons parM ∈ ℝ+, et (𝑣𝑛) convergeant vers zéro. Alors pour

tout𝑛, 0 ⩽ |𝑢𝑛𝑣𝑛| ⩽M|𝑣𝑛|. Comme |𝑣𝑛| −−−−→𝑛⟶∞
0, on conclut à l’aide de la première partie

de la preuve.

Exemple 17 Montrer que : lim
𝑛⟶∞

(−1)𝑛
𝑛 = 0.

PEN-FANCY

Exemple 18 Étudier la nature de la suite ( cos(𝑛
2)+2+(−1)𝑛 arctan(4𝑛)

√𝑛
)
𝑛∈ℕ∗

.

PEN-FANCY

11
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Théorème 5 | Théorème de divergence par minoration oumajoration
Soient deux suites (𝑢𝑛) et (𝑣𝑛) réelles.
• [Divergence par minoration] Alors :

⎧
⎨
⎩

(i) 𝑢𝑛 ⩽ 𝑣𝑛 (au moins APCR)

(ii) 𝑢𝑛 −−−−−→𝑛⟶∞
+∞

⟹ 𝑣𝑛 −−−−−→𝑛⟶∞
+∞.

• [Divergence par majoration] Alors :
⎧
⎨
⎩

(i) 𝑢𝑛 ⩽ 𝑣𝑛 (au moins APCR)

(ii) 𝑣𝑛 −−−−−→𝑛⟶∞
−∞

⟹ 𝑢𝑛 −−−−−→𝑛⟶∞
−∞.

Preuve
• Soit A ∈ ℝ. Alors 𝑢𝑛 ⩾ A APCR 𝑛1. Comme 𝑢𝑛 ⩽ 𝑣𝑛 APCR 𝑛2, alors A ⩽ 𝑣𝑛 à partir du rang

max{𝑛1,𝑛2}, d’où la conclusion.• Appliquer le théorème de divergence par minoration aux suites (−𝑣𝑛) et (−𝑢𝑛).

Exemple 19 (Divergence de la série harmonique (1)) Soit 𝑛 ∈ℕ⋆, on note :

H𝑛 =
𝑛
∑
𝑘=1

1
𝑘
.

1. Montrer que pour tout 𝑥 ⩾ 0, ln(1+𝑥) ⩽ 𝑥.
PEN-FANCY

2. Montrer que pour tout 𝑘 ∈ℕ⋆, 1
𝑘 ⩾ ln(𝑘+1)− ln(𝑘).

PEN-FANCY

3. En déduire queH𝑛 −−−−−→𝑛⟶∞
∞.

PEN-FANCY

2.4 Nature par suites extraites

Définition 10 | Extraites des termes pairs et impairs
Soit (𝑢𝑛) une suite.
• La suite (𝑢2𝑛) est appelée suite extraite des termes pairs.
• La suite (𝑢2𝑛+1) est appelée suite extraite des termes impairs.

Théorème 6 | Convergence des suites extraites ♥

Soit (𝑢𝑛) une suite.
• Soit ℓ ∈ ℝ∪{±∞}. Alors :

𝑢𝑛 −−−−−→𝑛⟶∞
ℓ ⟺

⎧
⎨
⎩

(i) 𝑢2𝑛 −−−−−→𝑛⟶∞
ℓ

(ii) 𝑢2𝑛+1 −−−−−→𝑛⟶∞
ℓ.

• Par conséquent, si (𝑢2𝑛) et (𝑢2𝑛+1) ne tendent pas vers unemême limite dans
ℝ∪{±∞}, alors (𝑢𝑛) n’a pas de limite.

Remarque 4
• Il existe des résultats faisant intervenir des suites autres que celles des termes

impairs/paris ((2𝑛) et (2𝑛+1)), mais qui ne sont pas à notre programme.
• Plus généralement, on appelle suite extraite (ou sous-suite) de la suite (𝑢𝑛)

toute suite (𝑣𝑛) telle que 𝑣𝑛 = 𝑢φ(𝑛), où φ est une application strictement
croissante deℕ dansℕ (par exemple, pour la suite de rangs pairs, la fonction
φ est définie surℕ par φ(𝑛) = 2𝑛).

Preuve
• ⟸ On suppose que (𝑢𝑛) tend vers ℓ. Soit ε > 0. Il existe 𝑛0 tel que |𝑢𝑛−ℓ| ⩽ ε pour

tout𝑛 ⩾𝑛0. Soit alors𝑛 ⩾𝑛0. On a 2𝑛 ⩾ 𝑛0 et 2𝑛+1 ⩾ 𝑛0 ce qui entraîne que |𝑢2𝑛−ℓ| ⩽ ε
et |𝑢2𝑛+1−ℓ| ⩽ ε. Ainsi (𝑢2𝑛) et (𝑢2𝑛+1) tendent vers ℓ.
⟹ On suppose que (𝑢2𝑛) et (𝑢2𝑛+1) tendent vers ℓ. Soit ε > 0. Il existe (𝑛0,𝑛1) ∈ ℕ2

tel que |𝑢2𝑛−ℓ| ⩽ ε pour tout 𝑛 ⩾ 𝑛0 et que |𝑢2𝑛+1−ℓ| ⩽ ε pour tout 𝑛 ⩾ 𝑛1. On pose
N=max(2𝑛0,2𝑛1+1). On a alors |𝑢𝑛−ℓ| ⩽ ε pour tout 𝑛 ⩾ N. Ainsi (𝑢𝑛) tend vers ℓ.

• Soient ℓ,ℓ′ ∈ ℝ∪ {±∞} tels que ℓ ≠ ℓ′ et 𝑢2𝑛 −−−−→
𝑛⟶∞

ℓ,𝑢2𝑛+1 −−−−→𝑛⟶∞
ℓ′. Alors (𝑢𝑛) n’a

pas de limite ; en effet, dans le cas contraire, si 𝑢𝑛 −−−−→𝑛⟶∞
L ∈ ℝ∪ {±∞}, alors on aurait

12
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𝑢2𝑛 −−−−→𝑛⟶∞
L et 𝑢2𝑛+1 −−−−→𝑛⟶∞

L, ce qui est bien sûr contradictoire par unicité de la limite.

Exemple 20
• Les suites (𝑢𝑛) = ((−1)𝑛)𝑛⩾0 et (𝑣𝑛) = (𝑛2(−1)𝑛)𝑛⩾0 n’ont pas de limite.

PEN-FANCY

• Retrouver que : lim
𝑛⟶∞

(−1)𝑛
𝑛 = 0.

PEN-FANCY

Exemple 21 La suite (𝑢𝑛) définie pour tout 𝑛 ∈ ℕ par 𝑢𝑛 = ∑𝑛
𝑘=0(−1)

𝑘 n’admet
pas de limite en +∞. De la définition de 𝑢𝑛, on en déduit :

∀𝑛 ∈ℕ, 𝑢𝑛 =
1−(−1)𝑛+1

1−(−1)
=
1+(−1)𝑛

2
.

Ainsi : ∀𝑛 ∈ℕ, 𝑢2𝑛 = 1 et𝑢2𝑛+1 = 0.Donc lim
𝑛⟶∞

𝑢2𝑛 = 1 ≠ 0 = lim
𝑛⟶∞

𝑢2𝑛+1 donc
(𝑢𝑛) ne possède pas de limite en +∞. De la définition de 𝑢𝑛, on en déduit :

∀𝑛 ∈ℕ, 𝑢𝑛 =
1−(−1)𝑛+1

1−(−1)
=
1+(−1)𝑛

2
.

Ainsi : ∀𝑛 ∈ℕ, 𝑢2𝑛 = 1 et𝑢2𝑛+1 = 0.Donc lim
𝑛⟶∞

𝑢2𝑛 = 1 ≠ 0 = lim
𝑛⟶∞

𝑢2𝑛+1 donc
(𝑢𝑛) ne possède pas de limite en +∞.

Exemple 22 Si une suite (𝑢𝑛) vérifie :

∀𝑛,𝑝 ∈ ℕ⋆, 0 ⩽ 𝑢𝑛+𝑝 ⩽
𝑛+𝑝
𝑛𝑝

alors elle converge vers zéro.

PEN-FANCY

2.5 Croissances comparées et limites géométriques

Proposition 6 | Limite d’une suite géométrique
Soit 𝑞 ∈ ℝ.

Si 𝑞 > 1 alors lim
𝑛⟶∞

𝑞𝑛 =+∞.• Si 𝑞 = 1 alors la suite (𝑞𝑛) est
constante égale à 1.

•

Si −1 < 𝑞 < 1 (c’est-à-dire |𝑞| < 1)
alors lim

𝑛⟶∞
𝑞𝑛 = 0.

• Si 𝑞 =−1, (𝑞𝑛) est donc bornée mais
n’admet pas de limite.

•

Si 𝑞 < −1 alors la suite (𝑞𝑛) n’est pas
bornée et n’admet pas de limite.

•

Exemple 23 On considère une suite arithmético-géométrique, c’est-à-dire 𝑢 tel
qu’il existe 𝑞 ∈ ℝ et 𝑎 ∈ ℝ vérifiant :

∀𝑛 ∈ℕ, 𝑢𝑛+1 =𝑞𝑢𝑛+𝑎.
On suppose de plus que |𝑞| < 1. Justifier que 𝑢 converge vers une limite à préci-
ser.
PEN-FANCY

Enfin, le résultat de croissances comparées reste encore valable pour des suites. Bien
entendu, on ne conserve que les résultats au voisinage de +∞, puisque 𝑞𝑛 = e𝑛 ln𝑞

pour tout𝑛 ∈ℕ et𝑞 > 1, les exponentielles des croissances comparées des fonctions
deviennent des puissances, à cela s’ajoute une autre suite : la factorielle, qui diverge
vers +∞ plus vite que toutes les autres.

13
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Théorème 7 | Croissances comparées ♥

Soient 𝑎, et 𝑏 des réels strictement positifs, et 𝑞 > 1 .

lim
𝑛⟶∞

(ln(𝑛))𝑎

𝑛𝑏 = 0, lim
𝑛⟶∞

𝑛𝑏

𝑞𝑛
= 0, lim

𝑛⟶∞

(ln(𝑛))𝑎

𝑞𝑛
= 0, lim

𝑛⟶∞

𝑞𝑛

𝑛!
= 0,

lim
𝑛⟶∞

𝑛𝑏

(ln(𝑛))𝑎
=∞, lim

𝑛⟶∞

𝑞𝑛

𝑛𝑏 =∞, lim
𝑛⟶∞

𝑞𝑛

(ln(𝑛))𝑎
=∞, lim

𝑛⟶∞

𝑛!
𝑞𝑛

=∞.

Résumé Idée des croissances comparées
♥

On se souviendra que la factorielle diverge beaucoup plus vite que l’exponen-
tielle en +∞, qui elle-même diverge beaucoup plus vite en +∞ que toute puis-
sance de 𝑛, qui elle-même diverge plus vite que toute puissance de logarithme.
Ce que l’on peut noter :

(ln𝑛)𝑎 ll
+∞

𝑛𝑏 ll
+∞

𝑞𝑛 ll
+∞

𝑛!.

Preuve La seconde ligne se déduit de la première en passant à l’inverse. Nous admettons
le reste sauf 𝑞𝑛

𝑛! −−−−→𝑛⟶∞
0 que nous allons démontrer.

L’idée est la suivante : il y a autant de facteurs au numérateur qu’au dénominateur, mais les
facteurs du dénominateur ne cessent de grandir alors que ceux dunumérateur sont toujours
« des 𝑥 ». Cela nous incite donc à découper le dénominateur en « deux morceaux », dont le
second sera composé de facteurs strictement supérieurs à 𝑥.

0 ⩽
𝑞𝑛

𝑛!
=
𝑞⌊𝑥⌋

⌊𝑥⌋!
×

𝑞𝑛−⌊𝑥⌋

(⌊𝑥⌋+1)×…×𝑛
⩽
𝑞⌊𝑥⌋

⌊𝑥⌋!
(

𝑥
⌊𝑥⌋+1

)
𝑛−⌊𝑥⌋

.

Puisque | 𝑥
⌊𝑥⌋+1 | < 1, le majorant converge vers zéro — c’est le terme général d’une suite géo-

métrique. Donc : lim
𝑛⟶∞

𝑞𝑛

𝑛! = 0 par théorème d’encadrement.

Exemple 24 Déterminer les limites ci-après.
𝑢𝑛 = 4𝑛

𝑛! , 𝑛 ⩾ 0,
PEN-FANCY

1. 𝑢𝑛 = 2𝑛e√ln(𝑛)

𝑛3 , 𝑛 ⩾ 1.
PEN-FANCY

2.

Remarque 5 Il arrive parfois que certaines convergences restent en vigueur pour
d’autres valeurs de 𝑞. Par exemple : lim

𝑛⟶∞
𝑞𝑛

𝑛𝑏 = 0même si 𝑞 =−1.

2.6 Nature par monotonie

Le théorème qui suit est vrai aussi pour les fonctions, mais nous le verrons plus tard.
C’est le plus important du chapitre.

Théorème 8 | Théorème de la limite monotone ♥

• Toute suite monotone possède une limite ℓ ∈ ℝ∪{±∞}.
• Plus précisément,

⋄ toute suite réelle croissante etmajorée (oudécroissanteminorée) converge
vers une limite finie ℓ ∈ ℝ.

⋄ Toute suite réelle croissante nonmajorée (resp. décroissante nonminorée)
diverge vers ℓ =+∞ (resp. ℓ =−∞).

Preuve On le prouve par exemple dans le cas d’une suite croissante. Soit (𝑢𝑛) une suite
croissante.
• Si (𝑢𝑛) est majorée, alors l’ensemble U = {𝑢𝑛 |𝑛 ∈ ℕ} est non vide majoré donc possède

une borne supérieure. Notons ℓ = supU et montrons que 𝑢𝑛 −−−−→𝑛⟶∞
ℓ.

• Soit ε un réel strictement positif, ℓ−ε n’est donc pas un majorant deU par définition de
ℓ et il existe alors 𝑛0 ∈ ℕ tel que ℓ−ε < 𝑢𝑛0 . On en déduit alors par croissance de (𝑢𝑛) et
par définition de ℓ que ℓ−ε < 𝑢𝑛 ⩽ ℓ < ℓ+ε pour tout 𝑛 ⩾𝑛0, soit que |𝑢𝑛−ℓ| < ε pour
tout 𝑛 ⩾𝑛0. C’est exactement la définition de 𝑢𝑛 −−−−→𝑛⟶∞

ℓ.

CAS CROISSANT MAJORÉ

𝑛

ℓ = sup
𝑛∈ℕ

𝑢𝑛

CAS DÉCROISSANT MINORÉ

𝑛
ℓ = inf

𝑛∈ℕ
𝑢𝑛

Remarque 6
• Onpeut préciser l’énoncé : une suite croissante (𝑢𝑛) converge vers sup

𝑛∈ℕ
𝑢𝑛 (la

limite étant finie ou non, selon que (𝑢𝑛) est majorée ou non), i.e. vers le plus
petitM∈ℝ tel que : ∀𝑛 ∈ℕ, 𝑢𝑛 ⩽M.

• Noter que la convergence de la suite est dans la conclusion du théorème. Il
existe bien entendu des suites qui convergent et n’était pas monotones.

• Cet énoncépermetde conclurequant à la convergencedes suites croissantes,
même si on a aucune idée de la limite !

14
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Attention Ne pas confondre hypothèse est conclusion
,

Une suite décroissanceminorée par𝑚∈ℝne converge pas nécessairement vers
𝑚. Par exemple, la suite ( 1𝑛 ) estminorée par−1 et pourtant ne converge pas vers
−1.

Exemple 25 (Divergence de la série harmonique (2)) Soit 𝑛 ∈ ℕ⋆, on note à
nouveau : H𝑛 =∑𝑛

𝑘=1
1
𝑘 .

1. Pour tout 𝑛 ∈ℕ⋆,H2𝑛−H𝑛 ⩾ 1
2 .

PEN-FANCY

2. En déduire par l’absurde queH𝑛 −−−−−→𝑛⟶∞
∞.

PEN-FANCY

Adjacence de suites. La notion, qui exploite la monotonie, va nous permettre
de montrer que des couples de suites convergent vers une même limite.

Définition 11 | Suites adjacentes
Deux suites (𝑢𝑛) et (𝑣𝑛) dont dites adjacentes si :

elles sont monotones de sens contraires et 𝑢𝑛−𝑣𝑛 −−−−−→𝑛⟶∞
0.

Théorème 9 | Convergence des suites adjacentes ♥

Deux suites adjacentes convergent vers une même limite finie.

Attention Ne pas confondre hypothèse et conclusion
,

La convergence est dans la conclusion, et non dans la définition de l’adjacence.

𝑛

ℓ

Preuve On peut supposer sans perte de généralité que c’est (𝑢𝑛) qui est croissante et (𝑣𝑛)
décroissante.
• Ainsi, (𝑣𝑛−𝑢𝑛) est décroissante et converge vers 0 : on a donc nécessairement𝑣𝑛−𝑢𝑛 ⩾ 0

pour tout𝑛 ∈ℕ. En effet, supposons par l’absurde qu’il existe𝑛0 ∈ ℕ, 𝑢𝑛0 > 𝑣𝑛0 . Posons
pour tout𝑛 ∈ℕ,𝑥𝑛 = 𝑣𝑛−𝑢𝑛. Alors, par hypothèse, on sait que lim

𝑛⟶∞
𝑥𝑛 = 0 et on a𝑥𝑛0 < 0.

Or pour tout𝑛 ∈ℕ,𝑥𝑛+1−𝑥𝑛 = (𝑣𝑛+1−𝑣𝑛)−(𝑢𝑛+1−𝑢𝑛) ⩽ 0 car (𝑢𝑛) est croissante et (𝑣𝑛)
est décroissante. Donc (𝑥𝑛) est décroissante. Alors pour tout 𝑛 ⩾𝑛0,

𝑥𝑛 ⩽ 𝑥𝑛0 ⟹ lim
𝑛⟶∞

𝑥𝑛 ⩽ lim
𝑛⟶∞

𝑥𝑛0 ⟹ 𝑥𝑛0 ⩾ 0.
Ceci est absurde puisque, par hypothèse, 𝑥𝑛0 < 0. Finalement, on a bien pour tout𝑛 ∈ℕ,
𝑢𝑛 ⩽ 𝑣𝑛.• On a donc montré que pour tout 𝑛 ∈ ℕ : 𝑢0 ⩽ 𝑢𝑛 ⩽ 𝑣𝑛 ⩽ 𝑣0. Ainsi, la suite (𝑢𝑛) est crois-
sante etmajorée par 𝑣0, elle converge donc vers un réel𝑢 d’après le théorème de la limite
monotone. De-même, (𝑣𝑛) est décroissante etminorée par𝑢0 : elle converge vers un réel
𝑣. Enfin, (𝑣𝑛−𝑢𝑛) converge vers 0 par hypothèse et vers𝑣−𝑢par les théorèmes généraux.
Par unicité de la limite, on a donc 𝑢 = 𝑣.

Exemple 26 (Convergence d’une série alternée) Soit la suite (𝑢𝑛) définie

par : ∀𝑛 ∈ ℕ, 𝑢𝑛 =
𝑛
∑
𝑘=0

(−1)𝑘

1+𝑘
. Montrons que cette suite converge, en étu-

diant (𝑣𝑛) = (𝑢2𝑛) et (𝑤𝑛) = (𝑢2𝑛+1).
• [Monotonie de 𝑣]

PEN-FANCY
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• [Monotonie de𝑤]
PEN-FANCY

• [Différence 𝑣−𝑤]
PEN-FANCY

• [Conclusion]
PEN-FANCY

Et, puisque jamais deux sans trois, voici une dernière méthode pour montrer que
(H𝑛) diverge vers +∞.

Exemple 27 (Constante d’EULER— [Divergence de la série harmonique (3)])

Soit 𝑛 ∈ℕ⋆, on note

H𝑛 =
𝑛
∑
𝑘=1

1
𝑘
, 𝑣𝑛 =H𝑛−1− ln𝑛, 𝑤𝑛 =H𝑛− ln𝑛.

Justifier l’inégalité 𝑥− 𝑥2
2 ⩽ ln(1+𝑥) ⩽ 𝑥 pour tout 𝑥 ∈ [0,1].

PEN-FANCY

1.

Déduire que pour tout 𝑛 ∈ℕ⋆, 1
𝑛+1 ⩽ ln (1+ 1

𝑛 ) ⩽
1
𝑛 .

PEN-FANCY

2.

16
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Montrer que que (𝑣𝑛), (𝑤𝑛) sont adjacentes. On appelle alors constante d’
EULER notée γ, qui vaut 0,577 à 10−3 près, la limite commune de ces deux
suites.
PEN-FANCY

3.

Retrouver alors que : lim
𝑛⟶∞

H𝑛 =∞.

PEN-FANCY

4.

2.7 Équivalents

Définitions et propriétés. Les équivalents forment un cas particulier d’un
outil beaucoup plus général pour lever des formes indéterminées : les développe-
ments limités. Nous parlerons de cette notion en fin d’année.

Définition 12 | Suites équivalentes
Soient (𝑢𝑛) et (𝑣𝑛) deux suites, tel que (𝑣𝑛) ne s’annule pas APCR .
• On dit que (𝑢𝑛) et (𝑣𝑛) sont équivalentes si : lim

𝑛⟶∞
𝑢𝑛
𝑣𝑛
= 1.

• On note alors : 𝑢𝑛 ∼𝑛→∞
𝑣𝑛.

Remarque 7 (Sur la condition «ne s’annule pas APCR »)
Attention

,
Avec notre définition, une suite ne peut être équivalente à la suite nulle.

La condition peut être relâchée facilement, en considérant la définition : « il
existe une suite (ε𝑛) convergeant vers zéro, telle que :

𝑢𝑛 = (1+ε𝑛)𝑣𝑛 « APCR ».
Cette nouvelle définition a le mérite d’être plus générale (ne nécessite aucune
condition sur (𝑣𝑛)) mais la première suffira amplement pour notre propos.

Cadre
Ô

Pour notre définition, 𝑢𝑛 ∼𝑛→∞
𝑣𝑛 implique implicitement que (𝑢𝑛) , (𝑣𝑛) ne

s’annulent pas pour𝑛 assez grand.Nous ne le préciserons donc pas à chaque
fois dans les énoncés.

Exemple 28
1. 𝑛∼

𝑛→∞
𝑛+1.

PEN-FANCY

2. 2𝑛+1
𝑛2−3 ∼𝑛→∞

2
𝑛 .

PEN-FANCY

Exemple 29 Soit (𝑢𝑛) une suite, à partir des relations ci-dessous, déduire un
équivalent simple.

17
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√𝑛𝑢𝑛 −−−−−→𝑛⟶∞
2

PEN-FANCY

• √6𝑢𝑛 −−−−−→𝑛⟶∞
π

PEN-FANCY

•

1
𝑛 (𝑢𝑛−2) −−−−−→𝑛⟶∞

1.

PEN-FANCY

•

Méthode (AN) 4.4 (Déterminer des équivalents à l’aide d’un encadre-
ment) Supposons que 𝑢𝑛 ⩽ 𝑣𝑛 ⩽ 𝑤𝑛 au moins pour 𝑛 assez grand. Alors si
𝑢𝑛 ∼𝑛→∞

𝑎𝑛,𝑤𝑛 ∼𝑛→∞
𝑎𝑛 où (𝑎𝑛) est une suite strictement positive, on montre que

𝑣𝑛 ∼𝑛→∞
𝑎𝑛 en :

1. divisant par 𝑎𝑛 tout l’encadrement : 𝑢𝑛
𝑎𝑛

⩽ 𝑣𝑛
𝑎𝑛
⩽ 𝑤𝑛

𝑎𝑛
.

2. On conclut à l’aide du théorème d’encadrement en faisant 𝑛⟶∞.
La même méthode s’applique pour les suites strictement négatives bien sûr, en
inversant l’encadrement.

Exemple 30 Soit (𝑢𝑛) une suite telle que : ∀𝑛 ∈ ℕ, 𝑛 ⩽ 𝑢𝑛 ⩽ 𝑛+1. Montrer
que 𝑢𝑛 ∼𝑛→∞

𝑛.

PEN-FANCY

Proposition 7 | Limite vers équivalent
• Soit (𝑢𝑛) une suite. Alors :

𝑢𝑛 −−−−−→𝑛⟶∞
ℓ≠ 0 ⟹ 𝑢𝑛 ∼𝑛→∞

ℓ.
• Soient (𝑢𝑛) , (𝑣𝑛) deux suites et ℓ≠ 0 . Alors :

{
𝑢𝑛 −−−−−→𝑛⟶∞

ℓ
𝑣𝑛 −−−−−→𝑛⟶∞

ℓ ⟹ 𝑢𝑛 ∼𝑛→∞
𝑣𝑛.

Attention
,

La condition ℓ ≠ 0 est très importante : dire qu’une suite est équivalente à la
suite n’ayant pas de sens. Un contre exemple simple pour le deuxième item est
le suivant : les suites (𝑢𝑛) = ( 1𝑛 )𝑛⩾1 , (𝑣𝑛) = ( 1

𝑛2 )𝑛⩾1 tendent bien vers zéro, et
pourtant ne sont pas équivalentes.

Preuve Conséquence directe des règles opératoires sur les limites.

Proposition 8 | Équivalent vers limite
Soient (𝑢𝑛) et (𝑣𝑛) deux suites. Alors :

⎧
⎨
⎩

(i) 𝑢𝑛 −−−−−→𝑛⟶∞
ℓ ∈ ℝ∪{±∞}

(ii) 𝑢𝑛 ∼𝑛→∞
𝑣𝑛

⟹ 𝑣𝑛 −−−−−→𝑛⟶∞
ℓ.

Dans la pratique, cette proposition s’utilisera ainsi : une suite compliquée (𝑢𝑛) sera à
étudier (pour laquelle on ne connait pas la limite), on cherchera alors un équivalent
(𝑣𝑛) plus simple (dont on connait la limite), et la proposition fera le reste.

Preuve On a pour 𝑛, 𝑣𝑛 =𝑢𝑛
𝑣𝑛
𝑢𝑛

−−−−→
𝑛⟶∞

ℓ, car 𝑢𝑛 −−−−→𝑛⟶∞
ℓ et 𝑣𝑛

𝑢𝑛
−−−−→
𝑛⟶∞

1.

Equivalence et opérations. Maintenant que la notion est présentée, on ai-
merait avoir des règles opératoires sur les équivalents. Malheureusement, vous allez
constater que le symbole équivalent est beaucoup moins flexible que le symbole li-
mite. Puisque un équivalent est un quotient,

• le symbole ∼
𝑛→∞

va très bien se comporter avec les opérations multiplicatives :
valeur absolue, puissances, produit, quotient, ...,

• en revanche, il va très mal se comporter avec l’addition, le logarithme, l’exponen-
tielle etc..

18
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Proposition 9 | Équivalence et opérations usuelles
Soient (𝑢𝑛), (𝑣𝑛), (𝑤𝑛), (𝑎𝑛) et (𝑏𝑛) des suites.
• [Réflexivité] 𝑢𝑛 ∼𝑛→∞

𝑢𝑛.
• [Symétrie] 𝑢𝑛 ∼𝑛→∞

𝑣𝑛 ⟺ 𝑣𝑛 ∼𝑛→∞
𝑢𝑛.

• [Transitivité] 𝑢𝑛 ∼𝑛→∞
𝑣𝑛,𝑣𝑛 ∼𝑛→∞

𝑤𝑛 ⟹ 𝑢𝑛 ∼𝑛→∞
𝑤𝑛.

• [Valeur absolue] 𝑢𝑛 ∼𝑛→∞
𝑣𝑛 ⟹ |𝑢𝑛| ∼𝑛→∞

|𝑣𝑛|.
• [Multiplication] 𝑢𝑛 ∼𝑛→∞

𝑎𝑛,𝑣𝑛 ∼𝑛→∞
𝑏𝑛 ⟹ 𝑢𝑛.𝑣𝑛 ∼𝑛→∞

𝑎𝑛.𝑏𝑛.
• [Quotient] 𝑢𝑛 ∼𝑛→∞

𝑎𝑛,𝑣𝑛 ∼𝑛→∞
𝑏𝑛 ⟹ 𝑢𝑛

𝑣𝑛
∼
𝑛→∞

𝑎𝑛
𝑏𝑛

. En particulier :

𝑢𝑛 ∼𝑛→∞
𝑣𝑛 ⟺

1
𝑢𝑛

∼
𝑛→∞

1
𝑣𝑛
.

• [Exposant]
⋄ Si 𝑘 ∈ ℤ : 𝑢𝑛 ∼𝑛→∞

𝑣𝑛 ⟹ 𝑢𝑘𝑛 ∼𝑛→∞
𝑣𝑘𝑛 .

⋄ Si α ∈ ℝ et si les suites sont > 0 APCR :
𝑢𝑛 ∼𝑛→∞

𝑣𝑛 ⟹ 𝑢α𝑛 ∼𝑛→∞
𝑣α𝑛 .

Preuve
• [Réflexivité] Immédiat par définition.
• [Symétrie] Immédiat car si une suite tend vers 1 et ne s’annule pas, son inverse aussi.
• [Transitivité] On sait que 𝑢𝑛

𝑣𝑛
−−−−→
𝑛⟶∞

1 et 𝑣𝑛
𝑤𝑛

−−−−→
𝑛⟶∞

1 donc par produit : 𝑢𝑛
𝑣𝑛
× 𝑣𝑛

𝑤𝑛
=

𝑢𝑛
𝑤𝑛

−−−−→
𝑛⟶∞

1.
• [Valeur absolue] Provisoirement admis : conséquence de la continuité de la fonction

valeur absolue (voir le Chapitre (AN) 6).
• [Multiplication]

PEN-FANCY

• [Quotient]
PEN-FANCY

• Pour un exposant entier : conséquence du fait que l’on peut multiplier des équivalents.
Pour un exposant quelconque : provisoirement admis, conséquence de la continuité de
la fonction puissance α.

Attention On ne peut pas ...
, • passer un terme d’un côté de l’autre côté par exemple.
• sommer des équivalents,
• composer des équivalents par une fonction, même continue en dehors de

celles mentionnées dans la proposition précédente (inverse, valeur absolue,
puissance). En particulier, on ne compose pas par l’exponentielle, le loga-

,
rithme etc..

En ce sens, ce symbole diffère de l’égalité. Pour quelques contre-exemples, voir
les exemples qui suivent.

Exemple 31 (Pas de somme)
1. 𝑛+1∼

𝑛→∞
𝑛−1 et −𝑛∼

𝑛→∞
−𝑛 alors que :

(𝑛+1)+(−𝑛) = 1 ≁
𝑛→∞

−1 = (𝑛−1)+(−𝑛).
2. Soient trois suites définie par :

∀𝑛 ∈ℕ⋆, 𝑢𝑛 =−
1
𝑛
, 𝑣𝑛 =

1
𝑛
+

1
𝑛2 , 𝑤𝑛 =

1
𝑛
+

2
𝑛2 .

Alors 𝑣𝑛 ∼𝑛→∞
𝑤𝑛 mais 𝑢𝑛+𝑣𝑛 ≁𝑛→∞

𝑢𝑛+𝑤𝑛.

PEN-FANCY

Exemple 32 (Pas de composition (exponentielle ici)) Soient deux suites dé-
finie par :

∀𝑛 ∈ℕ⋆, 𝑢𝑛 =𝑛2+𝑛, 𝑣𝑛 =𝑛2.
Alors 𝑢𝑛 ∼𝑛→∞

𝑣𝑛, mais : e𝑢𝑛 ≁
𝑛→∞

e𝑣𝑛 .

PEN-FANCY

Mais alors, comment fait-on pour les sommes et les composées? Commençons déjà
par discuter des sommes.
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Méthode (AN) 4.5 (Déterminerunéquivalentd’une somme) Se ramener àune
limite usuelle à l’aide d’une factorisation.

Exemple 33 Donner un équivalent simple de 𝑣𝑛 = e𝑛+ ln(𝑛) quand 𝑛⟶∞.
PEN-FANCY

Equivalents usuels. Comment obtenir des équivalents? Nous allons essen-
tiellement utiliser la définition du nombre dérivé, réecrite sous forme d’un lemme.
Mais avant cela, commençons par les polynômes où la technique est déjà connue
mais sans jamais avoir parlé d’équivalents.

Proposition 10 | Polynômes et fractions rationnelles
• [Polynômes] Soient 𝑝 ∈ℕ et (𝑎𝑝,𝑎𝑝−1,…,𝑎0) ∈ ℝ𝑝+1 avec 𝑎𝑝 ≠ 0, on 𝑎 :

𝑎𝑝𝑛𝑝+𝑎𝑝−1𝑛𝑝−1+…+𝑎1𝑛+𝑎0 ∼𝑛→∞
𝑎𝑝𝑛𝑝

• [Fractions rationnelles] Soient 𝑝 ∈ ℕ,𝑞 ∈ ℕ,(𝑎𝑝,𝑎𝑝−1,…,𝑎0) ∈ ℝ𝑝+1 et

(𝑏𝑞,𝑏𝑞−1,…,𝑏0) ∈ ℝ𝑞+1 avec 𝑎𝑝 ≠ 0 et 𝑏𝑞 ≠ 0, on 𝑎 :

𝑎𝑝𝑛𝑝+𝑎𝑝−1𝑛𝑝−1+…+𝑎1𝑛+𝑎0
𝑏𝑞𝑛𝑞+𝑏𝑞−1𝑛𝑞−1+…+𝑏1𝑛+𝑏0

∼
𝑛→∞

𝑎𝑝𝑛𝑝

𝑏𝑞𝑛𝑞 .

En résumé : en l’infini, on retrouve qu’un polynôme se comporte comme son terme
de plus haut degré et qu’une fraction rationnelle se comporte comme le quotient de
ses termes de plus haut degré.

Preuve On fait la démonstration pour les polynômes, le cas des fractions rationnelles en
est une conséquence par quotient d’équivalents.
PEN-FANCY

Exemple 34 Déterminer un équivalent simple, puis la limite de la suite (𝑢𝑛)
définie par 𝑢𝑛 = 2𝑛7−𝑛3+2

5𝑛9+7𝑛2+1 pour tout entier naturel 𝑛.
PEN-FANCY

Exemple 35 Reprendre l’Exemple 13 à l’aide d’équivalents.
PEN-FANCY

Proposition 11 | Equivalent de 𝑓(𝑢𝑛)−𝑓(0)
Soient 𝑓 une fonction définie sur un voisinage de zéro et (𝑢𝑛) une suite ne s’an-
nulant pas APCR. Alors :
⎧
⎨
⎩

(i) 𝑓 dérivable en zéro et 𝑓′(0) ≠ 0 ,
(ii) 𝑢𝑛 −−−−−→𝑛⟶∞

0
alors : 𝑓(𝑢𝑛)−𝑓(0)∼𝑛→∞

𝑓′(0)𝑢𝑛.
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Preuve On a : lim
𝑛⟶∞

𝑢𝑛 = 0 et lim
𝑥⟶0

𝑓(𝑥)−𝑓(0)
𝑥 = 𝑓′(0). Donc, par composition de limites

(voir Chapitre (AN) 6) : lim
𝑛⟶∞

𝑓(𝑢𝑛)−𝑓(0)
𝑢𝑛

= 𝑓′(0). Comme par hypothèse 𝑓′(0) ≠ 0, on a en-

core lim
𝑛⟶∞

𝑓(𝑢𝑛)−𝑓(0)
𝑓′(0)𝑢𝑛

= 1, soit, par définition : 𝑓(𝑢𝑛)−𝑓(0)∼𝑛→∞
𝑓′(0)𝑢𝑛.

On déduit alors tout un tas d’équivalents avec plusieurs choix de fonction 𝑓.

Proposition 12 | Equivalents usuels ♥

Soit (𝑢𝑛) une suite telle que : lim
𝑛⟶∞

𝑢𝑛 = 0. Alors :

sin𝑢𝑛 ∼𝑛→∞
𝑢𝑛• cos𝑢𝑛−1∼𝑛→∞

− 𝑢2𝑛
2• tan𝑢𝑛 ∼𝑛→∞

𝑢𝑛•
e𝑢𝑛 −1∼

𝑛→∞
𝑢𝑛• ln(1+𝑢𝑛)∼𝑛→∞

𝑢𝑛• arctan(𝑢𝑛)∼𝑛→∞
𝑢𝑛.•

• Pour tout α ≠ 0, (1+𝑢𝑛)α−1∼𝑛→∞
α𝑢𝑛. En particulier :

√1+𝑢𝑛−1∼𝑛→∞

𝑢𝑛
2
,

1
1+𝑢𝑛

−1∼
𝑛→∞

−𝑢𝑛,
1

1−𝑢𝑛
−1∼

𝑛→∞
𝑢𝑛.

Attention
,

La condition lim
𝑛⟶∞

𝑢𝑛 = 0 est indispensable. Par exemple, sin(𝑛) ≁
𝑛→∞

𝑛 puisque
sin𝑛
𝑛 −−−−−→

𝑛⟶∞
0 par théorème d’encadrement.

Preuve
• Mis à part l’équivalent cos𝑢𝑛 − 1 ∼

𝑛→∞

𝑢2𝑛
2 , tous ces équivalents s’obtiennent facilement

grâce à la proposition précédente. Par exemple pour (1+𝑢𝑛)α−1 :
PEN-FANCY

• Pour le cosinus, onnepeut conclure directement avec la propositionprécédente puisque
cos′(0) = −sin(0) = 0. Mais connaissant les autres équivalents usuels, si (𝑢𝑛) converge
vers 0, on a : cos(𝑢𝑛) −−−−→𝑛⟶∞

1 > 0, on peut donc écrire APCR, cos(𝑢𝑛) =√1− sin2 (𝑢𝑛) et
on a, par transitivité de l’équivalence et grâce aux formules précédentes,

cos𝑢𝑛−1 =√1− sin2 (𝑢𝑛) −1∼𝑛→∞
−
1
2
sin2𝑢𝑛 ∼𝑛→∞

−
𝑢2
𝑛

2
.

Faisons un exemple pour terminer de recherche d’équivalent d’une composée.

Exemple 36 Donner un équivalent de 𝑢𝑛 =𝑛sin ( 1
(𝑛+1)2 ) quand 𝑛⟶∞.

PEN-FANCY

Méthode (AN) 4.6 (Déterminer un équivalent d’une composée) Il faut utili-
ser la transitivité de l’équivalence et donc, contrairement à d’habitude, travailler
« de l’extérieur vers l’intérieur ».

Attention à la rédeaction
,

Dans l’exemple précédent, on écrit surtout pas

«sin(
1

(𝑛+1)2
) ∼

𝑛→∞
sin(

1
𝑛2 ) car

1
(𝑛+1)2

∼
𝑛→∞

1
𝑛2 ».

Car, rappelons-le, on ne peut pas composer les équivalents.

Autrement dit, on ne peut pas partir « de l’intérieur » (équivalent de la parenthèse
puis composer) mais on peut partir « de l’extérieur ».

Exemple 37 Pour chaque suite (𝑎𝑛), (𝑏𝑛), (𝑐𝑛), (𝑑𝑛), déterminer un équivalent
simple de la suite, ainsi que sa limite éventuelle.
• 𝑎𝑛 = ln (cos ( 1𝑛 ))

PEN-FANCY
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• 𝑏𝑛 = ln (𝑛+3𝑛−5 )
PEN-FANCY

• 𝑏′𝑛 = ln ( 2𝑛+3𝑛−5 )
PEN-FANCY

• 𝑐𝑛 =√𝑛4+3𝑛3−1−𝑛2

PEN-FANCY

• 𝑑𝑛 =
sin( 1𝑛 )

e
2
𝑛 −1

.

PEN-FANCY

♥ Exemple 38 ((très) grand classique) Soit 𝑥 ∈ ℝ. Déterminer :

lim
𝑛⟶∞

(1+
𝑥
𝑛
)
𝑛
.

PEN-FANCY

Exemple 39 (Formule de STIRLING & Application) En admettant que :

𝑛!∼
𝑛→∞

(
𝑛
e
)
𝑛
√2π𝑛 (formule de STIRLING)

retrouver que pour tout 𝑞 ∈ ℝ : lim
𝑛⟶∞

𝑞𝑛

𝑛! = 0.

PEN-FANCY
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Remarque 8 (Équivalent et signe/nature) Soient deux suites (𝑢𝑛) et (𝑣𝑛) telles
que 𝑢𝑛 ∼𝑛→∞

𝑣𝑛. Alors (𝑢𝑛) et (𝑣𝑛) :
• sont de «mêmenature » : c’est-à-dire qu’elles sont toutes les deux divergentes

(éventuellement vers ±∞) ou toutes les deux convergentes vers la même li-
mite,

• elles sont de même signe APCR.

3 SUITES REMARQUABLES

3.1 Suites récurrentes générales d’ordre 1

Cette fois-ci on ne suppose plus linéaire la relation de récurrence, mais seulement
d’ordre 1 (i.e. elle fait un intervenir un terme et le suivant).

Soit 𝑓 une fonction définie et continue sur 𝒟𝑓 et à valeurs dans ℝ. On considère la
suite (𝑢𝑛)𝑛∈ℕ définie par :

𝑢0 ∈𝒟𝑓, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑓(𝑢𝑛) .

Exemple 40 Précisons les récurrences obtenues dans quelques cas particuliers.
• 𝑓(𝑥) = 𝑥+𝑎, où 𝑎 ∈ ℝ : la suite (𝑢𝑛) associée est alors arithmétique.
• 𝑓(𝑥) = 𝑞𝑥, où 𝑞 ∈ ℝ : la suite (𝑢𝑛) associée est alors géométrique.
• 𝑓(𝑥) = 𝑞𝑥 + 𝑎, où (𝑞,𝑎) ∈ ℝ2 : la suite (𝑢𝑛) associée est alors arithmético-

arithmétique.

Dans les exercices, on peut être amenés à se poser les questions suivantes.

Problématiques classiques sur les suites récurrentes

1. « LA SUITE EST-ELLE BIEN DÉFINIE? » Ceci n’est pas une évidence, voir par
exemple si 𝑓 n’est pas définie sur ℝ (une racine, un logarithme, etc.). En gé-
néral l’exercice vous guidera sur la recherche d’« intervalles stables », i.e. des
intervalles I tels que 𝑓(I) ⊂ I. Dans ce cas, si 𝑢0 ∈ I une récurrence montrera
que 𝑢𝑛 ∈ ℕ est bien définie et qu’en plus 𝑢𝑛 ∈ I pour tout 𝑛 ∈ℕ.

2. «EST-ELLEMONOTONE?»C’est unproblème là encorenon trivial. Retenezqu’il
n’y a aucun lien évident entre la monotonie de 𝑓 et celle de (𝑢𝑛).

3. « CONVERGE-T-ELLE? » On aura recours pour cela aux théorèmes d’existence

(notamment au théorème de la limitemonotone), difficile de faire autrement
sans expression explicite.

4. « SI LA SUITE CONVERGE, VERS QUELLE LIMITE? » Pour cela, un seul résultat
au programme, il s’agit du théorème qui suit (ou parfois plus simplement de
simples opérations sur les limites).

Définition 13 | Point fixe
On appelle point fixe de 𝑓 ∶ 𝒟𝑓 ⟶ℝ tout réel 𝑥 ∈𝒟𝑓 tel que 𝑓(𝑥) = 𝑥.

Théorème 10 | Limite et point fixe ♥

Soient 𝑓 ∶ 𝒟𝑓 ⟶ℝ , où𝒟𝑓 ⊂ℝ, et (𝑢𝑛) une suite réelle telle que :
∀𝑛 ∈ℕ, 𝑢𝑛+1 = 𝑓(𝑢𝑛) .
⎧
⎨
⎩

(i) 𝑢𝑛 −−−−−→𝑛⟶∞
ℓ

(ii) 𝑓 est continue en ℓ
⟹ ℓ= 𝑓(ℓ),

c’est-à-dire : ℓ est un point fixe de 𝑓.

Autrement dit, les limites finies possibles sont à chercher parmi les points fixes de
𝑓.

Preuve Provisoirement admis : découle de la caractérisation séquentielle de la limite, que
nous verrons dans le Chapitre (AN) 6.

Nous étudierons ce type de suite au travers de deux exemples.

Exemple 41 Considérons les suites récurrentes ci-après.
• (𝑢𝑛)𝑛∈ℕ définie par :

𝑢0 = 1 et ∀𝑛 ∈ℕ, 𝑢𝑛+1 =
𝑢𝑛

1+𝑢2𝑛
.

• (𝑣𝑛)𝑛∈ℕ définie par :
𝑣0 = 1 et ∀𝑛 ∈ℕ, 𝑣𝑛+1 = arctan(𝑣𝑛).

1. DÉFINITION DES SUITES Montrer que les suites sont bien définies et positives.
• [Pour 𝑢]

PEN-FANCY
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• [Pour 𝑣]
PEN-FANCY

2. QUESTION PRÉLIMINAIRE (pour 𝑣) Montrer que arctan𝑥 ⩽ 𝑥 pour tout 𝑥 ∈ ℝ+.
PEN-FANCY

3. MONOTONIE
• [Pour 𝑢]

PEN-FANCY

• [Pour 𝑣]
PEN-FANCY

4. APPLICATION DU THÉORÈME DE LA LIMITE MONOTONE
PEN-FANCY

5. CALCUL DE LA LIMITE
• [Pour 𝑢 : opérations sur les limites]

PEN-FANCY

• [Pour 𝑣 : invoquer la continuité d’une fonction]
PEN-FANCY
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Remarque 9 (Conjectures graphiques) Dans le cas de suites avecune fonction
𝑓 « simple », il peut être judicieux de commencer par faire un dessin comme ci-
dessous sur deux exemples.
• 𝑢0 ⩾ 1 et 𝑢𝑛+1 =√𝑢𝑛.

𝑥

𝑦

0 1 2 3
0

1

2 𝒞𝑓

𝑢0𝑢1𝑢2

Conjecture(s)

PEN-FANCY

• 𝑢0 ∈ [0,1] et 𝑢𝑛+1 =𝑢2𝑛.

𝑥

𝑦

0 1
0

1
𝒞𝑓

𝑢0𝑢1𝑢2

Conjecture(s)

PEN-FANCY

Les résultats ci-dessous n’étant pas au programme, ils ont le statut de simple re-
marque mais sont classiques.

Remarque 10 (Quelques généralités) Soit 𝑓 une fonction définie sur 𝒟𝑓 et à
valeurs dans ℝ. On considère la suite (𝑢𝑛)𝑛∈ℕ définie par :

𝑢0 ∈𝒟𝑓, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑓(𝑢𝑛) .
On considère de plus 𝑔 ∶ 𝑥 ∈𝒟𝑓 ⟼𝑓(𝑥)−𝑥.
• ⋄ Si 𝑓(𝒟𝑓) ⊂𝒟𝑓, alors la suite est bien définie (récurrence immédiate).

⋄ Plus généralement, si 𝑢0 ∈ D un sous-ensemble de𝒟𝑓 et si 𝑓(D) ⊂D, alors
la suite est bien définie. On dit queD est un ensemble stable par 𝑓.

• Faire le lien entre le signe de 𝑔 et la monotonie de 𝑢.
PEN-FANCY
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3.2 Suites implicites

Définition 14 | Suite implicite
On appelle suite implicite toute suite (𝑥𝑛) dont le terme général 𝑥𝑛 est donné
comme solution (en général unique) d’une équation dépendant d’un paramètre
𝑛 ∈ℕ, i.e. vérifiant une égalité du type :

𝑓𝑛(𝑥𝑛) = 0 avec 𝑓𝑛 qui est une fonction, pour tout entier 𝑛 ∈ℕ.

Il n’y apasde résultat général auprogramme,mais leur étude s’appuie souvent surun
schéma proche de l’exemple ci-après. La difficulté est qu’a priori on ne connait pas
l’expression générale d’une suite implicite, on utilisera le théorème de convergence
monotone pour établir la convergence.

Remarque 11 (On ne sait, en général, pas résoudre l’équation)
• Une suite implicite ... peut être une suite définie explicitement. Par exemple,

si on considère l’équation : 𝑛𝑥3 = 1 pour tout𝑛 ∈ℕ⋆, c’est-à-dire 𝑓𝑛(𝑥) = 0
avec 𝑓𝑛(𝑥) = 𝑛𝑥3 −1, alors elle admet pour unique solution 𝑥𝑛 = 1

3√𝑛
. C’est

une suite explicite en𝑛 ! On obtient alors directement la monotonie, la limite
etc.

• Hélas, le plus souvent, on ne saura pas résoudre ladite équation. On étudiera
donc la nature par des moyens détournés (théorème de la limite monotone,
comme pour les suites récurrentes).

♥ Exemple 42 (Étude d’une suite implicite) Pour tout 𝑛 ∈ ℕ, on considère
l’équation : 𝑓𝑛(𝑥) = 0 (E𝑛) d’inconnue 𝑥 ∈ ℝ+⋆, où : 𝑓𝑛(𝑥) = 𝑛𝑥+ ln(𝑥).
1. Pour tout 𝑛 ∈ ℕ, l’équation (E𝑛) admet une unique solution sur ℝ+⋆. On la

note désormais 𝑥𝑛. La fonction 𝑓𝑛 est continue sur ℝ+⋆, et lim𝑥⟶∞
𝑓𝑛(𝑥) = ∞,

et lim
𝑥⟶0

𝑓𝑛(𝑥) = −∞. De plus, en calculant la dérivée, on constate facilement
que la fonction est même strictement croissante. Donc d’après le théorème
de la bijection, la fonction 𝑓𝑛 réalise une bijection de ℝ+⋆ vers 𝑓(ℝ+⋆) = ℝ

(d’après le calcul de limites et la monotonie de 𝑓). Comme 0 ∈ ℝ, il existe un
unique 𝑥𝑛 ∈ ℝ+⋆ comme prétendu dans l’énoncé. La fonction 𝑓𝑛 est continue
sur ℝ+⋆, et lim

𝑥⟶∞
𝑓𝑛(𝑥) = ∞, et lim

𝑥⟶0
𝑓𝑛(𝑥) = −∞. De plus, en calculant la dé-

rivée, on constate facilement que la fonction est même strictement croissante.
Donc d’après le théorème de la bijection, la fonction 𝑓𝑛 réalise une bijection de
ℝ+⋆ vers 𝑓(ℝ+⋆) = ℝ (d’après le calcul de limites et lamonotonie de 𝑓).Comme
0 ∈ ℝ, il existe un unique 𝑥𝑛 ∈ ℝ+⋆ comme prétendu dans l’énoncé.

2. Pour tout𝑛 ∈ℕ, on a𝑥𝑛 ∈]0,1]. Comme 𝑓𝑛(1) = 𝑛 > 0, on peutmême affirmer
que 𝑥𝑛 ∈]0,1]. Comme 𝑓𝑛(1) = 𝑛 > 0, on peut même affirmer que 𝑥𝑛 ∈]0,1].

3. La suite (𝑥𝑛) décroît. Indication : On cherchera le signe de 𝑓𝑛+1(𝑥𝑛)
• Nous avons𝑓𝑛+1(𝑥𝑛) = (𝑛+1)𝑥𝑛+ln(𝑥𝑛) = 𝑛𝑥𝑛+ ln(𝑥𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+𝑥𝑛 = 𝑥𝑛, puisque

l’on reconnait 𝑓𝑛(𝑥𝑛) = 0. Or 𝑥𝑛 ⩾ 0, donc 𝑓𝑛+1(𝑥𝑛) ⩾ 0.
• 0 = 𝑓𝑛+1(𝑥𝑛+1),donc : 𝑓𝑛+1(𝑥𝑛) ⩾ 𝑓𝑛+1(𝑥𝑛+1),mais𝑓𝑛+1 est croissante,d’où

l’on tire : 𝑥𝑛+1 ⩽ 𝑥𝑛. La suite est décroissante.
4. La suite (𝑥𝑛) converge vers une limite ℓ ∈ [0,1] que l’on peut déterminer. La

suite est d’après ce qui précède décroissante minorée par zéro, donc converge
vers une limite finie.
Supposons que ℓ ∈]0,1]. Alors puisque 𝑛𝑥𝑛 = − ln(𝑥𝑛), nous aurions en pas-
sant à la limite : − ln(ℓ) = ∞ ce qui est clairement une contradiction. La
suite est d’après ce qui précède décroissante minorée par zéro, donc converge
vers une limite finie.
Supposons que ℓ ∈]0,1]. Alors puisque 𝑛𝑥𝑛 = − ln(𝑥𝑛), nous aurions en pas-
sant à la limite : − ln(ℓ) =∞ ce qui est clairement une contradiction.

Méthode (AN) 4.7 (Plan d’étude d’une suite implicite)
1. Établir l’existence et l’unicité de la suite grâce au théorème de la bijection.
2. Chercher la monotonie en cherchant le signe de 𝑓𝑛+1(𝑥𝑛). Par exemple, si

𝑓𝑛+1(𝑥𝑛) ⩾ 0 = 𝑓𝑛+1(𝑥𝑛+1), on exploite ensuite la monotonie de 𝑓𝑛+1 pour
comparer 𝑥𝑛 et 𝑥𝑛+1.

3. Trouver la valeur de la limite : en général on raisonne par l’absurde dans
l’identité 𝑓𝑛(𝑥𝑛) = 0.
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4 TERMINALPython INFORMATIQUE

Résumé des attendus
♥

Voici ce qu’il faut savoir faire en Python à propos des suites :
• Les fonctions permettant de calculer un terme donné d’une suite.
• Les fonctions permettant de calculer le premier terme ou le premier indice

d’une suite pour lequel une condition donnée est vérifiée pour la première
fois.

• Construire la liste des termes d’une suite jusqu’à un indice donné/ce qu’une
condition soit vérifiée.

• Tracer le graphe de la suite en exploitant la liste des termes précédents.

Nous illustrerons ces différents programmes sur les trois suites suivantes :

• [Explicite] La suite (𝑢𝑛), définie explicitement, vérifiant :

∀𝑛 ∈ℕ∗, 𝑢𝑛 = (1+
𝑎
𝑛
)
𝑛

où 𝑎 ∈ ℝ est choisi par l’utilisateur. On peut prouver qu’elle converge vers e𝑎.
• [Récurrence d’ordre 1] La suite (𝑣𝑛), définie par une relation de récurrence

d’ordre 1, vérifiant :

{ 𝑣0 = 𝑎 ∈ ℝ choisi par l’utilisateur
∀𝑛 ∈ℕ, 𝑣𝑛+1 = 𝑣𝑛+e𝑣𝑛 .

On peut prouver qu’elle est croissante quel que soit 𝑎 ∈ ℝ et en déduire, par l’ab-
surde, qu’elle tend vers +∞.

• [Récurrence d’ordre 2] La suite (𝑤𝑛), définie par une relation de récurrence
d’ordre 2, vérifiant :

⎧⎪
⎨⎪
⎩

𝑤0 = 𝑎 ∈ ℝ choisi par l’utilisateur
𝑤1 = 𝑏 ∈ ℝ choisi par l’utilisateur
∀𝑛 ∈ℕ, 𝑤𝑛+2 = 5

6𝑤𝑛+1− 1
6𝑤𝑛.

On peut prouver qu’elle converge vers zéro.

Remarque 12 (Nomage des variables) Dans tous nos programmes, on respec-
tera les deux conventions suivantes : les variables n, i, j… serviront à stocker
des valeurs d’indices, les variables u, v, w… serviront quant à elles à stocker des
valeurs de termes des suites. Même si la suite s’appelle autrement que (𝑢𝑛), on
appelle u la variable stockant son terme.

4.1 Calcul du 𝑛-ième terme

Suite explicite. C’est le cas le plus simple, il suffit de renvoyer l’expression cor-
respondant au terme saisit par l’utilisateur. Voici par exemple le code de la fonction
terme_u(a,n) qui renvoie le terme 𝑢𝑛 avec 𝑎 et 𝑛 en paramètre de fonction :

SQUARESQUARE Terme 𝑛 d’une suite définie explicitement
def terme_u(a, n):

    """

    renvoie la valeur de u_n

    """

    return (1+a/n)**n

>>> terme_u(2, 1)

3.0

>>> terme_u(0, 1)

1.0

Cas particuliers des sommes (séries) et produits. Des suites peuvent
être définies à l’aide d’une somme ou d’un produit. On utilisera alors les méthodes
vues dans le chapitre sommes/produits du cours de Mathématiques.

TERMINALPython (Calcul de
𝑛
∑
𝑘=𝑝

𝑎𝑘)

def somme_a(p, n):

    S = 0

    for k in range(p, n+1):

        S += 𝑎𝑘 # le terme a_k est à taper à la main en \

↪ fonction de la somme

    return S

Par exemple, la fonction ci-après réalise le calcul de
𝑛
∑
𝑘=𝑝

cos(𝑘𝑥), avec 𝑥 ∈ ℝ.

def somme_cos(p, n, x):

    S = 0

    for k in range(p, n+1):

        S += ma.cos(k*x)

    return S

>>> somme_cos(0, 10, 1)

-0.4174477464559059
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>>> somme_cos(0, 10, 0) # résultat attendu car on somme 1, onze \

↪ fois

11.0

TERMINALPython (Calcul de
𝑛
∏
𝑘=𝑝

𝑎𝑘)

def produit(p, n):

    P = 1

    for k in range(p, n+1):

        P *= 𝑎𝑘 # à adapter en fonction de la somme

    return P

Par exemple, la fonction ci-après réalise le calcul de
𝑛
∏
𝑘=𝑝

e𝑘𝑥, avec 𝑥 ∈ ℝ.

def produit(p, n, x):

    P = 1

    for k in range(p, n+1):

        P *= ma.exp(k*x)

    return P

>>> produit(0, 10, 1)

7.694785265142015e+23

>>> produit(0, 10, 0) # résultat attendu

1.0

Suite récurrente d’ordre 1. Pour calculer 𝑣𝑛 on procède ainsi.

1. On prévoit un test if pour la condition initiale, puis :
2. on initialise une variable u avec la valeur de 𝑣0.
3. On parcourt à l’aide d’une boucle for tous les indices 𝑖 de 1 à 𝑛 (l’indice mathé-

matique correspondant). Pour chaque valeur de 𝑖, on remplace u (qui contient
𝑣𝑖−1) par sa nouvelle valeur, 𝑣𝑖, à l’aide de la formule de récurrence.

4. En sortie de boucle, u contient la valeur de 𝑣𝑛 ; il suffit donc de renvoyer u.

Voici par exemple le code de la fonction terme_v(a, n) qui renvoie le terme 𝑣𝑛 avec
𝑣0 = 𝑎 et 𝑛 en paramètre de fonction :

SQUARESQUARE Terme 𝑛 d’une suite récurrente d’ordre 1
def terme_v(a, n):

    """

    renvoie la valeur de v_n lorsque v_0 = a

    """

    if n == 0:

        return a

    else:

        u = a

        for i in range(1, n+1):

            # u est ici la valeur précédente

            u = u + ma.exp(u)

            # u est ici la valeur suivante

        return u

>>> terme_v(0, 1)

1.0

>>> terme_v(0, 2)

3.718281828459045

Remarque 13 (Version « universelle » sans if) Le test if n’est ici pas obliga-
toire. En effet, si n = 0 alors la boucle for ne s’exécutera pas (bornes dans le
mauvais sens) et donc on renverra bien v = a.

Suite récurrente d’ordre 2. Pour calculer𝑤𝑛 on procède ainsi :

1. On prévoit un test if pour les deux conditions initiales, puis :
2. on initialise deux variables, u et v, avec les valeurs de𝑤0 et de𝑤1.
3. On parcourt à l’aide d’une boucle for tous les indices 𝑖 de 2 à 𝑛 (l’indice ma-

thématique correspondant). Pour chaque valeur de 𝑖, on calcule le terme suivant
à l’aide de la relation de récurrence puis on remplace simultanément (donc au
moyen d’une double-affectation) u et v par les nouvelles valeurs.

4. En sortie de boucle, v contient la valeur de𝑤𝑛.

Voici par exemple le code de la fonction terme_w(a, b, n) qui renvoie le terme𝑤𝑛
avec𝑤0 = 𝑎,𝑤1 = 𝑏 et 𝑛 en paramètre de fonction.

SQUARESQUARE Terme 𝑛 d’une suite récurrente d’ordre 2
def terme_w(a, b, n):

    """

    renvoie la valeur de w_n lorsque w_0 = a et w_1 = b

    """

    if n == 0:

        return a

    elif n == 1:

        return b

    else:
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        u, v = a, b

        for i in range(2, n+1):

            u, v = v, (5/6)*v-(1/6)*u

        return v

>>> terme_w(0, 1, 0)

0

>>> terme_w(0, 1, 1)

1

>>> terme_w(0, 1, 2)

0.8333333333333334

Remarque 14 (Version « universelle » sans if) Là encore, le test if n’est pas
indispensable. Il est possible d’adapter la seconde partie de la fonction (chan-
gement de boucle for et dans la récurrence) afin qu’elle convienne également
aux cas n = 0 et n = 1.
def terme_w_bis(a, b, n):

    """

    renvoie la valeur de w_n lorsque w_0 = a et w_1 = b

    """

    u, v = a, b

    for i in range(1, n+1):

        u, v = v, (5/6)*v-(1/6)*u

    return u

>>> terme_w_bis(0, 1, 0)

0

>>> terme_w_bis(0, 1, 1)

1

>>> terme_w_bis(0, 1, 2)

0.8333333333333334

Elle renvoie bien également les bons termes.

4.2 Calcul du premier terme/indice vérifiant une condition

Pour réaliser ces fonctions, il va falloir calculer les termes successivement jusqu’à
ce que la condition soit vérifiée. Pour cela on utilisera une boucle while : tant que
la condition n’est pas vérifiée, on calcule le terme suivant ; reste alors à renvoyer le
dernier terme/indice. On parle en général d’algorithme de seuil.

Attention
,

Contrairement aux boucle for, une boucle while ne permet pas de parcourir
automatiquement les différents indices. Il faudra donc dans nos programmes
introduire une variable contenant la valeur de l’indice, l’initialiser correctement
et l’augmenter de 1 à chaque passage dans la boucle.

Suite explicite. Par définition de la limite, on sait par exemple que comme la
suite (𝑢𝑛) converge vers e𝑎, on a :

∀ε > 0, ∃𝑛0 ∈ ℕ, 𝑛  ⩾ 𝑛0 ⟹ |𝑢𝑛−e𝑎| < ε.
Voici une fonction cherchant l’entier 𝑛0 en question.

SQUARESQUARE Algorithme de seuil pour une suite explicite
def seuil_u(a,eps):

    """

    renvoie le premier indice n pour lequel |u_n-exp(a)|<eps

    """

    n = 1

    u = (1+a/n)**n

    while abs(u-exp(a)) >= eps:

        n += 1

        u = (1+a/n)**n

    return n

Remarque 15 Il est parfois possible de calculer l’entier 𝑛0 explicitement en ré-
solvant une équation/inéquation, mais cela n’est pas possible sur cet exemple.

Suite récurrente d’ordre 1. Pour réaliser ces fonctions, il y a un unique
changement à apporter aux fonctions précédentes : remplacer la boucle for par une
boucle while.

On sait par exemple que la suite (𝑣𝑛) tend en croissant vers +∞, donc :
∀A ∈ ℝ, ∃𝑛0 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ 𝑣𝑛 >A.

Voici la fonction qui renvoie l’indice 𝑛0, 𝑎 et A étant en paramètre de fonction.

SQUARESQUARE Algorithme de seuil pour une suite récurrente d’ordre 1
def seuil_v(a, A):

    """

    renvoie le premier indice n pour lequel v_n >= A

    """
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    n = 0

    v = a

    while not (v > A):

        n += 1

        v = v + ma.exp(v)

    return n

>>> n_0 = seuil_v(1, 10)

>>> n_0

2

>>> terme_v(1, n_0)

44.911837503175164

>>> terme_v(1, n_0-1)

3.718281828459045

Suite récurrente d’ordre 2. Pour réaliser ces fonctions, il y a un unique
changement à apporter aux fonctions précédentes : remplacer la boucle for par une
boucle while.

On sait par exemple que la suite (𝑤𝑛) converge vers 0, donc :
∀ε ∈ ℝ∗+, ∃𝑛0 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ |𝑤𝑛| < ε.

Voici la fonction qui renvoie l’indice 𝑛0, 𝑎, 𝑏 et ϵ étant en paramètre de fonction.

SQUARESQUARE Algorithme de seuil pour une suite récurrente d’ordre 2
def seuil_w(a, b, eps):

    """

    renvoie le premier indice n pour lequel |w_n|<eps

    """

    n = 0

    u, v = a, b

    while not(abs(u) < eps):

        n += 1

        u, v = v, (5/6)*v-(1/6)*u

    return n

>>> n_0 = seuil_w(1, 1, 10**(-3))

>>> n_0

12

>>> terme_w(0, 1, n_0)

0.0014535536914610499

>>> terme_w(0, 1, n_0-1)

0.002895817324383145

4.3 Construction de la liste des termes et tracé

On construit la liste de proche en proche à l’aide d’une boucle for ou while et de la
méthode append sur les listes. Vous noterez que les versions avec seuil permettent
de retrouver les algorithmes de seuil précédents (en renvoyant la longueur de la liste
obtenue).

Suite explicite. On donne à titre d’exemple les fonctions qui renvoient la liste
des termes 𝑢1 à 𝑢𝑛.

SQUARESQUARE Liste de termes sous condition ou non – Suite explicite
def liste_terme_u(a, n):

    """

    renvoie la liste [u_1,...,u_n] (u_0 n'existe pas !)

    """

    L = []

    for i in range(1, n+1):

        L.append((1+a/i)**i)

    return L

>>> liste_terme_u(1, 10)

[2.0, 2.25, 2.37037037037037, 2.44140625, 2.4883199999999994, 2.5216

263717421135, 2.546499697040712, 2.565784513950348, 2.58117479171319

84, 2.5937424601000023]

def liste_seuil_u(a, eps):

    """

    renvoie la liste [u_1,...,u_n] où n est le premier indice n \

↪ pour lequel |u_n-exp(a)|<eps"""

    n = 1

    L = [(1+a/n)**n]

    while not abs(L[-1] - ma.exp(a)) < eps:

        n += 1

        L.append((1+a/n)**n)

    return L

>>> liste_seuil_u(1, 10**(-1))

[2.0, 2.25, 2.37037037037037, 2.44140625, 2.4883199999999994, 2.5216

263717421135, 2.546499697040712, 2.565784513950348, 2.58117479171319

84, 2.5937424601000023, 2.6041990118975287, 2.613035290224676, 2.620

6008878857308]
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Suite récurrente d’ordre 1. On construit une liste L telle que L[i]

contienne la valeur de 𝑣𝑖. Il n’est alors plus nécessaire de conserver le terme pré-
cédent dans une variable : lors du calcul de 𝑣𝑖, on dispose de la valeur de 𝑣𝑖−1, c’est
précisément L[-1], le dernier terme ajouté.

On donne à titre d’exemple une fonction qui renvoie la liste des termes 𝑣0 à 𝑣𝑛 et une
autre qui renvoie la liste de tous les termes de (𝑣𝑛) jusqu’à ce que 𝑣𝑛 >A.

SQUARESQUARE Liste de termes sous condition ou non – Suite d’ordre 1
def liste_terme_v(a, n):

    """

    renvoie la liste [u_0,...,u_n]

    """

    L = [a]

    for _ in range(1, n+1):

        L.append(L[-1] + ma.exp(L[-1]))

    return L

>>> liste_terme_v(1, 3)

[1, 3.718281828459045, 44.911837503175164, 3.1986240606431162e+19]

def liste_seuil_v(a, A):

    """

    renvoie la liste [v_0,...,v_n] où n est le premier indice n \

↪ pour lequel v_n>=M

    """

    L = [a]

    while L[-1] < A:

        L.append(L[-1] + ma.exp(L[-1]))

    return L

>>> liste_seuil_v(1, 3)

[1, 3.718281828459045]

Suite récurrente d’ordre 2. On construit une liste L telle que L[i]

contienne la valeur de 𝑤𝑖. Là encore, il n’est alors plus nécessaire de conserver les
termes précédent dans des variables : lors du calcul de 𝑤𝑖, on dispose de la valeur
de𝑤𝑖−1 dans L[i-1] et de𝑤𝑖−2 dans L[i-2]. On donne à titre d’exemple une fonc-
tion qui renvoie la liste des termes 𝑤0 à 𝑤𝑛 et une autre qui renvoie la liste de tous
les termes de (𝑤𝑛) jusqu’à ce que |𝑤𝑛| < ϵ. Notons que dans deux fonctions, et ce
afin d’éviter la gestion de cas particuliers, on suppose que la liste finale contient au
moins𝑤0 et𝑤1.

SQUARESQUARE Liste de termes sous condition ou non – Suite d’ordre 2
def liste_terme_w(a, b, n):

    """

    renvoie la liste [w_0,w_1,...,w_n] (n>=1)

    """

    if n == 0:

        return [a]

    elif n == 1:

        return [a, b]

    else:

        L = [a, b]

        for i in range(2, n+1):

                L.append((5/6)*L[-1]-(1/6)*L[-2])

        return L

>>> liste_terme_w(1, 1, 10)

[1, 1, 0.6666666666666667, 0.38888888888888906, 0.2129629629629631

3, 0.11265432098765445, 0.05838477366255152, 0.029878257887517197, 0

.015167752629172412, 0.007660084209724144, 0.0038554447365747183]

def liste_seuil_w(a, b, eps):

    """

    renvoie la liste [w_0,w_1,...,w_n] (n>=1) où n est le premier \

↪ indice pour lequel |w_n|<eps

    """

    L = [a, b]

    while abs(L[-2]) >= eps:

            L.append((5/6)*L[-1]-(1/6)*L[-2])

    return L

>>> liste_seuil_w(1, 1, 10**(-1))

[1, 1, 0.6666666666666667, 0.38888888888888906, 0.2129629629629631

3, 0.11265432098765445, 0.05838477366255152, 0.029878257887517197]

Remarque 16 (Suites imbriquées) Il faut savoir également enpratique adapter
ces algorithmes à des suites récurrentes imbriquées.

4.4 Tracer une suite

On s’y prend comme pour les fonctions, on a besoin donc de la liste des termes de
ladite suite. Traçons par exemple (𝑢𝑛).
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SQUARESQUARE Tracé de la suite (𝑢𝑛) sur J0 , 10K
import matplotlib.pyplot as plt

n = 10

X = list(range(1, n+1)) # entiers entre 1 et n

Y = liste_terme_u(2, n)

plt.plot(X, Y, "bo") # o : style de marker, des points non reliés

2 4 6 8 10

3.0

3.5

4.0

4.5

5.0

5.5

6.0

plt.plot(X, Y, marker = 'o') # des points reliés cette fois, un \

↪ petit peu plus visuel

2 4 6 8 10

3.0

3.5

4.0

4.5

5.0

5.5

6.0

FICHE MÉTHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (AN) 4.1 (Trouver la monotonie d’une suite)
• [Cas 1 : fonction dérivable] Si 𝑢𝑛 = 𝑓(𝑛) avec 𝑓 dérivable, on étudie la

fonction. Les monotonies coïncident.
• [Cas 2 : expression avec des sommes/différences principalement] Pour

étudier lamonotonie d’une suite, laméthode la plus fréquente est de calculer
𝑢𝑛+1−𝑢𝑛 et étudier son signe.
⋄ si 𝑢𝑛+1−𝑢𝑛 ⩾ 0 pour tout 𝑛 ∈ℕ, alors la suite (𝑢𝑛) est croissante,
⋄ si 𝑢𝑛+1−𝑢𝑛 ⩽ 0 pour tout 𝑛 ∈ℕ, alors la suite (𝑢𝑛) est décroissante.
En outre, lorsque la suite (𝑢𝑛) est définie par 𝑢𝑛 = 𝑓(𝑛) (i.e. de façon expli-
cite), le sens de variation de (𝑢𝑛) est le même que celui de 𝑓 sur [0;+∞[.

• [Cas 3 : expression avec des puissances/produits/quotients principale-
ment] Si une suite (𝑢𝑛) est à termes strictement positifs, elle est :
⋄ croissante si : ∀𝑛 ∈ℕ, 𝑢𝑛+1

𝑢𝑛
⩾ 1,

⋄ décroissante si : ∀𝑛 ∈ℕ, 𝑢𝑛+1
𝑢𝑛

⩽ 1.
Ce critère est utile seulement si 𝑢𝑛+1

𝑢𝑛
donne une expression simple (notam-

ment en cas de présence de factorielles, de puissances...).

Méthode (AN) 4.2 (Montrer que 𝑢𝑛 −−−−−→𝑛⟶∞
ℓ avec la définition de la limite)

1. Se donner ε > 0.
2. Résoudre l’inéquation |𝑢𝑛−ℓ| < ε en 𝑛 ∈ ℕ. L’ensemble des solutions

contient un ensemble de la forme J𝑛0 , ∞J, avec 𝑛0 ∈ ℕ. On a alors prouvé
que : ∀𝑛 ∈ℕ, 𝑛 ⩾𝑛0 ⟹ |𝑢𝑛−ℓ| < ε.

3. Ceci étant vrai pour tout ε > 0, on a montré que : 𝑢𝑛 −−−−−→𝑛⟶∞
ℓ.

Méthode (AN) 4.3 (Montrer que 𝑢𝑛 −−−−−→𝑛⟶∞
+∞ avec la définition de la limite)

1. Se donner A ∈ ℝ.
2. Résoudre l’inéquation 𝑢𝑛 > A en 𝑛 ∈ ℕ. L’ensemble des solutions contient

un ensemble de la forme J𝑛0 ,∞J, avec𝑛0 ∈ ℕ. On a alors prouvé que : ∀𝑛 ∈
ℕ, 𝑛 ⩾𝑛0 ⟹ 𝑢𝑛 >A.

3. Ceci étant vrai pour tout A ∈ ℝ, on a montré que : 𝑢𝑛 −−−−−→𝑛⟶∞
+∞.

Méthode (AN) 4.4 (Déterminer des équivalents à l’aide d’un encadre-
ment) Supposons que 𝑢𝑛 ⩽ 𝑣𝑛 ⩽ 𝑤𝑛 au moins pour 𝑛 assez grand. Alors si
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𝑢𝑛 ∼𝑛→∞
𝑎𝑛,𝑤𝑛 ∼𝑛→∞

𝑎𝑛 où (𝑎𝑛) est une suite strictement positive, on montre que
𝑣𝑛 ∼𝑛→∞

𝑎𝑛 en :
1. divisant par 𝑎𝑛 tout l’encadrement : 𝑢𝑛

𝑎𝑛
⩽ 𝑣𝑛

𝑎𝑛
⩽ 𝑤𝑛

𝑎𝑛
.

2. On conclut à l’aide du théorème d’encadrement en faisant 𝑛⟶∞.
La même méthode s’applique pour les suites strictement négatives bien sûr, en
inversant l’encadrement.

Méthode (AN) 4.5 (Déterminerunéquivalentd’une somme) Se ramener àune
limite usuelle à l’aide d’une factorisation.

Méthode (AN) 4.6 (Déterminer un équivalent d’une composée) Il faut utili-
ser la transitivité de l’équivalence et donc, contrairement à d’habitude, travailler
« de l’extérieur vers l’intérieur ».

Méthode (AN) 4.7 (Plan d’étude d’une suite implicite)
1. Établir l’existence et l’unicité de la suite grâce au théorème de la bijection.
2. Chercher la monotonie en cherchant le signe de 𝑓𝑛+1(𝑥𝑛). Par exemple, si

𝑓𝑛+1(𝑥𝑛) ⩾ 0 = 𝑓𝑛+1(𝑥𝑛+1), on exploite ensuite la monotonie de 𝑓𝑛+1 pour
comparer 𝑥𝑛 et 𝑥𝑛+1.

3. Trouver la valeur de la limite : en général on raisonne par l’absurde dans
l’identité 𝑓𝑛(𝑥𝑛) = 0.

QUESTIONS DE COURS POSÉES AU CONCOURS AGRO—VÉTO

Question Réponse Commentaire

Donner la définition de
𝑢𝑛 −−−−−→𝑛⟶∞

ℓ
∀ε > 0,∃𝑛0 ∈ ℕ, ∀𝑛 ⩾𝑛0, |𝑢𝑛−ℓ| <
ε

Attention aux
quantificateurs

Donner la définition de
𝑢𝑛 −−−−−→𝑛⟶∞

+∞
∀M> 0,∃𝑛0 ∈ ℕ, ∀𝑛 ⩾ 𝑛0,𝑢𝑛 >M Attention aux

quantificateurs

Énoncer la définition et le
théorème des suites
adjacentes

Définition : deux suites de
monotonie différente dont la
différence tend vers zéro. Théorème :
les deux suites convergent vers la
même limite

Attention au
mélange entre les
deux!
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5 EXERCICES

La liste ci-dessous représente les éléments à maitriser absolument. Pour les travailler,
il s’agit de refaire les exemples du cours et les exercices associés à chaque item.

Savoir-faire
1. Concernant les limites :
• Connaître l’idée intuitive de la définition mathématique des limites . . . . . . . . . .⬜
• savoir déterminer des limites en utilisant les théorèmes (somme, produit, quo-

tient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜
• savoir utiliser le théorème d’encadrement et les théorèmes de comparaison . . ⬜
• Connaître les croissances comparées et savoir les détecter . . . . . . . . . . . . . . . . . . .⬜
• savoir appliquer le théorème de la limite monotone . . . . . . . . . . . . . . . . . . . . . . . . .⬜

2. Savoir reconnaître les suites adjacentes mutuelle, et ne pas mélanger hypothèses
(monotonie et différence) et conclusion (convergence) . . . . . . . . . . . . . . . . . . . . . . . . .⬜

3. Savoir démontrer que deux suites sont équivalentes . . . . . . . . . . . . . . . . . . . . . . . . . . . .⬜

Signalétique du TD

• Le logoHOUSE-USER désigne les exercices que vous traiterez endevoir à lamaison.Vous pouvez
m’en rendre un ou plusieurs, au plus tard le lundi qui précède un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

• Le logo BOMB désigne les exercices un peu plus difficiles ; à aborder une fois le reste du
TD bien maitrisé.

Exercice 1 ∣ Propositions sur les suites [Solution] Soit (𝑢𝑛)𝑛∈ℕ une suite réelle.
Écrire à l’aide des quantificateurs les assertions suivantes puis les nier :

La suite (𝑢𝑛)𝑛∈ℕ est croissante.1. La suite (𝑢𝑛)𝑛∈ℕ est strictement dé-
croissante.

2.

La suite (𝑢𝑛)𝑛∈ℕ est constante.3. La suite (𝑢𝑛)𝑛∈ℕ est majorée.4.

La suite (𝑢𝑛)𝑛∈ℕ estminorée par𝑚∈
ℝ.

5. La suite (𝑢𝑛)𝑛∈ℕ est minorée.6.

La suite (|𝑢𝑛|)𝑛∈ℕ diverge vers +∞.7. La suite (𝑢𝑛)𝑛∈ℕ converge.8.

5.1 Suites explicites

Exercice 2 ∣ Études demonotonies [Solution] Étudier lamonotonie (ou éventuel-
lement APCR) des suites définies par :

∀𝑛 ∈ℕ, 𝑢𝑛 = (
𝑛
∑
𝑘=0

1
2𝑘 )−𝑛1. ∀𝑛 ∈ℕ⋆, 𝑢𝑛 =

ln(𝑛)
𝑛2.

∀𝑛 ∈ℕ, 𝑢𝑛 =
2𝑛
∑
𝑘=0

(−1)𝑘

√𝑘+1
3. ∀𝑛 ∈ℕ, 𝑢𝑛 =𝑛+2(−1)𝑛4.

∀𝑛 ∈ℕ, 𝑢𝑛 =
𝑛
∑
𝑘=2

1
𝑘 ln(𝑘) ,5. ∀𝑛 ∈ℕ, 𝑢𝑛 = 𝑛𝑛

𝑛! .6.

Exercice 3 ∣ Limites de suites définies explicitement [Solution] Étudier le com-
portement en+∞ des suites ci-dessous, éventuellement au moyen d’équivalents.

𝑢𝑛 = 𝑛
cos ( 1𝑛 )

1. 𝑢𝑛 = ln(𝑛+1)− ln (𝑛2)2.

𝑢𝑛 = (1+ 2
𝑛 )

𝑛3. 𝑢𝑛 = 2𝑛+𝑛
2𝑛4.

𝑢𝑛 =
𝑛+(−1)𝑛

𝑛−ln(𝑛3)5. 𝑢𝑛 = 1
𝑛2

𝑛
∑
𝑘=1

𝑘6.

𝑢𝑛 = 3𝑛−4𝑛
3𝑛+4𝑛7. 𝑢𝑛 =

1+(−1)𝑛
𝑛8.

𝑢𝑛 =𝑛2−𝑛cos𝑛+29. 𝑢𝑛 =
𝑛!+(𝑛+1)!
(𝑛+2)!10.

𝑢𝑛 = ln(2𝑛+𝑛)11. 𝑢𝑛 =𝑛
1
𝑛12.

𝑢𝑛 = (ln𝑛)𝑛13. 𝑢𝑛 = 𝑛3+2𝑛
3𝑛14.

𝑢𝑛 = (𝑛2+𝑛+1)
1
𝑛15. 𝑢𝑛 =𝑛2 (cos ( 1

𝑛2 )−1).16.

Exercice 4 ∣ Étude de la suite de POISSON [Solution] On considère dans cet exer-
cice la suite (𝑢𝑛) définie par : ∀𝑛 ∈ℕ, 𝑢𝑛 = λ𝑛

𝑛! , avec λ ∈ ℝ
+.

1. Étudier la monotonie de (𝑢𝑛) dans les cas λ = 1,λ = 2.
2. TERMINALPython En cherchant une relation de récurrence sur les termes de (𝑢𝑛), écrire une

fonction d’en-tête trace_poisson(lamba) sans argument qui trace la suite (𝑢𝑛)
sur J0 , 10K pour λ ∈ { 12 ,1,

3
2}. Que conjecturer quant à la monotonie? la nature?

lamba correspond donc ici bien sûr à λ.
3. Démontrer ces conjectures.
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5.2 Suites définies par des sommes ou des produits

Exercice 5 ∣ [Solution] En encadrant les termes généraux, étudier la convergence
des suites suivantes :

∀𝑛 ∈ℕ⋆, 𝑢𝑛 =
𝑛
∑
𝑘=1

1
𝑛2+𝑘 .1. ∀𝑛 ∈ℕ⋆, 𝑢𝑛 =

𝑛
∑
𝑘=1

1
√𝑛2+𝑘

.2.

∀𝑛 ∈ℕ⋆, 𝑢𝑛 =
𝑛
∑
𝑘=1

𝑘
𝑛+𝑘 .3.

Exercice 6 ∣ [Solution]

1. Montrer que pour tout entier 𝑛 ⩾ 1, on a :

2(√𝑛+1−√𝑛) ⩽
1
√𝑛

⩽ 2(√𝑛−√𝑛−1) .

2. En déduire les limites quand 𝑛 tend vers +∞ des deux suites (𝑢𝑛) et (𝑣𝑛) dont
le terme général est pour tout 𝑛 ∈ ℕ⋆ : 𝑢𝑛 =

𝑛
∑
𝑘=1

1
√𝑘

, 𝑣𝑛 =
𝑢𝑛
√𝑛

. En déduire un
équivalent simple de 𝑢𝑛.

Exercice 7 ∣ [Solution] Montrer que les suites (S𝑛)𝑛⩾1 et (T𝑛)𝑛⩾1 définies par :

∀𝑛 ∈ℕ⋆, S𝑛 =
𝑛
∑
𝑘=1

1
√𝑘

−2√𝑛+1, T𝑛 =
𝑛
∑
𝑘=1

1
√𝑘

−2√𝑛.

sont adjacentes. Qu’en conclure?

Exercice 8 ∣ [Solution] Soit𝑥 ∈ ℝ fixé. Étudier le comportement de la suite (𝑢𝑛)𝑛∈ℕ⋆

définie par : 𝑢𝑛 = 1
𝑛2

𝑛
∑
𝑘=1

⌊𝑘𝑥⌋.

Exercice 9 ∣ BOMB [Solution]

1. Montrer que, pour tout 𝑥 > 0, on a : 𝑥− 𝑥2
2 ⩽ ln(1+𝑥) < 𝑥.

2. En déduire la limite quand 𝑛 tend vers +∞ de la suite définie par :

∀𝑛 ∈ℕ⋆, 𝑝𝑛 =
𝑛
∏
𝑘=1

(1+
𝑘
𝑛2 ) .

5.3 Suites récurrentes

Exercice 10 ∣ Calcul de termes explicites (1) [Solution] Pour ces suites définies
par récurrence, calculer le terme général en fonction de 𝑛 :

1. 𝑢1 = 1, ∀𝑛 ∈ ℕ⋆, 𝑢𝑛+1 =
3(𝑛+1)
2𝑛 𝑢𝑛. Indication : On cherchera à conjecturer

une formule, que l’on démontrera par récurrence
2. 𝑢0 = 2, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 2𝑢3𝑛. Indication : On pourra procéder comme précé-

demment, ou en introduisant la suite (ln(𝑢𝑛))𝑛 après avoir justifié son existence.

Exercice 11 ∣ Calcul de termes explicites (2) [Solution] Soit une suite (𝑢𝑛) qui vé-
rifie la relation de récurrence : ∀𝑛 ∈ℕ, 𝑢𝑛+1 =−𝑢2𝑛+2𝑢𝑛.

1. Calculer 1−𝑢𝑛+1 en fonction de 1−𝑢𝑛 pour tout 𝑛 ∈ℕ.
2. Déterminer la limite de la suite (𝑢𝑛), si elle existe, en fonction du premier terme

𝑢0.

Exercice 12 ∣ 𝑢𝑛+1 = 𝑓(𝑢𝑛), avec 𝑓 polynomiale [Solution] On définit la suite (𝑢𝑛)
par 𝑢0 ∈ ℝ et : ∀𝑛 ⩾ 0, 𝑢𝑛+1 = 3

4𝑢
2
𝑛−2𝑢𝑛+3.

1. TERMINALPython Écrire une fonction termes_u(u_0, n) qui renvoie la valeur de 𝑢𝑛.
2. Étudier la fonction 𝑓 associée.
3. Étudier le signe de 𝑔 ∶ 𝑥⟼𝑓(𝑥)−𝑥.
4. Calculer les limites finies éventuelles de la suite (𝑢𝑛).
5. On suppose que 𝑢0 > 2.

5.1) Montrer que la suite est bien définie et que pour tout 𝑛 ∈ℕ : 𝑢𝑛 > 2.
5.2) Étudier la monotonie de la suite (𝑢𝑛).
5.3) Étudier la limite de la suite (𝑢𝑛).

6. On suppose que 𝑢0 ∈ ] 23 ,2[.
6.1) Montrer que la suite est bien définie et que pour tout 𝑛 ∈ℕ : 𝑢𝑛 ∈ ] 23 ,2[.
6.2) Étudier la monotonie de la suite (𝑢𝑛).
6.3) Étudier la limite de la suite (𝑢𝑛).

5.4 Couples de suites récurrentes
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Exercice 13 ∣ [Solution] Soient (𝑎𝑛)𝑛∈ℕ et (𝑏𝑛)𝑛∈ℕ deux suites telles que𝑎0 = 0, 𝑏0 =
1 et : ∀𝑛  ∈ ℕ, 𝑎𝑛+1 =−2𝑎𝑛+𝑏𝑛, 𝑏𝑛+1 = 3𝑎𝑛.

1. Démontrer que la suite (𝑎𝑛+𝑏𝑛)𝑛∈ℕ est constante.
2. Pour tout 𝑛 ∈ℕ, exprimer 𝑎𝑛 en fonction de 𝑛.
3. Pour tout 𝑛 ∈ℕ, déterminer 𝑏𝑛 en fonction de 𝑛.

Exercice 14 ∣ [Solution] On définit deux suites (𝑢𝑛)𝑛∈ℕ⋆ et (𝑣𝑛)𝑛∈ℕ⋆ par :

𝑢1 = 1 𝑣1 = 12, ∀𝑛 ∈ ℕ⋆, 𝑢𝑛+1 =
𝑢𝑛+2𝑣𝑛

3
, 𝑣𝑛+1 =

𝑢𝑛+3𝑣𝑛
4

.

1. TERMINALPython Écrire une fonction termes_uv(n)qui renvoie la valeur de (𝑢𝑛,𝑣𝑛). Conjec-
turer l’existence et la valeur des limites de 𝑢 et 𝑣.

2. On souhaite trouver la limite éventuelle des suites 𝑢 et 𝑣.
2.1) On pose, pour tout 𝑛 ∈ℕ⋆,𝑤𝑛 = 𝑣𝑛−𝑢𝑛. Donner l’expression de (𝑤𝑛)𝑛∈ℕ⋆ .
2.2) Montrer que (𝑢𝑛)𝑛∈ℕ⋆ et (𝑣𝑛)𝑛∈ℕ⋆ sont adjacentes.
2.3) On pose pour tout 𝑛 ∈ ℕ⋆, 𝑡𝑛 = 3𝑢𝑛 +8𝑣𝑛. Donner l’expression de (𝑡𝑛)𝑛∈ℕ⋆

et en déduire la limite de (𝑢𝑛)𝑛∈ℕ⋆ et (𝑣𝑛)𝑛∈ℕ⋆ .
3. On souhaite retrouver les résultats précédents à l’aide d’un calcul matriciel.

3.1) OnnoteP = (
−8
3 1
1 1),montrer queP est inversible et déterminer son inverse.

3.2) On note X𝑛 = (
𝑢𝑛
𝑣𝑛
) pour tout 𝑛 ∈ ℕ. Chercher une matrice A ∈𝔐2,2 (ℝ) tel

que : ∀𝑛 ∈ ℕ, X𝑛+1 = AX𝑛, puis rappeler sans justifier une expression
de X𝑛 en fonction de 𝑛 ∈ℕ.

3.3) Calculer P−1AP, puis en déduire que A est semblable à une matrice diago-
naleD ∈𝔐2,2 (ℝ). Donner sans justification une expression de A𝑛 en fonc-
tion deD𝑛.

3.4) Détermineruneexpressionde (𝑢𝑛)en fonctionde𝑛, puis retrouver la limite
de (𝑢𝑛). La même démarche pourrait être appliquée à (𝑣𝑛).

5.5 Suites d’intégrales

Exercice 15 ∣ [Solution] On définit la suite (I𝑛)𝑛∈ℕ par :

∀𝑛 ⩾ 0, I𝑛 = ∫
π
4

0
tan𝑛(𝑡)d𝑡.

1. Justifier que (I𝑛)𝑛∈ℕ est bien définie, puis calculer I0 et I1.
2. 2.1) Démontrer que : ∀𝑛 ⩾ 0, I𝑛 ⩾ 0.

2.2) En déduire que (I𝑛)𝑛∈ℕ converge.

Exercice 16 ∣ [Solution] On définit la suite (𝑢𝑛)𝑛∈ℕ par :

∀𝑛 ⩾ 0, 𝑢𝑛 = ∫
1

0

𝑡𝑛

1+𝑡2
d𝑡.

1. Calculer 𝑢0 et 𝑢1.
2. Montrer que : ∀𝑛 ∈ℕ, 0 ⩽ 𝑢𝑛 ⩽ 1

𝑛+1 .
3. Montrer que la suite (𝑢𝑛)𝑛∈ℕ converge et déterminer sa limite.

Exercice 17 ∣ BOMB [Solution] On définit la suite (I𝑛)𝑛∈ℕ par :

∀𝑛 ⩾ 0, I𝑛 = ∫
e

1
𝑥2(ln(𝑥))𝑛 d𝑥.

1. Calculer I0 et I1.
2. Montrer que la suite (I𝑛)𝑛∈ℕ est convergente.
3. Montrer que : ∀𝑥 ∈ [1,e], 0 ⩽ ln(𝑥) ⩽ 𝑥

e . En déduire la limite de la suite
(I𝑛)𝑛∈ℕ.

4. Montrer que : ∀𝑛 ∈ℕ, I𝑛+1 = e3
3 −

𝑛+1
3 I𝑛.

5.6 Suites implicites

Exercice 18 ∣ [Solution]

1. Soit 𝑛 ⩾ 1. Montrer que l’équation 𝑥𝑛 +𝑥 − 1 = 0 d’inconnue 𝑥 ∈ ℝ admet une
unique solution 𝑥𝑛 dans ℝ+.

2. Montrer que la suite (𝑥𝑛)𝑛ℕ est majorée par 1 et minorée par 0.
3. Étudier la monotonie de la suite.
4. Étudier la convergence de la suite.
5. Montrer qu’il est impossible que la suite converge vers une limite ℓ < 1.
6. Conclure que lim

𝑛⟶+∞
𝑥𝑛 = 1.

Exercice 19 ∣ [Solution] Pour tout 𝑛 ∈ℕ⋆, on définit la fonction 𝑓𝑛 sur ℝ par :
∀𝑥 ∈ ℝ, 𝑓𝑛(𝑥) = 𝑛𝑥3+𝑛2𝑥−2.

1. Soit 𝑛 ∈ℕ⋆. Montrer que l’équation 𝑓𝑛(𝑥) = 0 admet dans ℝ une unique solution.
On notera 𝑎𝑛 cette solution.
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2. Prouver que la suite (𝑎𝑛)𝑛∈ℕ est positive, décroissante.
3. Étudier la convergence de la suite (𝑎𝑛)𝑛∈ℕ.

5.7 Devoir-maisonLaptop-House

Exercice 20 ∣ Suites implicites,équivalents. [Solution] Pour tout𝑛 ∈ℕ∗ onconsi-
dère l’équation d’inconnue 𝑥 ∈ ℝ+ :

(E𝑛) ∶ 𝑥+e𝑛𝑥 = 2.

1. Pour tout 𝑛 ∈ℕ∗, on définit 𝑓𝑛 la fonction définie sur ℝ+ par
𝑓𝑛(𝑥) = 𝑥+e𝑛𝑥−2.

Montrer que pour tout 𝑛 ∈ ℕ∗, l’équation (E𝑛) admet une unique solution, que
l’on note 𝑥𝑛, dans ℝ+.
Ainsi, 𝑥𝑛+e𝑛𝑥𝑛 = 2 pour tout 𝑛 ∈ℕ∗.

2. 2.1) Soit 𝑛 ∈ℕ∗. Montrer que pour tout 𝑥 ∈ ℝ+, 𝑓𝑛+1(𝑥)−𝑓𝑛(𝑥) ≥ 0.
En déduire le signe de 𝑓𝑛+1(𝑥𝑛) puis la monotonie de la suite (𝑥𝑛).

2.2) Montrer que la suite (𝑥𝑛) converge. On notera ℓ sa limite.
2.3) Montrer à l’aide d’un raisonnement par l’absurde que ℓ = 0.

3. Montrer que pour tout 𝑛 ∈ℕ∗, 𝑛𝑥𝑛 = ln(2−𝑥𝑛). En déduire que :

𝑥𝑛 ∼𝑛→+∞

ln(2)
𝑛

.

4. Pour tout 𝑛 ∈ℕ∗ on pose ε𝑛 = 𝑥𝑛−
ln(2)
𝑛

.

Montrer que ε𝑛 =
ln(1−

𝑥𝑛
2
)

𝑛
et en déduire que :

ε𝑛 ∼𝑛→+∞

α
𝑛β ,

avec α et β deux réels à déterminer.
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SOLUTIONS DES EXERCICES

Solution (exercice 1) [Énoncé] Étude de chaque propriété :
∀𝑛 ∈ℕ, 𝑢𝑛+1 ⩾𝑢𝑛
Négation : ∃𝑛 ∈ ℕ, 𝑢𝑛+1 <𝑢𝑛.

1. ∀𝑛 ∈ℕ, 𝑢𝑛+1 <𝑢𝑛
Négation : ∃𝑛 ∈ ℕ, 𝑢𝑛+1 ⩾𝑢𝑛.

2.

∀𝑛 ∈ℕ, 𝑢𝑛 =𝑢0
Négation : ∃𝑛 ∈ ℕ, 𝑢𝑛 ≠𝑢0

3. ∃M ∈ ℝ, ∀𝑛 ∈ ℕ, 𝑢𝑛 ⩽M
Négation : ∀M∈ ℝ, ∃𝑛 ∈ ℕ, 𝑢𝑛 >
M.

4.

∀𝑛 ∈ℕ, 𝑢𝑛 ⩾𝑚
Négation : ∃𝑛 ∈ ℕ, 𝑢𝑛 <𝑚.

5. ∃𝑚 ∈ ℝ, ∀𝑛 ∈ ℕ, 𝑢𝑛 ⩾𝑚
Négation : ∀𝑚 ∈ℝ, ∃𝑛 ∈ ℕ, 𝑢𝑛 <
𝑚.

6.

∀A ∈ ℝ, ∃𝑛0 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ 𝑢𝑛 ⩾A
Négation : ∃A ∈ ℝ, ∀𝑛0 ∈ ℕ, ∃𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 et 𝑢𝑛 <A.

7.

∃ℓ ∈ ℝ, ∀ε ∈ ℝ+, ∃𝑛0 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 ⟹ |𝑢𝑛−ℓ| < ε.
Négation : ∀ℓ ∈ ℝ, ∃ε ∈ ℝ+, ∀𝑛0 ∈ ℕ, ∃𝑛 ∈ ℕ, 𝑛 ⩾ 𝑛0 et |𝑢𝑛−ℓ| ⩾ ε.

8.

Solution (exercice 2) [Énoncé]

1. La suite (𝑢𝑛) est définie par une somme, on étudie donc le signe de𝑢𝑛+1−𝑢𝑛.

𝑢𝑛+1−𝑢𝑛 =
𝑛+1
∑
𝑘=0

1
2𝑘

−(𝑛+1)−
𝑛
∑
𝑘=0

1
2𝑘

+𝑛 =
1

2𝑛+1
−1.

Or, pour tout 𝑛 ∈ℕ, on a : 1
2𝑛+1 < 1. Ainsi la suite (𝑢𝑛) est décroissante .

2. La suite (𝑢𝑛)𝑛∈ℕ⋆ est une suite définie explicitement et 𝑢𝑛 = 𝑓(𝑛) avec

𝑓 ∶ 𝑥⟼𝑓(𝑥) =
ln𝑥
𝑥

.

L’étude de la monotonie de la fonction 𝑓 sur [1,+∞[ permet d’en déduire di-
rectement la monotonie de la suite.
La fonction 𝑓 est dérivable sur ℝ+⋆ comme quotient dont le dénominateur
ne s’annule pas de fonctions dérivables. On obtient

∀𝑥 ∈ ℝ+⋆, 𝑓′(𝑥) =
1− ln𝑥
𝑥2

.

Étudions le signe de 1−ln𝑥 (𝑥2 ⩾ 0donc le signe de la dérivée est bien le signe
de 1− ln𝑥) : 1− ln𝑥 > 0 ⟺ ln𝑥 < 1 ⟺ 𝑥< e car la fonction exponentielle
est strictement croissante.
Ainsi, la fonction 𝑓 est strictement décroissante sur [𝑒,+∞[. Ainsi, à partir du
rang 3, la suite (𝑢𝑛)𝑛⩾3 est décroissante .

3. La suite (𝑢𝑛) est définie par une somme, on étudie donc le signe de𝑢𝑛+1−𝑢𝑛.

𝑢𝑛+1−𝑢𝑛 =
2(𝑛+1)
∑
𝑘=0

(−1)𝑘

√𝑘+1
−

2𝑛
∑
𝑘=0

(−1)𝑘

√𝑘+1

=
2𝑛+2
∑
𝑘=0

(−1)𝑘

√𝑘+1
−

2𝑛
∑
𝑘=0

(−1)𝑘

√𝑘+1

=
1

√2𝑛+3
−

1
√2𝑛+2

⩽ 0 puisque√2𝑛+3 ⩾√2𝑛+2.
Ainsi, la suite (𝑢𝑛) est décroissante .

4. On remarque que
𝑢𝑛+1−𝑢𝑛 =𝑛+1+2(−1)𝑛+1−𝑛−2(−1)𝑛 = 1+2(−1)𝑛+1+2(−1)𝑛+1 = 1+4(−1)𝑛+1.

Ainsi, si 𝑛 = 2𝑝 pair, on obtient : 𝑢2𝑝+1 −𝑢2𝑝 = 5 > 0 et si 𝑛 = 2𝑝+1 impair,
on obtient : 𝑢2𝑝+2−𝑢2𝑝+1 =−3 < 0. Ainsi la suite (𝑢𝑛) n’est pas monotone .

5. La suite (𝑢𝑛) est définie par une somme, on étudie donc le signe de𝑢𝑛+1−𝑢𝑛.

𝑢𝑛+1−𝑢𝑛 =
𝑛+1
∑
𝑘=2

1
𝑘 ln𝑘

−
𝑛
∑
𝑘=2

1
𝑘 ln𝑘

=
1

(𝑛+1) ln(𝑛+1)
> 0.

Ainsi, la suite (𝑢𝑛) est croissante .
6. La suite 𝑢 est bien entendu strictement positive. De plus, pour tout 𝑛 ∈ℕ :

𝑢𝑛+1
𝑢𝑛

=
(𝑛+1)!
(𝑛+1)𝑛+1

×
𝑛𝑛

𝑛!
= ����(𝑛+1)𝑛𝑛

����(𝑛+1)(𝑛+1)𝑛
= (

𝑛
𝑛+1

)
𝑛
< 1.

Ainsi, (𝑢𝑛) est décroissante .

Solution (exercice 3) [Énoncé] Je ne donne ici que les réponses et quelques
indications pour trouver les limites demandées. Une telle rédaction dans une
copie serait très insuffisante.
1. lim

𝑛⟶∞
𝑛

cos ( 1𝑛 )
=+∞ par composée et produit de limite car cos(0) = 1.

2. lim
𝑛⟶∞

ln(𝑛+1) − ln (𝑛2) = −∞ en utilisant ln (𝑛+1𝑛2 ) et le théorème des mo-
nômes de plus haut degré.

3. lim
𝑛⟶+∞

(1+ 2
𝑛 )

𝑛 = e2 enutilisant le fait que ln (1+ 2
𝑛 )∼𝑛→∞

2
𝑛 (limite très classique

fait en cours).
4. lim

𝑛⟶∞
2𝑛+𝑛
2𝑛 = 1 en mettant en facteur en haut et en bas le terme dominant, à

savoir 2𝑛 et en utilisant une croissance comparée car 2𝑛 = e𝑛 ln2.
5. lim

𝑛⟶∞
𝑛+(−1)𝑛

𝑛−ln(𝑛3) = 1 en mettant en facteur en haut et en bas 𝑛 et en remarquant

que lim
𝑛⟶+∞

(−1)𝑛
𝑛 = 0 par le théorème des gendarmes et que lim

𝑛⟶+∞
ln(𝑛3)
𝑛 =

lim
𝑛⟶+∞

3 ln(𝑛)
𝑛 = 0 par croissance comparée.
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6. lim
𝑛⟶∞

1
𝑛2 ∑

𝑛
𝑘=1𝑘 =

1
2 en écrivant que∑𝑛

𝑘=1𝑘 =
𝑛(𝑛+1)

2 et d’après le théorème sur
les monômes de plus haut degré.

7. lim
𝑛⟶∞

3𝑛−4𝑛
3𝑛+4𝑛 =−1 enmettant en facteur enhaut et en bas 4𝑛 le termedominant

et appliquant le théorème sur les suites géométriques.
8. lim

𝑛⟶∞
1+(−1)𝑛

𝑛 = 0 en utilisant le théorème des gendarmes car : 0 ⩽ 1+(−1)𝑛
𝑛 ⩽ 2

𝑛 .
9. lim

𝑛⟶∞
𝑛2−𝑛cos𝑛+2 =+∞ en mettant en facteur le terme dominant 𝑛2 et en

utilisant le théorème des gendarmes avec | cos𝑛𝑛 | ≤ 1
𝑛 .

10. lim
𝑛⟶∞

𝑛!+(𝑛+1)!
(𝑛+2)! = 0 en utilisant la définition des factorielles.

11. lim
𝑛⟶∞

ln(2𝑛+𝑛) = +∞ par propriété sur les somme et composée de limites.

12. lim
𝑛⟶∞

𝑛
1
𝑛 = 1 car 𝑛1/𝑛 = e1/𝑛 ln𝑛 puis par croissance comparée, on a :

lim
𝑛⟶+∞

ln𝑛
𝑛 = 0.

13. lim
𝑛⟶∞

(ln𝑛)𝑛 = +∞. Il n’y a pas de forme indéterminée ici, il suffit d’écrire
que (ln𝑛)𝑛 = e𝑛 ln(ln𝑛).

14. lim
𝑛⟶∞

𝑛3+2𝑛
3𝑛 = 0enmettant2𝑛 en facteur aunumérateur et enutilisant ensuite

le théorème sur la convergence des suites géométriques et les croissances
comparées car lim

𝑛⟶+∞
𝑛3
2𝑛 = lim

𝑛⟶+∞
𝑛3

e𝑛 ln2 = 0.

15. lim
𝑛⟶∞

(𝑛2+𝑛+1)
1
𝑛 = 1 en transformant l’expression en mettant le terme do-

minant 𝑛2 en facteur :
(𝑛2+𝑛+1)

1
𝑛 = e1/𝑛 ln(𝑛

2+𝑛+1).
Le terme en exposant dans l’exponentielle est alors

ln (𝑛2+𝑛+1)
𝑛

=
ln (𝑛2)
𝑛

+
ln (1+ 1

𝑛 +
1
𝑛2 )

𝑛
.

On obtient alors la limite voulue en utilisant les croissances comparées.
16. lim

𝑛⟶∞
𝑛2 (cos ( 1

𝑛2 )−1) : on utilise ici les équivalents usuels. On a : 𝑢𝑛 ∼𝑛→∞
𝑛2×

(− 1
2𝑛2 ) = − 1

2 , donc lim
𝑛
+∞𝑢𝑛 =− 1

2 .

Solution (exercice 4) [Énoncé]

1. Soit 𝑛 ∈ℕ. Alors

𝑢𝑛+1−𝑢𝑛 =
λ𝑛+1

(𝑛+1)!
−
λ𝑛

𝑛!

=
λ𝑛

𝑛!
(

λ
𝑛+1

−1)

=
λ𝑛

𝑛!
λ−𝑛−1
𝑛+1

.

Donc 𝑢𝑛+1 −𝑢𝑛 ⩽ 0 si, et seulement si, λ−𝑛−1 ⩽ 0 donc si, et seulement si,
𝑛 ⩾ λ−1.

• Lorsque λ = 1, on constate que 𝑢𝑛+1 − 𝑢𝑛 ⩽ 0 pour tout 𝑛 ∈ ℕ. Donc
(𝑢𝑛) est décroissante .

• Lorsque λ = 2, on constate que 𝑢𝑛+1 − 𝑢𝑛 ⩽ 0 pour tout 𝑛 ⩾ 1. Donc
(𝑢𝑛) est décroissante à partir du rang 1 , et croissante entre𝑛 = 0 et𝑛 = 1.

2. TERMINALPython On a la relation de récurrence suivante :

∀𝑛 ∈ℕ, 𝑢𝑛+1 =
λ

𝑛+1
×
λ
𝑛!

=
λ

𝑛+1
×𝑢𝑛.

Avec en terme initial 𝑢0 = 1. D’où le programme ci-après pour construire la
liste des 𝑛+1 premiers termes.
def trace_poisson(lamba):

    """

    Renvoie la liste [u_0,...,u_n]

    """

    L = [1]

    u = 1

    for i in range(1, n+1):

        u = u*(lamba/i)

        L.append(u)

    return L

for lamba in [1/2, 1, 3/2]:

    plt.plot(trace_poisson(lamba), label=str(lamba),marker = '

o')

    plt.legend()

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5
1
1.5

On conjecture alors que la suite semble tendre vers zéro et pour tous les λ
testés. Pour la monotonie, on constate qu’elle semble décroissante globale-
ment si λ ∈ [0,1] et décroissante à partir d’un certain rang si λ > 1. C’est ce
que nous allons établir.

3. Par croissances comparées, on a lim
𝑛⟶∞

𝑢𝑛 = 0 .
Pour la monotonie, on reprend les calculs précédents, on a 𝑢𝑛+1 −𝑢𝑛 ⩽ 0 si,
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et seulement si,
𝑛 ⩾ λ−1 ⟺ 𝑛⩾ ⌊λ−1⌋+1.

On rappelle que𝑛λ = ⌊λ−1⌋+1 est le plus petit entier supérieur à λ−1. Deux
cas se présentent alors :
• Si λ > 1 alors λ−1 > 0 et (𝑢𝑛) est décroissante à partir du rang 𝑛λ.
• Si λ ∈ [0,1], alors λ−1 ⩽ 0 et donc (𝑢𝑛) est décroissante.

Solution (exercice 5) [Énoncé] Comme souvent lorsque l’on doit étudier
des suites définies par des sommes, on essaye d’encadrer le terme général de la
suite en utilisant que 𝑘 est compris entre, par exemple, 1 et 𝑛.
1. Soit 𝑛 ∈ℕ⋆. On a, pour tout 𝑘 ∈ {1,…,𝑛} :

1 ⩽ 𝑘 ⩽ 𝑛 ⟺ 𝑛2+1 ⩽ 𝑛2+𝑘 ⩽𝑛2+𝑛 ⟺
1

1+𝑛2 ⩽
1

𝑛2+𝑘
⩽

1
𝑛2+𝑛

.

Comme la dernière inégalité est vraie pour tout𝑘 ∈ {1,…,𝑛}, on somme cette
inégalité pour 𝑘 allant de 1 à 𝑛 et on obtient :

𝑛
∑
𝑘=1

1
𝑛2+1

⩽ 𝑢𝑛 ⩽
𝑛
∑
𝑘=1

1
𝑛2+𝑛

⟺
𝑛

1+𝑛2 ⩽𝑢𝑛 ⩽
𝑛

𝑛(1+𝑛)
.

Or le théorème sur les monôme de plus haut degré pour les limites donne

lim
𝑛⟶+∞

𝑛
1+𝑛2 = 0 = lim

𝑛⟶+∞

1
1+𝑛

.

Ainsi, d’après le théorème des gendarmes, on obtient que la suite (𝑢𝑛)𝑛∈ℕ⋆

converge et que : lim
𝑛⟶+∞

𝑢𝑛 = 0.
2. Le même raisonnement donne :

1 ⩽ 𝑘 ⩽ 𝑛 ⟺
𝑛

1+𝑛2 ⩾
𝑛

𝑛2+𝑘
⩾

𝑛
𝑛2+𝑛

.

Puis, en sommant, on obtient :
𝑛
∑
𝑘=1

𝑛
𝑛2+1

⩾ 𝑢𝑛 ⩾
𝑛
∑
𝑘=1

1
𝑛+1

⟺
𝑛2

1+𝑛2 ⩾𝑢𝑛 ⩾
𝑛

1+𝑛
.

Or le théorème sur les monômes de plus haut degré pour les limites donne

lim
𝑛⟶+∞

𝑛2

1+𝑛2 = 1 = lim
𝑛⟶+∞

𝑛
1+𝑛

.

Ainsi, d’après le théorème des gendarmes, on obtient que la suite (𝑢𝑛)𝑛∈ℕ⋆

converge et que : lim
𝑛⟶+∞

𝑢𝑛 = 1.
3. Le même type de raisonnement donne :

1 ⩽ 𝑘 ⩽ 𝑛 ⟺
𝑘

1+𝑛
⩾

𝑘
𝑛+𝑘

⩾
𝑘
2𝑛

.

Puis, en sommant, on obtient :
𝑛
∑
𝑘=1

𝑘
𝑛+1

⩾ 𝑢𝑛 ⩾
𝑛
∑
𝑘=1

𝑘
2𝑛

⟺
𝑛(𝑛+1)
2(𝑛+1)

⩾ 𝑢𝑛 ⩾
𝑛(𝑛+1)

4𝑛
⟺

𝑛
2
⩾𝑢𝑛 ⩾

𝑛+1
4

.

Comme lim
𝑛⟶+∞

𝑛+1
4 = +∞ et que pour tout 𝑛 ∈ ℕ : 𝑢𝑛 ⩾ 𝑛+1

4 , le théorème de

minoration assure que la suite (𝑢𝑛) diverge vers +∞.

Solution (exercice 6) [Énoncé]

1. Soit 𝑛 ∈ ℕ⋆. Quand une expression comporte des racines carrées, une idée
est d’utiliser la quantité conjuguée. On obtient alors :

√𝑛+1−√𝑛=
1

√𝑛+1+√𝑛
et √𝑛−√𝑛−1 =

1

√𝑛+√𝑛−1
.

On obtient alors :
2(√𝑛+1−√𝑛) ⩽

1
√𝑛

⟺ √𝑛+1+√𝑛⩾ 2√𝑛.

Or la dernière inégalité est toujours vérifiée car 𝑛 + 1 ⩾ 𝑛 et que la racine
carrée est croissante sur ℝ+. Un raisonnement analogue permet de montrer
l’autre sens de l’inégalité.

2. • Pour tout 𝑘 ⩾ 1, on a donc démontré que

2(√𝑘+1−√𝑘) ⩽
1
√𝑘

⩽ 2(√𝑘−√𝑘−1)

On somme alors cette inégalité pour 𝑘 allant de 1 à 𝑛 et on obtient

2
𝑛
∑
𝑘=1

(√𝑘+1−√𝑘) ⩽ 𝑢𝑛 ⩽ 2
𝑛
∑
𝑘=1

(√𝑘−√𝑘−1) .

Les deux sommes de chaque côté sont télescopiques et se calculent donc
grâce à un changement de variable. Faisons le par exemple pour la pre-
mière :

𝑛
∑
𝑘=1

(√𝑘+1−√𝑘) =
𝑛
∑
𝑘=1

√𝑘+1−
𝑛
∑
𝑘=1

√𝑘

=
𝑛+1
∑
𝑘=2

√𝑘−
𝑛
∑
𝑘=1

√𝑛

=√𝑛+1−1.
Un calcul similaire donne pour la deuxième somme télescopique :

𝑛
∑
𝑘=1

(√𝑘−√𝑘−1) =√𝑛.

Ainsi, on obtient que, pour tout 𝑛 ∈ℕ⋆,
2(√𝑛+1−1) ⩽ 𝑢𝑛 ⩽ 2√𝑛.

• On peut alors en déduire la limite de la suite (𝑢𝑛)𝑛∈ℕ⋆ en utilisant le théo-
rème de minoration : en effet, on a

𝑢𝑛 ⩾ 2(√𝑛+1−1) lim
𝑛⟶+∞

2(√𝑛+1−1) = +∞ ⟹ lim
𝑛⟶+∞

𝑢𝑛 =+∞.
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• En divisant l’inégalité trouvée ci-dessus par√𝑛> 0, on obtient que

2(
√𝑛+1
√𝑛

−
1
√𝑛

) ⩽ 𝑣𝑛 ⩽ 2.

Or, on a :

lim
𝑛⟶+∞

2(
√𝑛+1
√𝑛

−
1
√𝑛

) = 2

et ainsi le théorème des gendarmes assure que la suite (𝑣𝑛)𝑛∈ℕ⋆ converge
et que

lim
𝑛⟶+∞

𝑣𝑛 = 2.

Conséquence immédiate : 𝑢𝑛 ∼𝑛→∞
2√2.

Solution (exercice 7) [Énoncé]

• Soit 𝑛 ⩾ 1, on a :

S𝑛+1−S𝑛 =
𝑛+1
∑
𝑘=1

1
√𝑘

−2√𝑛+2−
𝑛
∑
𝑘=1

1
√𝑘

+2√𝑛+1

=
1

√𝑛+1
−2√𝑛+2+2√𝑛+1

=
1

√𝑛+1
−

2
√𝑛+1+√𝑛+2

en utilisant la quantité conjuguée. On a de plus :

√𝑛+1+√𝑛+2 ⩾ 2√𝑛+1⟹
2

√𝑛+1+√𝑛+2
⩽

1
√𝑛+1

⟹S𝑛+1−S𝑛 ⩾ 0.

On en déduit que la suite (S𝑛)𝑛⩾1 est croissante.
• Soit 𝑛 ⩾ 1, on a :

T𝑛+1−T𝑛 =
𝑛+1
∑
𝑘=1

1
√𝑘

−2√𝑛+1−
𝑛
∑
𝑘=1

1
√𝑘

+2√𝑛

=
1

√𝑛+1
−2√𝑛+1+2√𝑛

=
1

√𝑛+1
−

2

√𝑛+√𝑛+1
en utilisant la quantité conjuguée. On a de plus :

√𝑛+√𝑛+1 ⩽ 2√𝑛+1 ⟹
2

√𝑛+√𝑛+1
⩾

1
√𝑛+1

⟹ T𝑛+1−T𝑛 ⩽ 0.

On en déduit que la suite (T𝑛)𝑛⩾1 est décroissante.
• Pour tout𝑛 ⩾ 1, on a : T𝑛−S𝑛 = 2(√𝑛+1−√𝑛). Afin de lever l’indétermina-

tion, on utilise la quantité conjuguée et on obtient que : T𝑛 −S𝑛 = 2
√𝑛+1+√𝑛

.
Ainsi par propriété sur les composée, somme et quotient de limites, on a :
lim

𝑛⟶+∞
T𝑛−S𝑛 = 0.

Ainsi on vient de montrer que les suites (S𝑛)𝑛⩾1 et (T𝑛)𝑛⩾1 sont adjacentes.
D’après le théorème sur les suites adjacentes,
les suites (S𝑛)𝑛⩾1 et (T𝑛)𝑛⩾1 convergent vers la même limite.

Solution (exercice 8) [Énoncé] La seule chose que l’on puisse faire avec une
partie entière est d’utiliser l’inégalité qui la détermine, à savoir que

∀𝑦 ∈ ℝ, ⌊𝑦⌋ ⩽ 𝑦 < ⌊𝑦⌋+1
avec ⌊𝑦⌋ ∈ ℤ. On sait donc que, pour tout 𝑘 ∈ℕ⋆, on a

⌊𝑘𝑥⌋ ⩽ 𝑘𝑥 < ⌊𝑘𝑥⌋+1 ⟺ 𝑘𝑥−1 < ⌊𝑘𝑥⌋ ⩽ 𝑘𝑥.
On somme alors cette inégalité pour 𝑘 allant de 1 à 𝑛 et on obtient que

𝑛
∑
𝑘=1

(𝑘𝑥−1) ⩽
𝑛
∑
𝑘=1

⌊𝑘𝑥⌋ ⩽
𝑛
∑
𝑘=1

𝑘𝑥 ⟺
1
𝑛2

𝑛
∑
𝑘=1

(𝑘𝑥−1) ⩽ 𝑢𝑛 ⩽
1
𝑛2

𝑛
∑
𝑘=1

𝑘𝑥

car 1
𝑛2 > 0. Calculons séparemment chaque somme :
1
𝑛2

𝑛
∑
𝑘=1

(𝑘𝑥−1) =
𝑥
𝑛2

𝑛
∑
𝑘=1

𝑘−
𝑛
𝑛2 =

𝑥𝑛(𝑛+1)
2𝑛2 −

1
𝑛
.

Un calcul similaire donne pour l’autre somme
1
𝑛2

𝑛
∑
𝑘=1

𝑘𝑥 =
𝑥𝑛(𝑛+1)

2𝑛2 .

On obtient alors que
𝑥(𝑛+1)

2𝑛
−
1
𝑛
⩽ 𝑢𝑛 ⩽

𝑥(𝑛+1)
2𝑛

.

Or, on a

lim
𝑛⟶+∞

𝑥(𝑛+1)
2𝑛

−
1
𝑛
=
𝑥
2
= lim

𝑛⟶+∞

𝑥(𝑛+1)
2𝑛

,

ainsi, le théorème des gendarmes assure que la suite (𝑢𝑛)𝑛∈ℕ⋆ converge et que :

lim
𝑛⟶+∞

𝑢𝑛 =
𝑥
2
.

Solution (exercice 9) [Énoncé]

1. Il s’agit ici d’étudier les variations des deux fonctions suivantes : 𝑓 ∶ 𝑥 ⟼
𝑥− 𝑥2

2 − ln(1+𝑥) et 𝑔 ∶ 𝑥⟼ ln(1+𝑥)−𝑥 et d’en déduire leur signe. à faire.
2. Une idée classique lorsque l’on doit étudier un produit est de le transformer

en somme en passant au logarithme népérien. C’est ce que l’on va faire ici.
• On pose pour tout 𝑛 ∈ ℕ⋆, S𝑛 = ln(𝑝𝑛). Par propriété sur le logarithme
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d’un produit, on obtient que :

∀𝑛 ∈ℕ⋆, S𝑛 =
𝑛
∑
𝑘=1

ln(1+
𝑘
𝑛2 ).

• On encadre S𝑛 en encadrant le terme à l’intérieur grâce à l’inégalité dé-
montrée à la question précédente puis on somme. On obtient donc en
posant 𝑥 = 𝑘

𝑛2 > 0 car 𝑘 ⩾ 1 :
𝑘
𝑛2 −

𝑘2

2𝑛4 ⩽ ln(1+
𝑘
𝑛2 ) ⩽

𝑘
𝑛2 .

On somme alors cette inégalité pour 𝑘 allant de 1 à 𝑛 et on obtient, en
utilisant la linéarité de la somme, que :

1
𝑛2

𝑛
∑
𝑘=1

𝑘−
1
2𝑛4

𝑛
∑
𝑘=1

𝑘2 ⩽ S𝑛 ⩽
1
𝑛2

𝑛
∑
𝑘=1

𝑘

𝑛+1
2𝑛

−
(𝑛+1)(2𝑛+1)

12𝑛3 ⩽ S𝑛 ⩽
𝑛+1
2𝑛

.

• Enutilisant le théorème sur lesmonômesdeplus haut degré, on remarque
que :

lim
𝑛⟶+∞

𝑛+1
2𝑛

=
1
2
, lim

𝑛⟶+∞

(𝑛+1)(2𝑛+1)
12𝑛3 = 0.

Ainsi en utilisant le théorème des gendarmes, on obtient que la suite
(S𝑛)𝑛∈ℕ⋆ converge vers 1

2 .
• Par définition de S𝑛, on a pour tout 𝑛 ∈ ℕ⋆ : 𝑝𝑛 = eS𝑛 . Puis par pro-

priété sur la composition de limite, on obtient que : lim
𝑛⟶+∞

𝑝𝑛 = e
1
2 . Ainsi

la suite (𝑝𝑛)𝑛∈ℕ⋆ converge vers e
1
2 .

Solution (exercice 10) [Énoncé] Pour toutes ces suites, on conjecture le
résultat en itérant la relation de récurrence puis on le démontre rigoureusement
par récurrence. Je ne fais pas ici la récurrence mais elle doit être présente dans
toute copie. Je ne donne ici que le résultat, à savoir 𝑢𝑛 en fonction de 𝑛.

1. ∀𝑛 ∈ ℕ, 𝑢𝑛 = 3𝑛−1
2𝑛−1𝑛𝑢1 =

3𝑛−1

2𝑛−1
𝑛 . Puis on prouve cette formule avec une

récurrence.
2. • Méthode 1 : on conjecture que :

∀𝑛 ∈ℕ, 𝑢𝑛 = 2×23×23
2
×⋯×23

𝑛−1
𝑢3

𝑛

0 = 2∑
𝑛
𝑘=0 3

𝑘
= 2

3𝑛+1−1
2 ,

puis on fait une récurrence.
• Méthode 2 : par récurrence immédiate, la suite (𝑢𝑛) est bien strictement

positive, et donc (𝑣𝑛) existe. En passant au logarithme dans la relation dé-
finissant (𝑢𝑛), on déduit :

∀𝑛 ∈ℕ, 𝑣𝑛+1 = ln2+3𝑣𝑛.

Onendéduit que (𝑣𝑛) est une suite arithmético-géométrique. Laméthode
habituelle donne ensuite 𝑣𝑛 en fonction de 𝑛, puis 𝑢𝑛 = 3

2 ×
3𝑛
2 − 1

2 , soit

𝑢𝑛 = 2
3𝑛+1−1

2 .

Solution (exercice 11) [Énoncé]

1. Soit 𝑛 ∈ℕ, on a : 1−𝑢𝑛+1 = 1+𝑢2𝑛−2𝑢𝑛 = (1−𝑢𝑛)2.
On pose 𝑣𝑛 = 1−𝑢𝑛. On a alors 𝑣𝑛+1 = 𝑣2𝑛 . Essayons de calculer 𝑣𝑛 : on a 𝑣1 =
𝑣20 , 𝑣2 = 𝑣40 , 𝑣3 = 𝑣80 . On conjecture donc : ∀𝑛 ∈ℕ, 𝑣𝑛 = 𝑣2

𝑛

0 .
Montrons par récurrence sur 𝑛 ∈ℕ que pour tout 𝑛 ∈ℕ, 𝑣𝑛 = 𝑣2

𝑛

0 .

Initialisation. pour𝑛 = 0 on a 𝑣2
0

0 = 𝑣0. La propriété est vérifiée au rang zéro.
Hérédité. Soit 𝑛 ∈ ℕ. On suppose la propriété vraie à l’ordre 𝑛, montrons
qu’elle est vraie à l’ordre 𝑛+1. On a vu que : 𝑣𝑛+1 = 𝑣2𝑛 . On utilise alors l’hy-
pothèse de récurrence et on obtient

𝑣𝑛+1 = (𝑣2
𝑛

0 )
2
= 𝑣2

𝑛+1

0 .
Conclusion : il résulte du principe de récurrence que

∀𝑛 ∈ℕ, 𝑣𝑛 = 𝑣2
𝑛

0 .
On obtient donc pour tout 𝑛 ∈ℕ : 𝑢𝑛 = 1−(1−𝑢0)2

𝑛
.

• Si 1−𝑢0 > 1 ⟺ 𝑢0 < 0, alors : lim
𝑛⟶+∞

(1−𝑢0)2
𝑛
= +∞, donc lim

𝑛⟶+∞
𝑢𝑛 =

−∞.
• Si𝑢0 = 0, alors 1−𝑢0 = 1 et ainsi : ∀𝑛 ∈ℕ, 𝑢𝑛 = 0 et donc lim

𝑛⟶+∞
𝑢𝑛 = 0.

• Si −1 < 1−𝑢0 < 1 ⟺ 0<𝑢0 < 2, alors : lim
𝑛⟶+∞

𝑢𝑛 = 1.
• Si 𝑢0 = 2, alors 1−𝑢0 =−1 et (1−𝑢0)2

𝑛
= 1, et ainsi : ∀𝑛 ∈ℕ, 𝑢𝑛 = 0 et

donc lim
𝑛⟶+∞

𝑢𝑛 = 0.
• Si 1−𝑢0 <−1⟺𝑢0 > 2, alors (1−𝑢0)2 > 1, et donc lim

𝑛⟶+∞
(1−𝑢0)2

𝑛
=+∞,

soit lim
𝑛⟶+∞

𝑢𝑛 =−∞.

Solution (exercice 12) [Énoncé]

1. def termes_u(u_0, n):

    if n == 0:

        return u_0

    else:

        u = u_0

        for _ in range(1, n+1):

            u = (3/4)*u**2-2*u+3

        return u

>>> termes_u(2.1, 5)

2.1525846157129767
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>>> termes_u(2.1, 8)

2.2193040775769752

>>> termes_u(2, 5)

2.0

>>> termes_u(2, 8)

2.0

>>> termes_u(4/5, 5)

1.9137294769724056

>>> termes_u(4/5, 8)

1.9285042786265398

2. • La fonction 𝑓 est bien définie sur ℝ comme fonction polynomiale.
• La fonction𝑓 est dérivable surℝ comme fonctionpolynomiale et pour tout

𝑥 ∈ ℝ : 𝑓′(𝑥) = 3
2𝑥−2.

• On obtient ainsi les variations suivantes :

𝑥

𝑓′(𝑥)

𝑓

−∞ 4
3 +∞

− 0 +

+∞+∞

5
3
5
3

+∞+∞

2

2

• Les limites en±∞ s’obtiennent avec le théorèmedumonômedeplus haut
degré.

3. Le discriminant vaut Δ= 0 et l’unique racine est 2. Ainsi :
la fonction 𝑔 est positive sur ℝ et ne s’annule qu’en 2.

4. On suppose dans cette question que la suite (𝑢𝑛) converge vers un réel ℓ ∈
𝒟𝑓 = ℝ et par ailleurs la fonction 𝑓 est continue sur ℝ comme fonction poly-
nomiale donc elle est en particulier continue en ℓ. Donc d’après le théorème
sur les suite et fonction, on obtient que : lim

𝑛⟶+∞
𝑓(𝑢𝑛) = 𝑓(ℓ). De plus on a :

lim
𝑛⟶+∞

𝑢𝑛+1 = ℓ. On peut donc passer à la limite dans l’égalité : 𝑢𝑛+1 = 𝑓(𝑢𝑛)
et on obtient que : ℓ = 𝑓(ℓ). On a donc : ℓ = 𝑓(ℓ) ⟺ 𝑔(ℓ) = 0 ⟺ ℓ= 2.
La seule limite finie éventuelle est donc 2.

5. 5.1) Onpeut commencer parmontrer que l’intervalle ]2,+∞[ est stable par
𝑓.
On a 𝑓 strictement croissante sur [2,+∞[, et 𝑓(2) = 2. Donc pour tout
𝑥 ∈ [2,+∞[,𝑓(𝑥) > 2 et l’intervalle ]2,+∞[ est stable par 𝑓. On montre
par récurrence sur 𝑛 ∈ℕ que : 𝑢𝑛 existe et𝑢𝑛 > 2.

Initialisation. pour𝑛 = 0 : par définition de la suite,𝑢0 existe et𝑢0 > 2.
Hérédité. Soit 𝑛 ∈ ℕ fixé, on suppose que la propriété vraie à l’ordre
𝑛. Par hypothèse de récurrence, on sait que 𝑢𝑛 existe et que 𝑢𝑛 > 2.
Donc 𝑓(𝑢𝑛) existe c’est-à-dire 𝑢𝑛+1 existe. De plus, l’intervalle ]2,+∞[
est stable par 𝑓. Donc 𝑓(𝑢𝑛) > 2 c’est-à-dire 𝑢𝑛+1 > 2. La propriété est
bien héréditaire.
Conclusion : il résulte du principe de récurrence que
la suite (𝑢𝑛) est bien définie et que pour tout 𝑛 ∈ℕ, 𝑢𝑛 > 2.

5.2) Soit 𝑛 ∈ℕ, on a : 𝑢𝑛+1−𝑢𝑛 = 𝑓(𝑢𝑛)−𝑢𝑛 = 𝑔(𝑢𝑛). Ainsi comme le signe
de 𝑔 est positif sur ℝ, on obtient que pour tout 𝑛 ∈ ℕ : 𝑢𝑛+1 −𝑢𝑛 ⩾ 0.
Ainsi la suite (𝑢𝑛) est croissante.

5.3) • La suite (𝑢𝑛) est croissante donc d’après le théorème sur les suites
monotones, elle converge ou elle diverge vers +∞.

• On suppose par l’absurde que la suite (𝑢𝑛) converge vers un réel ℓ.
On a alors puisque la suite (𝑢𝑛) est croissante, que pour tout 𝑛 ∈ℕ :
𝑢𝑛 ⩾𝑢0.
D’après le théorème de passage à la limite, on obtient donc que :
ℓ ⩾ 𝑢0. Or par hypothèse, on sait que 𝑢0 > 2. Ainsi on obtient que :
ℓ > 2. Absurde car la seule limite éventuelle de la suite (𝑢𝑛) est 2.
Ainsi la suite (𝑢𝑛) diverge vers +∞.

6. 6.1) On peut commencer par montrer que l’intervalle ] 23 ,2[ est stable par
𝑓. Attention, ici 𝑓 n’est pas monotone sur ] 23 ,2[, il faut donc traiter les
deux intervalles ] 23 ,

4
3] et ]

4
3 ,2] séparemment.

Sur ] 23 ,
4
3], 𝑓 est strictement décroissante et 𝑓( 23 ) = 2, 𝑓( 43 ) =

5
3 . Donc

pour tout 𝑥 ∈ ] 23 ,
4
3], 𝑓(𝑥) ∈ ]

5
3 ,2], donc 𝑓(𝑥) ∈ ] 23 ,2[.

Sur ] 43 ,2], 𝑓 est strictement croissante et 𝑓(2) = 2, 𝑓( 43 ) =
5
3 . Donc pour

tout 𝑥 ∈ ] 43 ,2], 𝑓(𝑥) ∈ ]
5
3 ,2], donc 𝑓(𝑥) ∈ ] 23 ,2[.

En endéduit quepour tout𝑥 ∈ ] 23 ,2[, on a bien𝑓(𝑥) ∈ ] 23 ,2[ : l’intervalle
] 23 ,2[ est stable par 𝑓.
On montre par récurrence sur 𝑛 ∈ ℕ la propriété « 𝑢𝑛 existe et 𝑢𝑛 ∈
] 23 ,2[ . »
Initialisation. pour 𝑛 = 0 : par définition de la suite, 𝑢0 existe et 𝑢0 ∈
] 23 ,2[. Donc𝒫(0) est vraie.
Hérédité. soit 𝑛 ∈ ℕ fixé, on suppose que la propriété vraie à l’ordre
𝑛, montrons là au rang 𝑛+1. Par hypothèse de récurrence, on sait que
𝑢𝑛 existe et que 𝑢𝑛 ∈ ] 23 ,2[. Donc 𝑓(𝑢𝑛) existe c’est-à-dire 𝑢𝑛+1 existe.
De plus, 𝑢𝑛 ∈ ] 23 ,2[. Or l’intervalle ] 23 ,2[ est stable par 𝑓. Donc 𝑓(𝑢𝑛) ∈
] 23 ,2[ c’est-à-dire 𝑢𝑛+1 ∈ ] 23 ,2[.
Conclusion : il résulte du principe de récurrence que
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la suite (𝑢𝑛) est bien définie et que pour tout 𝑛 ∈ℕ, 𝑢𝑛 ∈ ] 23 ,2[ .
6.2) Soit 𝑛 ∈ℕ, on a : 𝑢𝑛+1−𝑢𝑛 = 𝑓(𝑢𝑛)−𝑢𝑛 = 𝑔(𝑢𝑛). Ainsi comme le signe

de 𝑔 est positif sur ℝ, on obtient que pour tout 𝑛 ∈ ℕ : 𝑢𝑛+1 −𝑢𝑛 ⩾ 0.
Ainsi la suite (𝑢𝑛) est croissante.

6.3) • La suite (𝑢𝑛) est croissante et majorée par 2 donc d’après le théo-
rème sur les suites monotones, elle converge.

• Comme la seule limite éventuelle est 2,
la suite (𝑢𝑛) converge vers 2.

Solution (exercice 13) [Énoncé]

1.
2. Soit 𝑛 ∈ ℕ, on a : 𝑎𝑛+1 + 𝑏𝑛+1 = −2𝑎𝑛 + 𝑏𝑛 + 3𝑎𝑛 = 𝑎𝑛 + 𝑏𝑛. Ainsi

la suite (𝑎𝑛+𝑏𝑛)𝑛∈ℕ est constante et donc pour tout 𝑛 ∈ ℕ : 𝑎𝑛 +𝑏𝑛 = 𝑎0 +
𝑏0 = 1. Donc ∀𝑛 ∈ℕ, 𝑎𝑛+𝑏𝑛 = 1.

3. Soit𝑛 ∈ℕ. On a, en utilisant le fait que pour tout 𝑛 ∈ℕ, 𝑎𝑛+𝑏𝑛 = 1, que pour
tout 𝑛 ∈ℕ : 𝑏𝑛 = 1−𝑎𝑛. Ainsi on obtient que pour tout 𝑛 ∈ℕ :

𝑎𝑛+1 =−2𝑎𝑛+𝑏𝑛 ⟺ 𝑎𝑛+1 = 1−3𝑎𝑛.
On reconnaît une suite arithmético-géométrique. En appliquant la méthode
du cours, on obtient :

∀𝑛 ∈ℕ, 𝑎𝑛 =
1
4
(1−(−3)𝑛) .

4. Comme pour tout 𝑛 ∈ ℕ, on a : 𝑏𝑛+1 = 3𝑎𝑛, on a : 𝑏𝑛 = 3𝑎𝑛−1.
Puis en utilisant le résultat de la question précédente, on obtient que
∀𝑛 ∈ℕ, 𝑏𝑛 = 3

4 (1−(−3)
𝑛−1).

Solution (exercice 14) [Énoncé]

1. def termes_uv(n):

    if n == 0:

        return (1, 12)

    else:

        u, v = 1, 12

        for _ in range(1, n+1):

            u, v = (u+2*v)/3, (u+3*v)/4

        return u, v

>>> termes_uv(10)

(8.999999999870797, 9.000000000048452)

>>> termes_uv(100)

(9.000000000000002, 9.000000000000002)

Conjecture : les suites semblent converger vers 9.

2. 2.1) Soit 𝑛 ∈ℕ⋆, on a :

𝑤𝑛+1 =
𝑢𝑛+3𝑣𝑛

4
−
𝑢𝑛+2𝑣𝑛

3
=
𝑣𝑛−𝑢𝑛
12

=
1
12
𝑤𝑛.

Ainsi la suite (𝑤𝑛)𝑛∈ℕ⋆ est une suite géométrique de raison 1
12 et de pre-

mier terme𝑤1 = 𝑣1 −𝑢1 = 11. On en déduit donc l’expression explicite
de𝑤𝑛 :

∀𝑛 ⩾ 1, 𝑤𝑛 =𝑤1 (
1
12
)
𝑛−1

= 11(
1
12
)
𝑛−1

.

2.2) • Étude de la monotonie de la suite (𝑢𝑛)𝑛∈ℕ⋆ : soit 𝑛 ⩾ 1, on a :

𝑢𝑛+1−𝑢𝑛 =
𝑢𝑛+2𝑣𝑛

3
−𝑢𝑛 =

2(𝑣𝑛−𝑢𝑛)
3

=
2
3
𝑤𝑛.

Or on connaît l’expression de𝑤𝑛, on obtient donc :

∀𝑛 ∈ℕ, 𝑢𝑛+1−𝑢𝑛 =
2
3
×11(

1
12
)
𝑛−1

⩾ 0.

Ainsi, la suite (𝑢𝑛)𝑛∈ℕ⋆ est croissante.
• Étude de la monotonie de la suite (𝑣𝑛)𝑛∈ℕ⋆ :

Soit 𝑛 ⩾ 1, on a :

𝑣𝑛+1−𝑣𝑛 =
𝑢𝑛+3𝑣𝑛

4
−𝑣𝑛 =

𝑢𝑛−𝑣𝑛
4

=
−1
4
𝑤𝑛.

Or on connaît l’expression de𝑤𝑛, on obtient donc :

∀𝑛 ∈ℕ, 𝑣𝑛+1−𝑣𝑛 =
−11
4

(
1
12
)
𝑛−1

⩽ 0.

Ainsi, la suite (𝑣𝑛)𝑛∈ℕ⋆ est décroissante.
• Montrons que lim

𝑛⟶+∞
𝑣𝑛−𝑢𝑛 = 0 :

On a montré à la question précédente que pour tout 𝑛 ∈ ℕ⋆ : 𝑣𝑛 −
𝑢𝑛 = 11( 112 )

𝑛−1. Comme : −1 < 1
12 < 1, on a : lim

𝑛⟶+∞
( 112 )

𝑛−1 = 0. Puis
par propriété sur le produit de limites, on obtient que : lim

𝑛⟶+∞
𝑣𝑛 −

𝑢𝑛 = 0.
Ainsi, on a donc montré que les deux suites (𝑢𝑛)𝑛∈ℕ⋆ et (𝑣𝑛)𝑛∈ℕ⋆

sont adjacentes. D’après le théorème sur les suites adjacentes,
elles convergent donc vers la même limite.

2.3) • Expression de 𝑡𝑛 pour tout 𝑛 ⩾ 1 :
Soit 𝑛 ⩾ 1, on a : 𝑡𝑛+1 = 3𝑢𝑛+2𝑣𝑛3 + 8𝑢𝑛+3𝑣𝑛4 = 3𝑢𝑛 + 8𝑣𝑛 = 𝑡𝑛. Ainsi
la suite (𝑡𝑛)𝑛∈ℕ⋆ est constante égale à 𝑡1 = 3𝑢1+8𝑣1 = 99.

• Calcul de la valeur de la limite ℓ :
Comme la suite (𝑡𝑛)𝑛∈ℕ⋆ est constante, on a : ∀𝑛 ∈ ℕ⋆, 3𝑢𝑛 +8𝑣𝑛 =
99. De plus on a démontré à la question 2 que les deux suites
(𝑢𝑛)𝑛∈ℕ⋆ et (𝑣𝑛)𝑛∈ℕ⋆ convergent vers la même limite ℓ et ainsi par
propriété sur les produits et somme de limites, on obtient que :
lim

𝑛⟶+∞
(3𝑢𝑛 + 8𝑣𝑛) = 11ℓ. Par passage à la limite dans l’égalité :
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3𝑢𝑛+8𝑣𝑛 = 99, on obtient donc que
11ℓ = 99 ⟺ ℓ= 9.

3. 3.1) À l’aide de la formule du cours, on a P−1 = (
−3
11

3
11

3
11

8
11
) et P est inversible

car de déterminant 11 ≠ 0.
3.2) On a pour tout 𝑛 ∈ℕ :

{ 𝑢𝑛+1 = 1
3𝑢𝑛+

2
3𝑣𝑛

𝑣𝑛+1 = 1
4𝑢𝑛+

3
4𝑣𝑛

⟺ X𝑛+1 =AX𝑛, avec : A= (
1
3

2
3

1
4

3
4
).

On a : X𝑛 =A𝑛−1X1 pour tout 𝑛 ∈ℕ⋆.

3.3) Après calculs, on trouveD= (
1
12 0
0 1). On a de plus : A𝑛 = PD𝑛P−1 .

3.4) On a X1 = (
1
12). Donc pour tout 𝑛 ∈ℕ⋆ :

𝑢𝑛 = (X𝑛)1,1

= (P((
1
12 )

𝑛−1 0
0 1

)P−1X1)
1,1

= ((
−8
3 1
1 1)(

( 112 )
𝑛−1 0
0 1

)(
−3
11

3
11

3
11

8
11
)(
1
12))

1,1

=
3
11

+
1
11
25−2𝑛31−𝑛+12×(

8
11

−
1
11
25−2𝑛31−𝑛)

−−−−−→
𝑛⟶∞

3+12×8
11

=
99
11

= 9 .

Solution (exercice 15) [Énoncé]

1. La fonction tan𝑛 est bien continue sur [0, π4 ] donc I𝑛 est bien définie. De plus,

I0 = ∫
π
4

0
1d𝑡 =

π
4
,

I1 = ∫
π
4

0
tan(𝑡)d𝑡 = [− ln |cos𝑡|]

π
4
0

= 0− ln |
√2
2
| =

1
2
ln2 .

2. 2.1) Soit 𝑛 ∈ℕ, alors tan⩾ 0 sur l’intervalle [0, π4 ], donc :

∀𝑡 ∈ [0,
π
4
], tan𝑛(𝑡) ⩾ 0 ⟹ I𝑛 ⩾ 0.

2.2) La suite (I𝑛) est donc positive, analysons à présent sa monotonie. Soit

𝑛 ∈ℕ :

I𝑛+1−I𝑛 = ∫
π
4

0
tan𝑛+1(𝑡)d𝑡 − ∫

π
4

0
tan𝑛(𝑡)d𝑡

= ∫
π
4

0
tan𝑛(𝑡)× (tan(𝑡)−1)d𝑡

⩽ 0.
tan−1 ⩽ 0 sur [0, π4 ]

La suite (I𝑛) est donc décroissante, et minorée vers 0 donc converge .

Solution (exercice 16) [Énoncé]

1. On a 𝑢0 = ∫
1

0

1
1+𝑡2

d𝑡 = arctan(1) − arctan(0) =
π
4

. De-même, par calcul

direct, 𝑢1 = ∫
1

0

𝑡
1+𝑡2

d𝑡 =
1
2
[ln |1+𝑡2|]10 =

ln2
2

.

2. Soit 𝑛 ∈ℕ. Alors

∀𝑡 ∈ [0,1], 0 ⩽
𝑡𝑛

1+𝑡2
⩽

𝑡𝑛

1+0
.

Donc en intégrant entre 0 et 1, on déduit que :

∀𝑛 ∈ℕ,   0 ⩽ 𝑢𝑛 ⩽ ∫
1

0

𝑡𝑛

1+0
d𝑡 = [

𝑡𝑛+1

𝑛+1
]
1

0
=

1
𝑛+1

.

Donc :

∀𝑛 ∈ℕ, 0 ⩽ 𝑢𝑛 ⩽
1

𝑛+1
.

3. Par théorème des gendarmes, comme 1
𝑛+1 −−−−−→𝑛⟶∞

0, on obtient 𝑢𝑛 −−−−−→𝑛⟶∞
0 .

Solution (exercice 17) [Énoncé]

1. On a :

I0 = ∫
e

1
𝑥2 d𝑥 = [

𝑥3

3
]
e

1

=
e3

3
,

I1 = ∫
e

1
𝑥2⏟

∶=𝑣′(𝑥)
ln(𝑥)⏟⏟⏟⏟⏟
∶=𝑢(𝑥)

d𝑥

=− ∫
e

1

𝑥3

3
1
𝑥
d𝑥+[

𝑥3

3
ln𝑥]

e

1

=−
1
9
[𝑥2]e1+

e3

3

intégration par parties, car ln,𝑥⟼ 𝑥3
3 sont 𝒞1

2. Sur [1,e], on a ln(𝑥) ∈ [0,1] pour tout 𝑥 ∈ [1,e], donc :
∀𝑥 ∈ [1,e], 0 ⩽ ln𝑛+1(𝑥) ⩽ ln𝑛(𝑥) ⩽ 1.
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Donc en multipliant par 𝑥2 qui est bien positif, on déduit :
∀𝑥 ∈ [1,e], 0 ⩽ 𝑥2 ln𝑛+1(𝑥) ⩽ 𝑥2 ln𝑛(𝑥) ⩽ 1.

Puis en intégrant : 0 ⩽ I𝑛+1 ⩽ I𝑛. Ainsi la suite (I𝑛) décroît et est minorée
par zéro donc converge .

3. Notons 𝑓 ∶ 𝑥 ∈ [1,e]⟼ ln(𝑥)− 𝑥
e . Alors 𝑓 est dérivable sur son domaine de

définition, et 𝑓′(𝑥) = 1
𝑥 −

1
e ⩾ 0 puisque 𝑥 ⩽ e sur le domaine considéré. Ainsi,

𝑓 est décroissante, donc pour tout 𝑥 ∈ [1,e], 𝑓(𝑥) ⩽ 𝑓(e) = 0. Ainsi, 𝑓 est
négative, on a donc bien établi :

∀𝑥 ∈ [1,e], 0 ⩽ ln(𝑥) ⩽
𝑥
e
.

On intègre alors la relation précédente, après l’avoir élevée à la puissance 𝑛
(encadrement positif), puis multipliée par 𝑥2 (qui est positif), on obtient :

0 ⩽ I𝑛 ⩽ ∫
e

1
(
𝑥
e
)
𝑛
𝑥2 d𝑥.

Mais,

∫
e

1
(
𝑥
e
)
𝑛
𝑥2 d𝑥 =

1
e𝑛

∫
e

1
𝑥𝑛+2 d𝑥

=
1
e𝑛

(
e𝑛+3

𝑛+3
−

1
𝑛+3

)

=
e3

𝑛+3
−

e−𝑛

𝑛+3
−−−−−→
𝑛⟶∞

0.

On a donc par théorème d’encadrement, que lim
𝑛⟶∞

I𝑛 = 0.
4. Faisons une intégration par parties, comme nous l’avons faite pour I1.

I𝑛+1 = ∫
e

1
𝑥2⏟

∶=𝑣′(𝑥)
ln𝑛+1(𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟
∶=𝑢(𝑥)

d𝑥

=− ∫
e

1

𝑥3

3
1
𝑥
(𝑛+1) ln𝑛(𝑥)d𝑥+[

𝑥3

3
ln𝑛+1(𝑥)]

e

1

=−
𝑛+1
3

I𝑛+
e3

3
.

intégration par parties, car
ln𝑛+1,𝑥⟼ 𝑥3

3 sont 𝒞1

Donc :

∀𝑛 ∈ℕ, I𝑛+1 =
e3

3
−
𝑛+1
3

I𝑛 .

Solution (exercice 18) [Énoncé]

1. Soit 𝑛 ∈ ℕ⋆, on pose : 𝑓𝑛 ∶ 𝑥 ∈ ℝ+ ⟼𝑓𝑛(𝑥) = 𝑥𝑛 +𝑥−1. Cette fonction est
définie, continue et dérivable sur ℝ+ comme fonction polynôme. De plus, on
a :

∀𝑥 ∈ ℝ+, 𝑓′𝑛(𝑥) = 𝑛𝑥𝑛−1+1.

Ainsi, sur ℝ+, la fonction 𝑓′𝑛 est toujours positive comme somme de deux
nombres positifs et la fonction 𝑓𝑛 est croissante sur ℝ+. On applique alors
le théorème de la bijection sur ℝ+. En effet, on a
• 𝑓𝑛 est continue sur ℝ+

• 𝑓𝑛 est strictement croissante sur ℝ+

• 𝑓𝑛(0) = −1 et lim
𝑥⟶+∞

𝑓𝑛(𝑥) = +∞
Ainsi, d’après le théorème de la bijection, il existe une unique solution surℝ+

à l’équation 𝑓𝑛(𝑥) = 0.
2. On remarque que, pour tout 𝑛 ∈ ℕ⋆, 𝑓𝑛(1) = 1 > 0. En réappliquant alors le

théorème de la bijection sur [0,1], on obtient que : 𝑥𝑛 ∈]0,1[ et cela pour tout
𝑛 ∈ℕ⋆. Ainsi, la suite (𝑥𝑛)𝑛∈ℕ⋆ est majorée par 1.

3. Pour étudier la monotonie de la suite, on doit trouver le signe de 𝑓𝑛(𝑥𝑛+1).
Soit donc 𝑛 ⩾ 1 :
𝑓𝑛(𝑥𝑛+1) = 𝑥𝑛𝑛+1+𝑥𝑛+1−1

⩾ 𝑥𝑛+1𝑛+1 +𝑥𝑛+1−1
= 𝑓𝑛+1(𝑥𝑛+1) = 0 = 𝑓𝑛(𝑥𝑛).

car 𝑥𝑛 ∈ [0,1]

Or, la fonction 𝑓𝑛 est strictement croissante et 𝑓𝑛(𝑥𝑛+1) ⩾ 𝑓𝑛(𝑥𝑛) donc 𝑥𝑛+1 ⩾
𝑥𝑛 et ce pour tout 𝑛 ∈ℕ. Donc la suite (𝑥𝑛)𝑛∈ℕ⋆ est croissante .

4. La suite (𝑥𝑛)𝑛∈ℕ⋆ est croissante et majorée par 1, ainsi elle converge vers une
limite finie ℓ ∈ ℝ d’après le théorème sur les suites monotones. De plus, un
passage à la limite dans l’inégalité : 𝑥𝑛 ∈]0,1[ donne que ℓ vérifie, comme la
suite converge vers ℓ : 0 ⩽ ℓ ⩽ 1. On suppose par l’absurde que ℓ < 1. Comme
la suite (𝑥𝑛)𝑛∈ℕ⋆ est croissante etmajorée, le théorèmedes suitesmonotones
nous dit aussi que la suite vérifie :

∀𝑛 ∈ℕ⋆, 𝑥𝑛 ⩽ ℓ.
Ainsi, on obtient, pour tout 𝑛 ∈ ℕ⋆ que : 0 ⩽ 𝑥𝑛𝑛 ⩽ ℓ𝑛. Or, par hypothèse, on
a : ℓ < 1, ainsi, on sait que : lim

𝑛⟶+∞
ℓ𝑛 = 0. Ainsi, d’après le théorème des gen-

darmes, on sait que la suite (𝑥𝑛𝑛)𝑛∈ℕ⋆ converge vers 0. De plus, par définition
de la suite (𝑥𝑛)𝑛∈ℕ⋆ , on sait que

∀𝑛 ∈ℕ⋆, 𝑥𝑛𝑛 +𝑥𝑛−1 = 0.
Les deux suites (𝑥𝑛)𝑛∈ℕ⋆ et (𝑥𝑛𝑛)𝑛∈ℕ⋆ sont convergentes, on peut donc passer
à la limite en faisant tendre 𝑛 vers l’infini dans l’égalité ci-dessus. On obtient
en utilisant l’unicité de la limite : 0 + ℓ − 1 = 0. Ainsi, on obtient ℓ = 1.
Contradiction car on a supposé que ℓ < 1.

5. Finalement, on obtient bien que la suite (𝑥𝑛)𝑛∈ℕ⋆ converge vers 1. En effet,
on sait que ℓ ∈ [0,1] et on a vu que ℓ < 1 est impossible. Donc lim

𝑛⟶+∞
𝑥𝑛 = 1 .

46



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

47
BC
PS
T1

Creative-Commons
20
25
-2
02
6

Solution (exercice 19) [Énoncé]

1. Soit 𝑛 ∈ ℕ⋆, on pose : 𝑓𝑛 ∶ 𝑥 ∈ ℝ⟼𝑓𝑛(𝑥) = 𝑛𝑥3 +𝑛2𝑥−2. Cette fonction est
définie, continue et dérivable sur ℝ comme fonction polynôme. De plus, on
a

∀𝑥 ∈ ℝ, 𝑓′𝑛(𝑥) = 3𝑛𝑥2+𝑛2.
Ainsi, sur ℝ, la fonction 𝑓′𝑛 est toujours positive comme somme de deux
nombres positifs et la fonction 𝑓𝑛 est croissante sur ℝ. On applique alors le
théorème de la bijection sur ℝ+. En effet, on a :
• 𝑓𝑛 est continue sur ℝ,
• 𝑓𝑛 est strictement croissante sur ℝ,
• lim

𝑥⟶−∞
𝑓𝑛(𝑥) = −∞ et lim

𝑥⟶+∞
𝑓𝑛(𝑥) = +∞.

Ainsi, d’après le théorème de la bijection, il existe une unique solution sur ℝ
à l’équation 𝑓𝑛(𝑥) = 0.

2. On remarque que, pour tout 𝑛 ∈ ℕ, on a : 𝑓𝑛(0) = −2 < 0. Ainsi, en réappli-
quant le théorème de la bijection sur ℝ+, on obtient que : 𝑎𝑛 > 0.

3. Pour étudier lamonotonie de la suite, on doit trouver par exemple le signe de
𝑓𝑛+1(𝑎𝑛+1).
𝑓𝑛+1(𝑎𝑛) = (𝑛+1)𝑎3𝑛+(𝑛+1)2𝑎𝑛−2

= 𝑓𝑛(𝑎𝑛)+ (𝑎3𝑛+(2𝑛+1)𝑎𝑛)
= 0+𝑎3𝑛+(2𝑛+1)𝑎𝑛
⩾ 0 = 𝑓𝑛+1(𝑎𝑛+1).

Or, 𝑓𝑛+1 est strictement croissante, donc 𝑎𝑛 ⩾ 𝑎𝑛+1 et la suite (𝑎𝑛)𝑛∈ℕ⋆ est
donc décroissante .

4. La suite (𝑎𝑛)𝑛∈ℕ⋆ est décroissante et minorée par 0, elle converge donc vers
une limite finie ℓ ∈ ℝ d’après le théorème sur les suites monotones. Et un
passage à la limite donne : ℓ ⩾ 0.
Supposons par l’absurde que ℓ > 0. Par définition de la suite (𝑎𝑛)𝑛∈ℕ⋆ , on sait
que, pour tout 𝑛 ∈ℕ⋆, on a :

𝑛𝑎3𝑛+𝑛2𝑎𝑛−2 = 0 ⟺ 𝑛𝑎3𝑛+𝑛2𝑎𝑛 = 2.
Si ℓ > 0, alors le terme de droite de l’égalité ci-dessus tend vers +∞ quand 𝑛
tend vers l’infini. Contradiction car il est constant égal à 2. Ainsi, on vient de
montrer que : ℓ = 0. Donc la suite (𝑎𝑛)𝑛∈ℕ⋆ converge vers 0 .
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Correction Devoir-maisonLaptop-House (Chapitre (AN) 4)

Solution (exercice 20) [Énoncé]

1. Soit𝑛 ∈ℕ∗. La fonction 𝑓𝑛 ∶ 𝑥 ↦ 𝑥+𝑒𝑛𝑥−2 est définie, continue et dérivable
sur l’intervalle ℝ+ et on a, pour tout 𝑥 ∈ ℝ+ :

𝑓′𝑛(𝑥) = 1+𝑛e𝑛𝑥

> 1
> 0.

Ainsi 𝑓 est strictement croissante sur ℝ+ .
Enfin 𝑓𝑛(0) = −1 et lim

𝑥→+∞
𝑓𝑛(𝑥) = +∞ .

D’après le théorème de la bijection, 𝑓𝑛 réalise une bijection de ℝ+ sur l’inter-
valle [−1,+∞[. Enfin 0 ∈ [−1,+∞[ donc :

L’équation 𝑓𝑛(𝑥) = 0 admet une unique solution, notée 𝑥𝑛, dans ℝ+

2. 2.1) Soit 𝑛 ∈ℕ∗ et soit 𝑥 ∈ ℝ+, on a :
𝑓𝑛+1(𝑥)−𝑓𝑛(𝑥) = 𝑥+e(𝑛+1)𝑥−2−𝑥−e𝑛𝑥+2

= e(𝑛+1)𝑥−e𝑛𝑥

= e𝑛𝑥(e𝑥−1)
Puisque 𝑥 ≥ 0, on a 𝑒𝑥 ≥ 𝑒0 (par croissance de 𝑥 ↦ e𝑥 sur ℝ+) donc
e𝑥 ≥ 1 et donc 𝑓𝑛+1(𝑥)−𝑓𝑛(𝑥) ≥ 0.
Ainsi :

𝑓𝑛+1(𝑥𝑛)−𝑓𝑛(𝑥𝑛) ≥ 0 ⟺ 𝑓𝑛+1(𝑥𝑛) ≥ 𝑓𝑛(𝑥𝑛).
Or,𝑓𝑛(𝑥𝑛) = 0, donc :𝑓𝑛+1(𝑥𝑛) ≥ 0,mais onaaussi𝑓𝑛+1(𝑥𝑛+1) = 0, donc :
𝑓𝑛+1(𝑥𝑛) ≥ 𝑓𝑛+1(𝑥𝑛+1) ce qui est équivalent, 𝑓𝑛+1 étant strictement
croissante sur ℝ+, à 𝑥𝑛 ≥ 𝑥𝑛+1. La suite (𝑥𝑛) est donc décroissante.

𝑥

𝑓𝑛+1(𝑥)

0 𝑥𝑛+1 𝑥𝑛 +∞

−1−1

+∞+∞

0
𝑓𝑛+1(𝑥𝑛)

2.2) La suite (𝑥𝑛) est décroissante et minorée par 0, elle est donc conver-
gente d’après le théorème de la limitemonotone. Si on note ℓ sa limite,
on a pour tout 𝑛 ∈ℕ : 0 ≤ ℓ ≤ 𝑥𝑛 ≤ 𝑥0.

2.3) Par définition de la suite (𝑥𝑛), on a 𝑒𝑛𝑥𝑛 +𝑥𝑛 = 2 pour tout 𝑛 ∈ℕ⋆.

Soit : lim
𝑛→+∞

(𝑒𝑛𝑥𝑛 +𝑥𝑛) = 2.

Si ℓ > 0, alors lim
𝑛→+∞

𝑛𝑥𝑛 =+∞ (par produit de limites) soit, par somme
et composition de limites : lim

𝑛→+∞
𝑒𝑛𝑥𝑛 +𝑥𝑛 = +∞, ce qui est ab-

surde.
Puisque ℓ ≥ 0 (cf question précédente), on a nécessairement ℓ = 0 .

3. Soit 𝑛 ∈ℕ∗, on a par définition de la suite (𝑥𝑛) :
e𝑛𝑥𝑛 +𝑥𝑛 = 2 ⟺ e𝑛𝑥𝑛 = 2−𝑥𝑛

⟺ 𝑛𝑥𝑛 = ln(2−𝑥𝑛) car 2−𝑥𝑛 = e𝑛𝑥𝑛 > 0

⟺ 𝑥𝑛 =
1
𝑛
ln(2−𝑥𝑛) .

Puisque lim
𝑛→+∞

𝑥𝑛 = 0, on a par composition de limites : lim
𝑛→+∞

ln(2−𝑥𝑛) = ln2
avec ln2 ≠ 0.
On en déduit que : ln(2−𝑥𝑛) ∼𝑛→+∞

ln2.

On en déduit par produit que : 𝑥𝑛 ∼𝑛→+∞

ln(2)
𝑛

.

4. Soit 𝑛 ∈ℕ∗, on a :

ε𝑛 = 𝑥𝑛−
ln(2)
𝑛

=
1
𝑛
ln(2−𝑥𝑛)−

ln(2)
𝑛

=
ln(2−𝑥𝑛)− ln(2)

𝑛

=
ln (1− 𝑥𝑛

2 )
𝑛

Puisque lim
𝑛→+∞

(−𝑥𝑛
2 ) = 0 on a :

ln(1−
𝑥𝑛
2
) ∼
𝑛→+∞

−
𝑥𝑛
2

∼
𝑛→+∞

− ln(2)
2𝑛

,

soit, par produit : ε𝑛 ∼
− ln(2)
2𝑛2

On a bien ε𝑛 ∼𝑛→+∞

α
𝑛β avec α =

− ln(2)
2

et β = 2.
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