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Suites : geneéraliteés et
comportement asymptotique

Chapitre (AN) 4

1 Généralités ..................... Résumé & Plan

2 Limite d’une suite............... Ce chapitre vise a renforcer I'étude

3 Suites remarquables............ des suites amorcée au lycée. Nous

4 >_@ Informatique.............. verrons notamment les définitions
. de convergence/divergence d'une

5 EXerciCes ...coovvuvieenenncnncnns

suite, ainsi que les théorémes géné-
raux permettant d’étudier la nature
d’une suite. On poursuit par I'étude
de certaines suites particulieres : les

Si l'on consideére les suites
récurrentes de moyenne
arihmétique et géométrique,

L Xy +Yn suites implicites et les suites récur-
1= 5 Ve S VX e rentes de la forme u,,,, = f(u,). On
alors : introduit enfin la notion de suites
Xy —— 4, v, — /, o: équivalentes, qui permettra notam-

ment de lever certaines formes in-
déterminées dans des calculs de li-

o _ 2 -3
‘= 3(x0+yo)f2 [1—(M) sinz(e)] ae.
4 0 +y q
mites.

X0 tYo

— Le saviez-vous?

® Les énoncés importants (hors définitions) sont indiqués par un V9.

® Les énoncés et faits a la limite du programme, mais trées classiques parfois, seront
indiqués par le logo [H.P] . Si vous souhaitez les utiliser a un concours, il faut donc
en connaitre la preuve ou la méthode mise en jeu. Ils doivent étre considérés comme
un exercice important.

® Les preuves déja tapées sont généralement des démonstrations non exigibles en
BCPST1, qui peuvent étre lues uniquement par les curieuses et curieux. Nous n'en
parlerons pas en cours.

n GENERALITES

n Définitions

— Définition 1| Suite réelle
Une suite réelle est une application de [r,, +0o[, pour un certain n; € N, dans R:

[[n0,+00|1 I [R
n — U,

u

® Lasuite u: [ngy, +oo[— R est notée (1) 5 p, -
® lavaleur u, estappel€ le premier terme de la suite.
® Pour tout entier n = ny, u,, est le terme de rang n de la suite.

La plupart du temps, nous aurons 7, = 0 ou éventuellement 1.

Abus de ...

Parfois on notera seulement (,,) aulieude (u,,), ,, - Cela signifiera donc impli-
citement que 'on considere le plus petit entier n, telle que 'expression u,, soit
définie pour tout n = n,.

Notation

Notation

® Lensemble des suites définies a partir de 7, est Rl +°l notation déja ren-
contrée pour les applications.
® Dans le cas 1, = 0, on notera R I'ensemble des suites définies sur N.

o Attention

De-méme qu'il ne faut pas confondre une fonction f et I'image f(x) de x par f,
on prendra garde de bien distinguer la suite (u,) de son terme général d’ordre
n noté lui u,, sans parenthése.
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Puisqu’une suite est une application (et méme une application a valeurs dans R),
toutes les notions définies dans le Chapitre (ALG) 6 existent pour les suites. Pour y
voir plus clair, on les reformule explicitement dans ce chapitre.

Définition 2| Graphe
Soient n, € N et (u,,)

pointsde (u,),,
€, =1(n,u,) | n=n}.

n=n, UNE suite, on appelle graphe de (u,,)
, le sous ensemble noté €, de R? défini par :

n=n, OU nUage de

GRAPHE
On peut représenter une suite Un o
de deux maniéres différentes : Uy |-+~ *
uo < !
Uz p-mmmmm s
1 Vo
— >
of 11203 4 50 7"
DROITE REELLE u |-+ !
> us ————— Py )
u2 u5 Ltl 0 1 Lt3 uo U4 uz -—-L_$

@ Cadre

Dansla suite, afin de simplifier la présentation dans les définitions et les pro-
positions, nous considérons (sauf exceptions), si cela n’est pas précisé, que
les suites sont définies sur N. Les définitions s’étendent en général sans pro-
bleme pour des suites définies seulement a partir d’'un certain rang n, € N*.

On rappelle également de maniere informelle qu'une suite peut étre définie selon
des modes différents :

® defacon explicite, i.e. on connait le terme général de la suite en fonction de n, par
exemple u, = 2" — n® pour tout entier naturel 7 (le calcul de u, pour tout entier
naturel n est «facile », il suffit de remplacer n par la valeur souhaitée),

® par récurrence, i.e. le terme u,,, est défini en fonction des termes précédents,
par exemple u,,, = cos(u,) pour tout entier naturel n (I'étude de la suite est
alors plus délicate). Nous avons déja étudié certaines de ces suites dans le Cha-
pitre (AN) 3.

Exemple 1
® Soit (1), la suite définie sur N par u,, = - Alors :
1 1 1
Upy=——"—=1, UYy=——"—=—=, Uy,=—,...0IC
2x0+1 2x1+1 3 5
® Soit (1), 1a suite définie par :
1
VneN, u,=——, u,=1.
" 2u,+1 0
Calculer u,, u,, us.
4

— Définition 3| Opérations
Pour tout (u,,) € RV, (v,) € RN et A € R, on définit alors :
® [Somme] lasuiteu+vpar: VneN, (u+v),=u,+ru,.

® [Multiplication scalaire] Lasuite Aupar: VneN, (Au),=Au,.
® [Produit] Lasuiteuxvpar:VneN, (uxv),=u,xuv,
® [Quotient] La suite 7, sila suite v ne s'annule pas (c'est-a-dire v, # 0 pour

toutneN),par: VneN, (%) ==,

v vy

m Suites bornées

— Définition 4 | Borne
® Soient m,M € R. On dit qu'une suite (u,,) est:

o majoréeparMsi: VneN, u,<M,
o minoréeparmsi: VneN, u,=m.
® On dit qu’'une suite (u,,) est:
o majoréesi: IMeR,VneN, u,<M,
o minoréesi: dmeR,VnelN, u,=m.
® Elle est dite bornée si elle est majorée et minorée.

Attention
Les minorants m et majorants M sont des quantités indépendantes de 7.
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Proposition 1| Borne et valeur absolue
Soit (u,,) une suite. Alors :

(u,) estbornée < IMeR", VneN, |u,|<M.

<~ IMeR", VneN, -M<u,<M.
Dans la pratique, on utilise plutot cette proposition pour montrer qu'une suite est 4. La suite (e") est minorée par 0 mais non majorée. En effet, supposons par
bornée. La rédaction est souvent plus simple en exploitant les propriétés de la valeur I'absurde qu’elle le soit.
absolue. 4

P

Preuve  On se contente de la premiere équivalence, la seconde étant une propriété clas-
sique de la valeur absolue (voir Chapitre (ALG) 2). Notons E = {u,, | n € N} 'ensemble des
valeurs. Alors on constate que :

(u,) estbornée < E estborné.

Or, d’apres une propriété du Chapitre (ALG) 2, un sous-ensemble de R est borné si, et seule-
ment si, les valeurs absolues sont majorées, c’est-a-dire :

IMeR*, VxeE, |x|<M.
Puisque E = {u,, | n € N}, c’'est exactement :
IMeR*, VneN, |u,|<M.

Exemple 2

Corollaire 1| Somme et produit de suites bornées
Soient (u,,) et (v,) deux suites bornées. Alors, les suites (u, +v,,) et (u,, x v,) sont

bornées.

1. Lasuite (u,,) définie pour tout n € N* par u,, = % est minorée par 0 et majorée
par 1 (en effet, si n =1 alors 0 < % < 1). Elle est donc bornée.

=n" 4 .
—,—est bornée car :

2. Lasuite (1), définie par u,,
Preuve Notons M,M’ € R* de sorte que :

1
VneN* u,|=—<1.
) | n| n VneN, Iu,,lsM, |vn|le‘

3. Les suites (%) et (l Y —) sont bornées. g
nc+2 ) neN n k
k=1" ] pen
[ ] D’
o 7/ Remarque1 Si(u,) et (v,) sont majorées, a-t-on (u,, +v,) et (u,, x v,) majorées?
® QOUI pour la somme :
7
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® NON, en regle générale, pour le produit. En effet, considérer par exemple les
suites u(—n) et (—n?), elles sont toutes deux majorées par zéro et pourtant le
produit (n3) ne I'est pas.

Définition 5 | a partir d’un certain rang
® Pour tout n € N, soit &2, une propriété. On dit qu’elle est vraie a partir d'un

certain rang s'il existe n, € N, tel que &2, soit vraie pour tout n = ny.
® Onnoteraaussi: «2?, estvraie APCR».

Exemple 3

1. Montrer que (\/ﬁ)

4

N est minorée par cinq APCR. Expliciter un tel rang.
ne

2. Lasuite (u,,) définie pour tout n € Npar u,, =In(n+1)+10cos n est a termes
strictement positifs Apcr. Expliciter un tel rang.

4

3. Montrer qu'une suite majorée APCR est majorée. Commencons par faire un

dessin.

4

Cet exemple se généralise en la proposition qui suit.

Proposition 2 | Enlever des APCR
® Toute suite majorée APCR est majorée.

® Toute suite minorée APCR est majorée.
® Toute suite bornée APCR est bornée.

— Définition 6 | Monotonie, Constance

m Suites monotones

Soit (u,,) une suite.
® On dit que (u,,) est croissante (resp. strictement croissante) si :
Ynz0, u,<u,, (resp. Vn=z0, u,< un+1).
® On dit que (u,,) est décroissante (resp. strictement décroissante) si :
V=0, u,=u,, (resp. Vnz=0, u,> un+1).
® On dit que (u,,) est monotone (resp. strictement monotone) si elle est crois-
sante ou décroissante (resp. strictement croissante ou strictement décrois-
sante).
® On dit qu'une suite (u,,) est constante si:
Vnz0, u,.,=u,.
En d’autres termes: Vn=0, u, = u,.
® On dit qu'une suite (u,,) est stationnaire si elle est constante APCR, i.e. si :
dnyeN, Vn=n,,
En d’autres termes: 3dn,eN, Vn=n, u,=1u,.
0
® De maniere équivalente, une suite (u,,) est stationnaire si elle est constante
APCR.

Upi1 = Up.
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Exemple 4

La suite ((n — 15)?) est croissante APCR.

4

La suite (3 + [ 57| )neN est stationnaire. Expliciter 'entier n, de la définition
précédente.

4

Méthode (AN) 41 (Trouver la monotonie d’une suite)

[Cas 1 : fonction dérivable] Si u, = f(n) avec f dérivable, on étudie la
fonction. Les monotonies coincident.

[Cas 2 : expression avec des sommes/différences principalement] Pour
étudier la monotonie d’'une suite, la méthode la plus fréquente est de calculer
U, — U, et étudier son signe.

o siu,,; —u, =0pourtout n € N, alors la suite (u,,) est croissante,

o siu,,; —u, <0 pourtout n €N, alors la suite (u«,) est décroissante.

En outre, lorsque la suite (u,,) est définie par u,, = f(n) (i.e. de facon expli-
cite), le sens de variation de (u,,) est le méme que celui de f sur [0; +oo].
[Cas 3 : expression avec des puissances/produits/quotients principale-
ment| Siune suite (u,,) est a termes strictement positifs, elle est :

o croissantesi: VneN, = >1],

¢ décroissantesi: Vne I\I Sl e
n

Ce criteére est utile seulement si ”“ donne une expression simple (notam-
ment en cas de présence de factonelles de puissances...).

Exemple 5 (Suite explicite) Déterminer la monotonie de la suite (u,,) définie
par: VmeN, u,=(n+1)e™".

P

¢

Exemple 6 (Suite explicite) Etudier, avec les deux méthodes, la monotonie de

2”
n+l°

la suite (u,) définiepar: VneN, u,=
[ ] 0’

Exemple 7 (Suite récurrente) La suite définie par u, = —2 et pour tout n €

N, u,,; =Uu,+e " +1est monotone.

4

Exemple 8 (Somme de RIEMANN) Soit, pour tout n =

® La suite (u,,) est strictement croissante.

P4

1,

_\n
un _Zk=1 k
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® Lasuite (u,) est majorée.
o [Echec]

4

o [Succes] Constatons tout d’abord que pour tout k = 2,
1 1 1 1

ESkk-D k-1 &

4

' Exemple 9 (Généralisation : somme partielle) Soit (u,) une suite. Alors

(S,,) définie par:
n
VneN, S,=) u, estappeléelasomme partielle de la suite (u,).
k=0

Montrer que: (u,) est positive = (S,,) est croissante .

4

(Dans l'exemple précédent, la suite (ﬁ) était positive.)

Par définition de suite croissante, on obtient directement la proposition suivante.

Proposition 3 | Monotonie et majoration / minoration
® Une suite croissante est minorée (par son premier terme).

® Une suite décroissante est majorée (par son premier terme).

n LIMITE D’UNE SUITE

m Généralités

Comme pour les fonctions, on aimerait définir une notion de limite pour les suites.
Puisque qu’une suite est une application définie sur des entiers, il n'y aura pas de
limite en un point (qui revient simplement a faire prendre a n une valeur particu-
liere). De-méme, il n'y aura pas de limite en —oo car nos suites sont ici définies sur
des entiers positifs.

Définition 7| Convergence
Soient ¢ € R et (u,,) une suite.

® On dit que (u,,) est convergente de limite ¢ si :
Ve>0, 3dnyeN, VneN, n=n, = |u,-¥|<e,
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c'est-a-dire « aussi petit que soit € > 0, u,, est aussi proche que I'on veut de ¢,
APCR ».

Rappelons que :
Note
lu,—¥ll<e <= —-e<u,-l<e <= u,cll—¢/l+¢
Note 1l est possible de remplacer «< € » par «< € » dans la définition. Les

deux sont équivalentes.

® Leréel £ est appelé la limite de la suite (u,). Onnote £ = lim u,, ou encore
n—oo

u, —— 4.
n—:aoo

® On dit que (u,,) est convergente s'il existe un réel ¢ tel que u,, —— #.
n—oo

o

°
°
° l+e
° °
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !,,,,,,’,,,:,,,, Y/
O
o * o ) °
L4 °
f 4—8
[ ] [ ] ””()
} n

Attention

® Ne pas parler de la limite d’'une suite sans avoir justifié son existence.
® Une limite ne dépend pas de n.

Par définition de la limite, on a la propriété suivante.

— Proposition 5 | Encadrement d’'une suite convergente vers ¢ # 0

Méthode (AN) 2.2 (Montrer que u,,

1. Se donner € > 0.

2. Résoudre l'inéquation |u, —¥¢| < € en n € N. Lensemble des solutions
contient un ensemble de la forme [r,, oof, avec n, € N. On a alors prouvé
que: VmneN, n=n, = |u,—¥|<e.

3. Ceci étant vrai pour tout € > 0, on a montré que: u

¢ avec la définition de la limite)

n—oo

—

n
n—aoo

Exemple 10 Montrons, avec la définition, que: lim (1 + %) =1.

n—:oo

® Si(u,) converge vers £ >0, alors:
¢ 3¢
—<u,<—.
2 2

En particulier, u,, est strictement positive APCR.
® Si(u,) converge vers £ <0, alors:
3¢ ¢
—<u,<-—.
2 2
En particulier, u,, est strictement négative APCR.

dnyeN, Vn=n,,

dnyeN, Vnz=n,,

Proposition 4 | Convergence et convergence vers zéro
Soient ¢ € R et (u,,) une suite. Alors :

u

{ = u,-¢—— 0.
n—aoo

n
n—oo

Preuve
u, —— ¢ < Ve>0,3In,eN, Vn=ngy, |u,-¥l|<e

n—oo
un—ém 0 < Ve>0,3In,eN, Vn=ny, [(u,—¥¢)-0|<e.

D’ouI’équivalence.

Preuve
Par hypothese,

Ve>0,dn,eN,VneN,
Prenons ensuite € = é (car £ > 0). Alors :

5 (4
74
2

o
N~y
~N

n=n, = |u,-¥¢|<e.

dnyeN, VneN, n=zn, = |un—l|<5.

Or, pour tout n, |u,—¥¢|< é = —g <u,-¢< g, ce qui fournit I'inégalité cherchée. Le
cas négatif s'obtient en utilisant le cas positif appliqué a la suite (—u,,).

Exemple 11
4
® Notons: u,=1-12; pour tout n € N.

® Nous serons capable de montrer que: lim u, =1, donc u est strictement
n—oo
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positive APCR. Le montrer par le calcul en trouvant un tel rang n'est en re-
vanche pas du tout évident! Des calculs de limites peuvent donc rendre de
précieux services.

0 Attention

On ne peut rien dire pour une suite convergeant vers zéro, par exemple

S

pourtant alternativement de signe.

, converge vers 0 (nous serons capable de le montrer plus tard) et change

— Définition 8 | Divergence vers +oo, Divergence
® Soit (u,) une suite. On dit que (u,,) diverge vers +oo et on note u,,

si: VAeR, 3dnyeN, VneN, n=zn, = u,>A.
C’est-a-dire: « u,, est aussi grand que 'on veut, APCR ».

+00
n—o0

Note Il est possible de remplacer «A € R » par «A € R* » dans la définition.
Les deux sont équivalentes.
® Soit (u,,) une suite. On dit que (u,,) diverge vers —oo et on note u,, — ™
si: VAeR, 3dnyeN, VneN, n=n, = u,<A.
Clest-a-dire: « u, estaussi petit que I'on veut, APCR ».

Il est possible de remplacer «A € R » par «A € R™ » dans la définition.
Les deux sont équivalentes.

® Une suite est dite divergente si elle n'est pas convergente.

Note

Diverger ne signifie pas tendre vers +co

o Attention

Il existe des suites qui ne convergent pas et qui ne divergent pas vers +oo: ce sont
celles n’ayant pas de limite. Par exemple, la suite (u,,) définie par u,, = (—1)"n?
pour tout n € N. (Nous pourrons le montrer plus tard)

Illustrons par exemple le cas d'une divergence vers +oo.

Méthode (AN) 4.3 (Montrer que u,,

1. Sedonner A eR.

2. Résoudre I'inéquation
un ensemble de la forme [, co[, avec n, € N. On a alors prouvé que :
N, n=n, = u,>A.

3. Ceci étant vrai pour tout A € R, on amontré que: u

+o00 avec la définition de la limite)

u, > A en n € N. Lensemble des solutions contient
Vne

n +o0.

n—:oo

Jm V= 0o

Exemple 12 Montrons, avec la définition, que :

Définition 9 | Nature
Déterminer la nature d’'une suite c’est déterminer si elle converge ou diverge.

ﬂ Propriétés des limites

Théoréme 1| Unicité de la limite :
La limite d'une suite, si elle existe, est unique.

Intuitivement, converger vers ¢ + ¢’ signifie se retrouver pour n assez grand dans
des intervalles arbitrairement petits autour de ¢ et £’ — ce qui n'est bien sar pas
possible (il suffit de les choisir suffisamment petits pour étre d’intersection vide).
Cette intuition est formalisée dans la preuve qui suit.

Preuve  Faisons la preuve dans le cas d’'une limite finie. Raisonnons par l absurde et sup-
posons que u, —— ¢, u, —— £' et par exemple £ < ¢'. Posons € = £=£ > 0. Alors par
définition de la llmlotoe il ex1ste deux entiers n,, n, telsque:

u,cll—el +e¢l, u,ell’ —¢, 0 +¢l.

Vnz=n,, Vn = n,,

donc en posant n, = max{n,,n,},ona:

Vnzny, u,€ll—-gl+e[n]l—¢l +¢l.
Or ¢ +e < ¢’ —epuisque :
€+£<€’—£<=>[;2€ 2€+[<=>[<€’.

Donc: Jl—-gl+e[ Nl —¢g 0 +¢] =
contenir u,,

@ — contradiction, car cette intersection devrait
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Théoréme 2 | Limite et bornes LIMITE DE (u,, + v,,)
® Les suites qui divergent vers +oco sont minorées.

® Les suites qui divergent vers —oo sont majorées.
® Les suites qui convergent sont bornées.

Preuve
® Soit (u,) telle que lim u, = +oo. Par définition, il existe n, € N tel que pour tout n =
n—oo

ng, u, =1.Elle est donc minorée APCR, et donc minorée d’apres la Proposition 2.

® Soit (u,,) telle que y}gnoou,, = —oo. Par définition, il existe n, € N tel que pour tout n =
ny, u, < 1.Elle est donc majorée APCR, et donc majorée d’apres la Proposition 2.

® Soit (u,) telle que r}iglooun = ¢ € R. Par définition, il existe n, € N tel que pour tout

n = ngy,|u, —¢| < 1. Par I'inégalité triangulaire pour tout n = ny,|u,| = lu,— ¢ +/¢| <
|u, — €]+ €] <1+|£]|. Posons alors M = max(|u0|,|u1|,...,|un0,1|,1+ |€|). On a alors
pour tout n € N, |u, | < M donc (u,) est bornée.

—ocosil >0
Intuitivement, pour 7 assez grand la suite est confinée dans un intervalle autour de +o00sif <0
leilhmne l 1d(‘;nlc borne;—:). Ma}s avant, nous n‘avons qu'un nombre fini de valeurs donc —oosil >0 Y 0 toosid >0
elle sera globalement bornée. toosid <0 —oosil <0
o Attention FI 0 0 FI
Laréciproque est fausse : considérer par exemple la suite ((—1)"). Nous justifie- —00 +00sif >0 FI +00
rons plus tard qu’elle n'a méme pas de limite. —o0o0sil <0

Théoréme 3 | Passage a la limite dans les inégalités larges
Soient (u,,) et (v,) deux suites réelles convergentes. Alors :

® y,<v, (aumoinsapcrk) = lim u, < lim v,,
n—oo n—:oo

un
LIMITE DE —

® 1, <V, (aumoinsapcr)==x lim u, < lim v, enrégle générale,
n—oo n—:oo

® 1y, <V, (aumoinsapcr) = lim u, < lim v, enrevanche.
n—oo n—o0 FI FI
s P! ( s p!
Preuve —ocosil' >0 7 0 +oosil' >0
® Notons ¢ = lim u, et ¢' = lim v,. Procédons par l'absurde et supposons que ¢ > ¢'. +oosil <0 —oc0sifl <0
n—oo n—oo
Alors u,, — v, —— ¢ —¢' >0, et par Proposition 5, u,, — v,, > 0 Apcr. C'est absurde. ;
Y ey ) o . +00 —ocosil >0 FI —00
® En effet, si u, = -+ etv, = .. par exemple, alors on a bien u,, < v, pour tout n € N* et 0 <0
pourtant lim u, =0= lim v,. toosit <
n—oo n—oo
® Siu, <v,,alors u, < v,.On conclut alors en utilisant le 1er point. —00 +008if >0 FI +00
—ocosif <0
FI 0 0 FI

OPERATIONS SUR LES LIMITES. Soient (u,)et, (v,) deux suites admettant toutes
les deux une limite en +oo. Dans toute la suite, £ et ¢’ désignent deux nombres réels. 0 Attention  Pour retenir, mais sans l'écrire

«FI » désigne une indétermination du résultat de la limite indiqué dans le tableau ® On pourra penser trés fort, mais sans jamais I'écrire sur une copie, que :
(a traiter au cas par cas). Chaque résultat présent dans chaque case du tableau peut 1 1

étre démontré en vérifiant la définition de la limite, nous 'admettrons. oo 0, 0r T =TT
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o ® On pourra penser tres fort, mais sans jamais I’écrire sur une copie, que les

formes indéterminées « FI » sont les suivantes :

0 oo
0 X 00, ) .

0 oo
Tout cela avec des gros guillemets donc.

00 — 00,

La plupart des techniques vues pour les fonctions sont utilisables pour les suites,
dont celle de I'expression conjuguée. Voici quelques exemples.

Exemple 13 Calculer la limite des suites de terme général donné par :
® u,=n*+2n-3

4

=-n*+2n-3

N

® w,=(3-5n)(n*-4)

“

® x = 2n+4

n— %_5
,I
_ 2-5n
® Vu=tnet
,I
—3n3-10n+4
) = —on —10n+d
Zn 2n2+3n+1

® Déterminer la limite de la suite (\/ n+1- \/ﬁ) " On a ici une forme indé-
ne
terminée avec une différence de racines. L'idée est, comme pour les fonctions,

d’'utiliser la quantité conjuguée :
T i (Vn+1-yn)(Vn+1+/n)
vVn+l+y/n

n+l-n 1

T Vntleyn Vnelevn

Par quotient de limites, on obtient donc: lim \/n+1-./n=0.
n—o00

m Nature par majoration, minoration et encadrement

Théoréme 4 | Théoréme d’encadrement (ou des gendarmes) 4&

On considere (u,,), (v,) et (w,) telles que :
(i) U, <V, <w, (aumoinsAPCR)

(ii) les deux suites (u,,) et (w, ) convergent vers une méme limite £ € R.

Alors: v, l.
n—oo
[ ]
....
.....
o © 00000000 ccpccce
o °©° 45 o © e

o ...oooioooooogoooﬁog
°
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Preuve  Soite > 0. Par hypothese sur (u,,) et (w,), il existe n, € N et n, € N tels que pour
toutneN:

nzn = l{-e<u,<l+e e nz=zn, =>¥¢-e<w,<l+e.
w,. Ainsi, en posant n, =

Par ailleurs, il existe ny € N tel que pour n = ns : u, < v, <
< . < 0 + €. Ainsi, (v,) converge

<
max{n,, n,, ns}, onapourtoutn =ny: € —e<u,<v,s<sw
vers .

n n

Remarque 2 Pour pouvoir appliquer le théoreme des gendarmes, on utilise le
plus souvent :
® un encadrement de cos, de sin. En effet, on a:

VxeR, -1<cos(x)<l, -1<sin(x)<I.
® Ouunencadrementdela partie entiere. En effet, on a (voir Chapitre (ALG) 2):
VxeR, x-1<|x|]<x.
Onrappelle que cela est une conséquence de la définition de la partie entiére,
qui est quant a elle (moins utile dans les problemes de limites) :
VxeR, |x]<x<|x]+1.

Exemple 14 Etudier la nature de la suite (u,,) ,cp« = (&é")) "
neN*
7

Exemple 15 Soit x € R. Déterminer: lim Lnx],

n—oo N

Remarque 3 (Densité de Q dansR) Onaobtenu: VxeR, lim Lf =

n—ao0

x, tout nombre réel est donc limite d'une suite de nombres rationnels, on
dit que Q est dense dans R. La densité de Q@ dans R est parfois utile pour
généraliser sur R une propriété valable sur Q.

n

Exemple 16 Etudier la nature de la suite (u,,) e« = (ZZ=1 m) N
neN*

1 1 1

= = .
V1i+n2 Vn2+k Vn2+n
Puis en sommant, on obtient

n n
= U, =

— U,z ———.
V1+n? vVn?+n
En mettant en facteur n* dans la racine carrée, on obtient :
I T —1=1i z
im ——=1= lim ——.
n—+oo /1 + nz n—-+oo /n2 +n
Ainsi, dapres le théoreme des gendarmes, on obtient que la suite (u,),en>
convergeetque: lim u, =1.
n—+oo

l1<sksn <

— Corollaire 2 | Version valeur absolue & Bornée « x — 0 »
® On considere (u,,), (v,) telles que :

(i) |u,| <v, (aumoinsapcr)

- = u, —— 0.

(ii) v, — 0, n—oo
n—oo

® Le produit d'une suite bornée et d'une suite convergeant vers zéro est une
suite convergeant vers zéro.

Preuve
® Lhypothéesedonne: VneN, -v,<u,sv,(eneffet,(v,)estpositive par hypothese,
au moins APCR). Donc puisque v,, —— 0, —v,, —— 0 donc par théoréme d’encadre-
n—oo n—oo
ment u, —— 0.
. n—oo . L . 2
® Soit (u,,) une suite bornée disons par M € R*, et (v,,) convergeant vers zéro. Alors pour
toutn,0<|u,v,| <M|v,|.Comme |v,| —— 0, on conclut al’aide de la premiere partie
n—oo
de la preuve.

(=D"

Exemple 177 Montrerque: lim “—= =0.
n—oo
4

cos(n?)+2+(-1)" arctan(4n)

\/ﬁ neN* )

Exemple 18 Etudier la nature de la suite
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— Théoréme 5 | Théoréeme de divergence par minoration ou majoration ———

Soient deux suites (u,,) et (v,) réelles.

® [Divergence par minoration] Alors:
(i) U, <V, (aumoinsAPCR)
. =, +00.
(ii) u, +00 n—o0
n
® [Divergence par majoration] Alors:
(i) U, <V, (aumoinsAPCR)
- == U, —0Q.
(ii) v, —— —00 n—oo
n—oo
Preuve

® SoitA € R. Alorsu,, = A Apcr n,;. Comme u,, < v,, APCR n,, alors A < v,, a partir du rang
max{n,, n,}, doit la conclusion.
® Appliquer le théoréeme de divergence par minoration aux suites (-v,,) et (—u,,).

Exemple 19 (Divergence de la série harmonique (1)) Soit n € N*, on note :

Ly |
H,=Y —.
ToEk
1. Montrer que pour toutx =0, In(l1+x)<x.
¢
2"

2. Montrer que pour tout k € N*, =In(k+1)—1In(k).

1
k

3. En déduire que H,, —— oo0.
n—:oo

Nature par suites extraites

— Définition 10 | Extraites des termes pairs et impairs
Soit (u,,) une suite.

® [asuite (u,,) est appelée suite extraite des termes pairs.
® Lasuite (u,,,,) est appelée suite extraite des termes impairs.

— Théoréme 6 | Convergence des suites extraites
Soit (u,,) une suite.

® Soit £ € Ru {+o00}. Alors :

v

(i) uzn I (
u, { =< . n—00
n—sco () uppy —— L

n—oo
® Par conséquent, si (u,,,) et (u,,,;) ne tendent pas vers une méme limite dans
R U {+o0}, alors (u,) n'a pas de limite.

Remarque 4

® [l existe des résultats faisant intervenir des suites autres que celles des termes
impairs/paris ((2n) et (2n + 1)), mais qui ne sont pas a notre programme.

® Plus généralement, on appelle suite extraite (ou sous-suite) de la suite (u,,)
toute suite (v,) telle que v, = ug(,), ol @ est une application strictement
croissante de N dans N (par exemple, pour la suite de rangs pairs, la fonction
¢ est définie sur N par ¢(n) =2n).

Preuve

® On suppose que (u,,) tend vers ¢. Soit € > 0. Il existe n, tel que |u,, — €| < € pour
tout n = n,. Soitalors n = n,.Ona2n = nyet2n+1 = n, ce qui entraine que |u,, — | <€
et |Uy,.1 — | <e. Ainsi(u,,) et (u,,,,) tendent vers £.
On suppose que (u,,) et (it,,,,) tendent vers £. Soit € > 0. Il existe (14, n;) € N?
tel que |u,, — €| < € pour tout n = n, et que |u,,,; — | < € pour tout n = n,. On pose
N = max(2n,,2n, + 1). On a alors |u,, — ¢| < € pour tout n = N. Ainsi (u,,) tend vers .

® Soient £,{" € RU{+oo} tels que £ # {' et uy, —— €, uy,,, —— ¢'. Alors (u,) na
pas de limite; en effet, dans le cas contraire, si Z,, 0:_’—00> Le [Rnu {oiooo}, alors on aurait
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u,, —— Letu,,,; —— L, ce qui est bien siir contradictoire par unicité de la limite.

n—oo n—oo

Exemple 20
® Lessuites (u,) = ((-1)") 50 et (v,) = (n*(-1)"), ., nont pas de limite.

7

® Retrouver que: lim ( ,11)" =0
n—oo
7

Exemple 21 La suite (u,,) définie pour tout n € N par u,, = ZZZO(—I)’C n‘admet
pas de limite en +oco. De la définition de u,,, on en déduit :
1-(-D)™ 1+(-D)"
vnenN, u,= D" _1+ (D7
1-(-1) 2

VreN, u,,=letuy,,; = O.Doncr}ii’noouz,l =1+0= J@mu2n+1 donc
(u,,) ne posséde pas de limite en +oo. De la définition de u,,, on en déduit :
VneN, u,= Ll GOl Ll Gl

1-(-1) 2
VrneN, u,,=1etu,,,; =0.Donclim u,,=1+0= lim u,,,, donc
(u,,) ne posséde pas de limite en +oo. e S

Ainsi:

Ainsi:

Exemple 22 Siune suite (u,,) vérifie :

Os<uy,,s

Vn,peN*,

alors elle converge vers zéro.

m Croissances comparées et limites géométriques

— Proposition 6 | Limite d'une suite géométrique
Soit g € R.

® Si g > 1alors lim g" = +oo.
n—-:

®Si g = 1 alors la suite (g") est

constante égale a 1.

®Si -1 < g <1 (cest-a-dire |g| < 1) ® Sig=-1,(g") estdonc bornée mais
alors lim ¢g" =0. n‘admet pas de limite.
n—aoo
® Si g < —1 alors la suite (g") n'est pas

bornée et nadmet pas de limite.

Exemple 23 On considére une suite arithmético-géométrique, c’est-a-dire u tel
qu’il existe g € R et a € R vérifiant :

VneN, u,.;=qu,+a.
On suppose de plus que |g| < 1. Justifier que u converge vers une limite a préci-
ser.
7

Enfin, le résultat de croissances comparées reste encore valable pour des suites. Bien
entendu, on ne conserve que les résultats au voisinage de +oo, puisque g" = "9
pour tout nn € N et g > 1, les exponentielles des croissances comparées des fonctions
deviennent des puissances, a cela s’ajoute une autre suite : la factorielle, qui diverge
vers +oo plus vite que toutes les autres.
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— Théoréme 7 | Croissances comparées

Soient a, et b des réels strictement positifs, et g > 1.

v/

In(n))* n? In(n))* "
lim #:0, lim — =0, lim &:0, lim q—=0,
n—oo pn n—oo " n—oo N n—oo p!
b n n |
n n!
im ——— =00, limq—zoo, lmq—:oo, lim — =oo0.
n—oo(In(n))* n—oo b n—co(In(n))* n—oog"
Résumé Idée des croissances comparées

On se souviendra que la factorielle diverge beaucoup plus vite que 'exponen-
tielle en +o00, qui elle-méme diverge beaucoup plus vite en +oco que toute puis-
sance de n, qui elle-méme diverge plus vite que toute puissance de logarithme.
Ce que l'on peut noter :

< nl.

(Inn)* « n? < g"
+00 +00 +o00

Preuve  Laseconde ligne se déduit de la premiere en passant a I'inverse. Nous admettons

n
le reste sauf - —— 0 que nous allons démontrer.
n!
. n—oo

Lidée est la suivante : il y a autant de facteurs au numérateur qu'au dénominateur, mais les
facteurs du dénominateur ne cessent de grandir alors que ceux du numérateur sont toujours
«des x ». Cela nous incite donc a découper le dénominateur en « deux morceaux », dont le
second sera composé de facteurs strictement supérieurs a x.

n

q quJ qn—[xJ qm x n—|x|
S T ([xJ+1)X...xnsm(LxJ+l)

<—| < 1, le majorant converge vers zéro — c'est le terme général d'une suite géo-

Puisque 3PS

n
métrique. Donc:  lim %% =0 par théoreme d’encadrement.
n—oo ™

Exemple 24 Déterminer les limites ci-apres.

1.

_ 4" _ 2he In(n)
Ltn—m,l’ZZO, 2. un—T,

e o’

\
=

Remarque5 Ilarrive parfois que certaines convergences restent en vigueur pour

d’autres valeurs de g. Par exemple :

n
lim 4, =0mémesiqg=-1.
n—oo’

m Nature par monotonie

Le théoréme qui suit est vrai aussi pour les fonctions, mais nous le verrons plus tard.
C’est le plus important du chapitre.
— Théoréme 8 | Théoréme de la limite monotone &
® Toute suite monotone possede une limite £ € R U {+o0}.
® Plus précisément,
o toute suite réelle croissante et majorée (ou décroissante minorée) converge
vers une limite finie ¢ € R.
o Toute suite réelle croissante non majorée (resp. décroissante non minorée)
diverge vers ¢ = +oo (resp. £ = —00).

Preuve  On le prouve par exemple dans le cas d’une suite croissante. Soit (u,) une suite

croissante.

® Si(u,) est majorée, alors 'ensemble U = {u,, | n € N} est non vide majoré donc possede
une borne supérieure. Notons ¢ = sup U et montrons que u,, — ¢

® Soit € un réel strictement positif, £ — € n'est donc pas un majorant de U par définition de
£ etil existe alors n, € N tel que £ — € < u,, . On en déduit alors par croissance de (u,,) et
par définition de ¢ que £ —e < u,, < ¢ < ¢ + € pour tout n = n,, soit que |u, — £| < € pour
tout n = n,. C'est exactement la définition de u,, —— ¢.

n—oo

CAS CROISSANT MAJORE CAS DECROISSANT MINORE

Remarque 6

® On peut préciser I'énoncé : une suite croissante (u,,) converge vers sup u,, (la
neN
limite étant finie ou non, selon que (u,,) est majorée ou non), i.e. vers le plus

petitMeRtelque: VnelN, u,<M.

® Noter que la convergence de la suite est dans la conclusion du théoreme. 1l
existe bien entendu des suites qui convergent et n’était pas monotones.

® Ceténoncé permet de conclure quant a la convergence des suites croissantes,
méme si on a aucune idée de la limite!



BCPST1 (€9 2025-2026

15

/M/ Lycée Michel MONTAIGNE — Bordeaux

o Attention

o Attention

Ne pas confondre hypothése est conclusion

Une suite décroissance minorée par m € R ne converge pas nécessairement vers
m. Par exemple, la suite (%) estminorée par —1 et pourtant ne converge pas vers
-1.

Exemple 25 (Divergence de la série harmonique (2)) Soit n € N*, on note a

. —_\n 1
nouveau : H,,—*Zkﬂ%. 1
1. Pourtoutn eN*, H,, -H, = 3.

4

2. En déduire par 'absurde que H,, —— oc.
n—:oo

ADJACENCE DE SUITES. La notion, qui exploite la monotonie, va nous permettre
de montrer que des couples de suites convergent vers une méme limite.

Définition 11| Suites adjacentes
Deux suites (u,,) et (v,,) dont dites adjacentes si :

elles sont monotones de sens contraires et u

-y, —— 0.
n—oo

n

Théeoréme 9 | Convergence des suites adjacentes
Deux suites adjacentes convergent vers une méme limite finie.

O

Ne pas confondre hypothése et conclusion

La convergence est dans la conclusion, et non dans la définition de I'adjacence.

Preuve  On peut supposer sans perte de généralité que c’est (u,,) qui est croissante et (v,,)

décroissante.

® Ainsi, (v, —u,) est décroissante et converge vers 0 : on a donc nécessairement v, —u,, = 0
pour tout 7 € N. En effet, supposons par I'absurde qu’il existe ny €N, u,,, > v, . Posons
pourtoutn €N, x, = v, —u,.Alors, par hypotheése, on sait que JiLnooxn =0etonax, <0.
Orpourtoutn €N, x,.,—x, = (V4 —v,)— (4,4 —u,) <Ocar(u,)estcroissante et (v,,)
est décroissante. Donc (x,,) est décroissante. Alors pour tout n = n,

Xy S Xy = ,}iLnoox,, < ,}iinoox"o = Xx,,=0.
Ceci est absurde puisque, par hypothese, x,, < 0. Finalement, on a bien pour tout n € N,
U,s<v,.

® On a donc montré que pour tout n € N : u, < u,, < v, < v,. Ainsi, la suite («,,) est crois-
sante et majorée par v, elle converge donc vers un réel u d’apres le théoréme de la limite
monotone. De-méme, (v,,) est décroissante et minorée par u, : elle converge vers un réel
v.Enfin, (v, —u,) converge vers 0 par hypotheése et vers v—u par les théorémes généraux.
Par unicité de la limite, on a donc u = v.

Exemple 26 (Convergence d’'une série alternée) Soit la suite (u,) définie
no(_1 k
u, =y, (1 +)k . Montrons que cette suite converge, en étu-

par: VmneN,

diant (Vn) = (u2n) et (wn) = (u2n+1)-
® [Monotonie de v]

7
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® [Monotonie de w]

® [Différence v — w]

® [Conclusion]

Et, puisque jamais deux sans trois, voici une derniére méthode pour montrer que
(H,,) diverge vers +oo.

Exemple 27 (Constante d’EULER — [Divergence de la série harmonique (3)])

Soit n € N*, on note

1. Justifier I'inégalité x — 2 < In(1 + x) < x pour tout x € [0, 1].

]
H,=Y -, v,=H,_,-Inn,
k=1 k
X
2
7

2. Déduire que pour tout n € N*,

4

w, =H,

n+1

—Inn.
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4,

Montrer que que (v,), (w,) sont adjacentes. On appelle alors constante d’ Définition 12 | Suites équivalentes )

EULER notée Y, qui vaut 0,577 & 1072 pres, la limite commune de ces deux Soient (_un) et (v,) deux suites, t,el que (v,) nes anr.luleupas APCR .
suites. ® On dit que (u,) et (v,) sont équivalentes si : r}ﬂlooz =1.

4 ® Onnotealors: u, ~ v,.

Remarque 7 (Sur la condition « ne s’annule pas APCR »)

o Attention

Avec notre définition, une suite ne peut étre équivalente a la suite nulle.

La condition peut étre relachée facilement, en considérant la définition : «il

existe une suite (g, ) convergeant vers zéro, telle que :
u,=(1+¢€,)v, «APCR».

Cette nouvelle définition a le mérite d’étre plus générale (ne nécessite aucune
condition sur (v,)) mais la premiére suffira amplement pour notre propos.

@ Cadre

Pour notre définition, u,, ~ v, implique implicitement que (u,),(v,) ne
n—oo
s’annulent pas pour n assez grand. Nous ne le préciserons donc pas a chaque

fois dans les énoncés.

Exemple 28
1. n~n+1.

n—oo

(4
Retrouver alors que: lim H, = oco.
n—oo

4

Equivalents

DEFINITIONS ET PROPRIETES. Les équivalents forment un cas particulier d'un
outil beaucoup plus général pour lever des formes indéterminées : les développe-

ments limités. Nous parlerons de cette notion en fin d’année.

équivalent simple.

Exemple 29 Soit (u,) une suite, a partir des relations ci-dessous, déduire un
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® ../nu, —— 2 ® ,/6u, —— T
n n—:o0 n n—~oo
n’ p’

® (u,-2)—— 1

n—oo

Méthode (AN)4.4  (Déterminer des équivalents a laide d’'un encadre-

ment) Supposons que u, < vV, < w, au moins pour n assez grand. Alors si

u, ~ a,,w, ~ a, ou (a,) est une suite strictement positive, on montre que
—00 n—oo

n
v, ~ a,en:
e u 14 w
1. divisant par a,, tout 'encadrement : e
n n

2. On conclut a I'aide du théoréme d’encadrement en faisant 7 — oo.
La méme méthode s’applique pour les suites strictement négatives bien stir, en
inversant I’encadrement.

Exemple 30 Soit (u,,) une suite telle que : < n+ 1. Montrer
que u, ~ n.

4

vneN, n<u,

— Proposition 7 | Limite vers équivalent
® Soit (u,,) une suite. Alors :

(+0 = u, ~ 4.
n—oo n—oo
® Soient (u,),(v,) deux suites et £ # 0. Alors :

u, l

n—oo = U, ~U,.

v, —— ¢ o n
n—oo

Uy

o Attention

La condition ¢ # 0 est trés importante : dire qu’'une suite est équivalente a la
suite n'ayant pas de sens. Un contre exemple simple pour le deuxiéme item est

_ _ (2
le suivant : les suites (u,) = (& )op0(Un) = (ﬁ)nz
pourtant ne sont pas équivalentes.

. tendent bien vers zéro, et

Preuve  Conséquence directe des régles opératoires sur les limites.

Proposition 8 | Equivalent vers limite
Soient (u,,) et (v,) deux suites. Alors :

(i) u, —— ¢ e Ru{+oo}
. n—o0 = v, —— /{.
(ii) U, ~ v, n—oo

Dans la pratique, cette proposition s’utilisera ainsi : une suite compliquée (u,,) sera a
étudier (pour laquelle on ne connait pas la limite), on cherchera alors un équivalent
(v,) plus simple (dont on connait la limite), et la proposition fera le reste.

Preuve

Onapourn, v,=u, ——»écaru —»[et——»l
(o)

Up p—s Un p—s

EQUIVALENCE ET OPERATIONS. Maintenant que la notion est présentée, on ai-
merait avoir des regles opératoires sur les équivalents. Malheureusement, vous allez
constater que le symbole équivalent est beaucoup moins flexible que le symbole li-
mite. Puisque un équivalent est un quotient,

® le symbole ~ va tres bien se comporter avec les opérations multiplicatives :
valeur absol{llzopuissances, produit, quotient, ...,

® enrevanche, il va trés mal se comporter avec 'addition, le logarithme, I'exponen-
tielle etc..
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— Proposition 9 | Equivalence et opérations usuelles o rithme etc..

Soient (u,,), (v,), (w,), (a,) et (b,) des suites. En ce sens, ce symbole differe de I’égalité. Pour quelques contre-exemples, voir
® [Réflexivité] u, ~ Uy, les exemples qui suivent.
® [Symétrie] u, ~ Oljn = v, ~ U,.
o [Transitivité] u, ~ v,, v, ~ W, = U, ~ W,. Exemple 31 (Pas de somme)
e [Valeur absolue] "L;:’ — Vn";’ lu,| ~ Il';;]” 1 n+1 ~n- let—-n ~ —n alors que :
® [Multiplication] u, :wan, v, ~ b, = U,.v, ~ a,.b,. (n+1)+(=n)=1 =~ —1=(n-1)+(-n),
e [Quotient] 1, ~ ann, 15:, ~ bnn =, Z_ ~ Z— En garﬁcuher : 2. Soient trois suites déﬁnile par: L L
u",:;vn(:’ui,:;vi' VneN*, un.=—;, Up =2 F g Wp= g
n n Alors v, ~ w, mais u, +v, ~ u,+w,.
® [Exposant] n—oco n—oco
o SikezZ: u, ~v, = uk ~ vk e
o SiaeR et siles suites sont > 0 APCR :
U, ~ U, = Uy ~ vy,
n—oo n—oo

Preuve

® [Réflexivité] Immeédiat par définition.

® [Symétrie] Immédiat car siune suite tend vers 1 et ne s'annule pas, son inverse aussi.

® [Transitivité] On sait que Z—: —— let :}—"n —— 1 donc par produit : :—: x :/_','l =
un

£ — 1.

Wp p—soco

® [Valeur absolue] Provisoirement admis : conséquence de la continuité de la fonction
valeur absolue (voir le Chapitre (AN) 6).

® [Multiplication]

4

Exemple 32 (Pas de composition (exponentielle ici)) Soient deux suites dé-
finie par:

2

vneN*, u,=n’+n, uv,=n’

Alors u, ~ v,, mais: e"r ~ e’
n—oo

n—oo

® [Quotient]

rd ol

® Pour un exposant entier : conséquence du fait que 'on peut multiplier des équivalents.
Pour un exposant quelconque : provisoirement admis, conséquence de la continuité de
la fonction puissance «.

0 Attention On ne peut pas...

® passer un terme d’'un coté de 'autre c6té par exemple.

® sommer des équivalents,

® composer des équivalents par une fonction, méme continue en dehors de
celles mentionnées dans la proposition précédente (inverse, valeur absolue,
puissance). En particulier, on ne compose pas par 'exponentielle, le loga-

Mais alors, comment fait-on pour les sommes et les composées ? Commencons déja
par discuter des sommes.
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Méthode (AN) 4.5 (Déterminer un équivalent d’'une somme) Se ramener a une
limite usuelle a I'aide d’'une factorisation.

Exemple 33 Donner un équivalent simple de v, = €" +1n(n) quand n — oo.

4

EQUIVALENTS USUELS. Comment obtenir des équivalents? Nous allons essen-
tiellement utiliser la définition du nombre dérivé, réecrite sous forme d’'un lemme.
Mais avant cela, commencons par les polynémes ot la technique est déja connue
mais sans jamais avoir parlé d’équivalents.

— Proposition 10 | Polyn6émes et fractions rationnelles

® [Polyndmes] Soient p € Net (ap, Apyy-ees ao) e RP*! avec a,#0,ona:

P p-1 P
apn? +a,nP7 . tain+ag ~ a,n

® [Fractions rationnelles] Soient p € N,g € N, (ap,ap_l,...,ao) € RP*! et
(bq, By-1r-e bo) eR*!aveca,+0eth, #0,0na:
a

NP +a, nP L tan+a,  a,n®

bynd+by_ynd~t + ...+ byn+by nebynd’

En résumé : en I'infini, on retrouve qu'un polyndme se comporte comme son terme
de plus haut degré et qu’'une fraction rationnelle se comporte comme le quotient de
ses termes de plus haut degré.

Preuve  On fait la démonstration pour les polynomes, le cas des fractions rationnelles en
est une conséquence par quotient d’équivalents.

4

Exemple 34 Déterminer un équivalent simple, puis la limite de la suite (u,,)

A 3 _ 2n’-n%+2 :
définie par u,, = =577 pour tout entier naturel n.
7

Exemple 35 Reprendre I'Exemple 13 al'aide d’équivalents.

4

Proposition 11| Equivalent de f(u,) — f(0)
Soient f une fonction définie sur un voisinage de zéro et (u,,) une suite ne s’an-

nulant pas APCR. Alors :

0]
(i)

f dérivable en zéro et f'(0) 0,

U, —— 0
n—oo

alors: f(uy)=f(0) ~ f'(0)u,.
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Preuwve Ona: lim u,=0et limow = f'(0). Donc, par composition de limites

n—oo X—

(voir Chapitre (AN) 6) : lim L®=©® — #/(9). Comme par hypothése f'(0) # 0, on a en-
n—oo

Up

core lim ’W =1, soit, par définition:  f(u,) - f(0) ~ f'(0)u,,.
n—oo n n—oo

On déduit alors tout un tas d’équivalents avec plusieurs choix de fonction f.

— Proposition 12 | Equivalents usuels
Soit (u,,) une suite telleque: lim u, =0.Alors:
n—:oo

2
. u
® sinu, ~ U, ®cosu, -1~ -3 ® tanu, ~ u,

n—oo n—oo n—oo

®cn—1~ u,

n—oo

®In(l+u,) ~u, ® arctan(u,) ~ u,.
n—oo n—oo

® Pourtouta#0, (1+u,)*—-1~ au,.En particulier:

Uy, 1 1

-1~ u,.

n—oo 2 ’ n—oo n—oo

1+u, -1~ — -1~ -u,,
" 1+u, "o 1-u,

o Attention
~

W/ Lycée Michel MONTAIGNE — Bordeaux

La condition lim u, = 0 est indispensable. Par exemple, sin(n) ~ n puisque
n—oo n—oo

sinn
n

0 par théoréeme d’encadrement.

n—:o0

Preuve
2
® Mis a part I'équivalent cosu, — 1 ~ =, tous ces équivalents s'obtiennent facilement
grace a la proposition précédente. Par exemple pour (1+u,)*—1:

4

® Pour le cosinus, on ne peut conclure directement avec la proposition précédente puisque

cos'(0) = —sin(0) = 0. Mais connaissant les autres équivalents usuels, si (u,,) converge

vers 0, ona:cos(u,) 1> 0, on peut donc écrire APCR, cos (u,,) = /1 —sin? (u,,) et
n—o0

on a, par transitivité de I’équivalence et grace aux formules précédentes,
2

1 u
cosun—l:\/l—sinz(un)—l’:;—Esinzu,,'::o—?".

Faisons un exemple pour terminer de recherche d’équivalent d’'une composée.

Exemple 36 Donner un équivalent de u,, = nsin (ﬁ) quand n — oo.
¢

p

o Attention

Méthode (AN) 4.6 (Déterminer un équivalent d'une composée) 11 faut utili-
ser la transitivité de I'’équivalence et donc, contrairement a d’habitude, travailler
«de l'extérieur vers l'intérieur ».

a larédeaction
Dans I'exemple précédent, on écrit surtout pas

. 1 . ( 1 ) 1 1
«sin| ———=| ~ sinf—=| car — ~ —».
(n+1)?) neo n? (n+1)? n—co p?

Car, rappelons-le, on ne peut pas composer les équivalents.

Autrement dit, on ne peut pas partir « de I'intérieur » (équivalent de la parenthése
puis composer) mais on peut partir « de I'extérieur ».

Exemple 37 Pour chaque suite (a,),(b,),(c,),(d,), déterminer un équivalent
simple de la suite, ainsi que sa limite éventuelle.
* a,=In(cos())

4
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e b, =In(&£2)

® ¢, =vVn*+3n3-1-n*

7
[ ] h = SIZ(%)
en—1

DI

4 Exemple 38 ((trés) grand classique) Soit x € R. Déterminer :

X n
lim (1+—) .
n—oo n

4

Exemple 39 (Formule de STIRLING & Application) En admettant que :

n
n! ~ (2) v2nn (formule de STIRLING)

n—oo \ €
retrouver que pour toutg € R:  lim % =0.
n—oo
4
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Remarque 8 (Equivalent et signe/nature) Soientdeuxsuites (u,,) et (v,) telles

que u, ~ v,.Alors (u,) et (v,):

e sontde «méme nature»: cest-a-dire qu’elles sont toutes les deux divergentes
(éventuellement vers +o0o) ou toutes les deux convergentes vers la méme li-
mite,

® elles sont de méme signe APCR.

n SUITES REMARQUABLES

m Suites récurrentes générales d’ordre 1

Cette fois-ci on ne suppose plus linéaire la relation de récurrence, mais seulement
d’'ordre 1 (i.e. elle fait un intervenir un terme et le suivant).

Soit f une fonction définie et continue sur &, et a valeurs dans R. On considere la
suite (u,,), . définie par:
VneN,

neN

Uy € Dy, Un1 = [ ().

Exemple 40 Précisons les récurrences obtenues dans quelques cas particuliers.

® f(x)=x+a,ouacR:lasuite (u,) associée est alors arithmétique.

® f(x)=gqx,ouqeR:lasuite (u,) associée est alors géométrique.

® f(x)=gqx+a,ou(q,a) € R?:la suite (u,) associée est alors arithmético-
arithmétique.

Dans les exercices, on peut étre amenés a se poser les questions suivantes.

Problématiques classiques sur les suites récurrentes

1. « LA SUITE EST-ELLE BIEN DEFINIE? » Ceci n'est pas une évidence, voir par
exemple si f n'est pas définie sur R (une racine, un logarithme, efc.). En gé-
néral 'exercice vous guidera sur la recherche d’«intervalles stables », i.e. des
intervalles I tels que f(I) < I. Dans ce cas, si 4, € I une récurrence montrera
que u,, € N est bien définie et qu'en plus u,, € I pour tout n € N.

2. «EST-ELLEMONOTONE ?» C’est un probleme la encore non trivial. Retenez qu’il
n'y a aucun lien évident entre la monotonie de f et celle de (u,,).

3. « CONVERGE-T-ELLE? » On aura recours pour cela aux théoremes d’existence

(notamment au théoréeme de la limite monotone), difficile de faire autrement
sans expression explicite.

4. «SI LA SUITE CONVERGE, VERS QUELLE LIMITE? » Pour cela, un seul résultat
au programme, il s'agit du théoréme qui suit (ou parfois plus simplement de
simples opérations sur les limites).

— Définition 13 | Point fixe
On appelle point fixe de f : 2; — R toutréel x € 2y tel que f(x) = x.

— Théoréme 10 | Limite et point fixe
Soient f : 9y — R, ou D <R, et (u,) une suite réelle telle que :

VneN, u,,=fu,).
(i) iy — ¢

(ii) f est continue en ¢

O

= (= f(0),

c'est-a-dire: £ est un point fixe de f.

Autrement dit, les limites finies possibles sont a chercher parmi les points fixes de

f.

Preuve  Provisoirement admis : découle de la caractérisation séquentielle de la limite, que
nous verrons dans le Chapitre (AN) 6.

Nous étudierons ce type de suite au travers de deux exemples.

Exemple 41 Considérons les suites récurrentes ci-apres.
® (u,),c définie par:
un
up=1 et VneN, u,,=——>.
1+ us,

® (v,),cn définie par:

=1 et VneN, v, =arctan(v,).
1. DEFINITION DES SUITES Montrer que les suites sont bien définies et positives.
® [Pour u]
7
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® [Pour v]

2. QUESTION PRELIMINAIRE (pour v) Montrer que arctan x < x pour tout x € R*.

3. MONOTONIE

® [Pour u]

R4

® [Pour v]

4. APPLICATION DU THEOREME DE LA LIMITE MONOTONE

5. CALCUL DE LA LIMITE
® [Pour u : opérations sur les limites]|

R4

® [Pour v:invoquer la continuité d’'une fonction]
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Remarque9 (Conjectures graphiques) Dansle casde suites avec une fonction
f «simple », il peut étre judicieux de commencer par faire un dessin comme ci-
dessous sur deux exemples.

® uy=1 et U, =/U,.
y

—0—F ———rt
0 1 Y2 U o o3 x
|

Conjecture(s)

® u,c[0,1] et u,,, =u.

Conjecture(s)

Les résultats ci-dessous n’étant pas au programme, ils ont le statut de simple re-
marque mais sont classiques.

Remarque 10 (Quelques généralités) Soit f une fonction définie sur 2, et a
valeurs dans R. On considere la suite (u,,), . définie par:
Ug€ Dy, VYneN, u,.,=[f(u,).
On considere de plus g : x € 2y — f(x) — x.
® o Si f(2f) Dy, alors la suite est bien définie (récurrence immeédiate).
¢ Plus généralement, si u, € D un sous-ensemble de Z; et si f(D) < D, alors
la suite est bien définie. On dit que D est un ensemble stable par f.

® Faire le lien entre le signe de g et la monotonie de u.

4

neN
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m Suites implicites

Définition 14 | Suite implicite
On appelle suite implicite toute suite (x,) dont le terme général x,, est donné
comme solution (en général unique) d'une équation dépendant d’'un parametre
n €N, i.e. vérifiant une égalité du type :

f.(x,) =0 avec f, qui est une fonction, pour tout entier n € N.

IIn'y a pas derésultat général au programme, mais leur étude s’appuie souvent sur un
schéma proche de I'exemple ci-apres. La difficulté est qu’a priori on ne connait pas
I'expression générale d’une suite implicite, on utilisera le théoréeme de convergence
monotone pour établir la convergence.

Remarque 11 (On ne sait, en général, pas résoudre 'équation)

® Une suite implicite ... peut étre une suite définie explicitement. Par exemple,
si on considere I'équation: nx® =1 pour tout n € N*, c’est-a-dire f,(x) =0
avec f,(x) = nx® — 1, alors elle admet pour unique solution x,, = ?ﬁ Clest
une suite explicite en n! On obtient alors directement la monotonie, la limite
etc.

® Hélas, le plus souvent, on ne saura pas résoudre ladite équation. On étudiera
donc la nature par des moyens détournés (théoreme de la limite monotone,
comme pour les suites récurrentes).

4 Exemple 42 (Etude d’une suite implicite) Pour tout € N, on considére

I'équation: f,(x)=0 (E,)dinconnuex e R*™,oti: f,(x)=nx+In(x).

1. Pour tout n € N, I'équation (E,) admet une unique solution sur R**. On la
note désormais x,. La fonction f, est continue sur R**, et liin f(x) = o0,
et tho f.(x) = —oo. De plus, en calculant la dérivée, on constate facilement
qujfe la fonction est méme strictement croissante. Donc dapres le théoreme
de la bijection, la fonction f,, réalise une bijection de R** vers f(R™*) = R

(dapres le calcul de limites et la monotonie de f). Comme 0 € R, il existe un
unique x, € R** comme prétendu dans I'énoncé. La fonction f, est continue
sur R, et xlgl fu(x) = o0, et limofn(x) = —o0. De plus, en calculant la dé-
rivée, on constc(;;e facilement quﬁa fonction est méme strictement croissante.
Donc dapres le théoréme de la bijection, la fonction f, réalise une bijection de
R** vers f (R**) = R (d'apres le calcul de limites et la monotonie de f ). Comme
0 € R, il existe un unique x,, € R™* comme prétendu dans I'énoncé.
Pourtoutn € N,onax, €]0,1]. Commef,(1) = n > 0, on peut méme affirmer
que x, €]0,1]. Comme f,,(1) = n > 0, on peut méme affirmer que x,, €10,1].
La suite (x,) décroit. Indication : On cherchera le signe de f,,,,(x,)

® Nousavons f,.,(x,) = (n+1)x,+In(x,) = nx, +In(x,) +x, = x,,, puisque

l'on reconnait f,,(x,) =0.0rx,, =0, doncfml(xn_)oa 0.
® 0=Ff,,..(x,01).donc: f,.1(x,) = fr1(X,,41), mais f,,,, estcroissante, doii
lontire: x,., <Xx,.Lasuite est décroissante.
La suite (x,,) converge vers une limite £ € [0, 1] que 'on peut déterminer. La
suite est dapres ce qui précede décroissante minorée par zéro, donc converge
vers une limite finie.
Supposons que ¢ €]0,1]. Alors puisque nx,, = —In(x,,), nous aurions en pas-
sant a la limite : —1In(¢) = oo ce qui est clairement une contradiction. La
suite est dapres ce qui précede décroissante minorée par zéro, donc converge
vers une limite finie.
Supposons que ¢ €]0,1]. Alors puisque nx,, = —In(x,,), nous aurions en pas-
sant a la limite: —1In(¢) = oo ce qui est clairement une contradiction.

Méthode (AN) 4.7 (Plan d’étude d’une suite implicite)

1.

Etablir I'existence et 'unicité de la suite grace au théoréme de la bijection.

2. Chercher la monotonie en cherchant le signe de f,.,(x,). Par exemple, si

fue1(x,) = 0 = f,,,1(x,,1), on exploite ensuite la monotonie de f,,,, pour
comparer x,, et x,,,;.

3. Trouver la valeur de la limite : en général on raisonne par 'absurde dans

I'identité f,(x,) = 0.
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>_%® INFORMATIQUE

Résumé des attendus

Voici ce qu’il faut savoir faire en Python a propos des suites :

® Les fonctions permettant de calculer un terme donné d’une suite.

® Les fonctions permettant de calculer le premier terme ou le premier indice
d’'une suite pour lequel une condition donnée est vérifiée pour la premiere
fois.

® Construire la liste des termes d’une suite jusqu’a un indice donné/ce qu'une
condition soit vérifiée.

® Tracer le graphe de la suite en exploitant la liste des termes précédents.

Nous illustrerons ces différents programmes sur les trois suites suivantes :

® [Explicite] La suite (u«, ), définie explicitement, vérifiant :

a\n
VneN", un=(1+—)
n
ol a € R est choisi par I'utilisateur. On peut prouver qu’elle converge vers e“.

® [Récurrence d’ordre 1] La suite (v,), définie par une relation de récurrence

d’ordre 1, vérifiant :
Uy = a € R choisi par 'utilisateur
VneN, v, =v,+e"".

On peut prouver qu’elle est croissante quel que soit a € R et en déduire, par I'ab-

surde, qu’elle tend vers +oo.

® [Récurrence d’ordre 2] La suite (w,), définie par une relation de récurrence

d’ordre 2, vérifiant :
w, = a € R choisi par l'utilisateur
w,; = b € R choisi par I'utilisateur
VREN, Wy = 2Wyy — ¢ W,

On peut prouver qu'elle converge vers zéro.

Remarque 12 (Nomage des variables) Dans tous nos programmes, on respec-
tera les deux conventions suivantes : les variables n, i, j ... serviront a stocker
des valeurs d’indices, les variables u, v, w ... serviront quant a elles a stocker des
valeurs de termes des suites. Méme si la suite s'appelle autrement que (u,,), on
appelle u la variable stockant son terme.

Calcul du n-iéme terme

SUITE EXPLICITE. C'est le cas le plus simple, il suffit de renvoyer 'expression cor-
respondant au terme saisit par I'utilisateur. Voici par exemple le code de la fonction
terme_u(a,n) quirenvoie le terme u,, avec a et n en parametre de fonction :

mm Terme 7 d’une suite définie explicitement
def terme u(a, n):

renvoie la valeur de u_n

return (1+a/n)**n
>>> terme u(2, 1)
3.0
>>> terme u(0, 1)
1.0

CAS PARTICULIERS DES SOMMES (SERIES) ET PRODUITS. Des suites peuvent
étre définies a 'aide d'une somme ou d'un produit. On utilisera alors les méthodes
vues dans le chapitre sommes/produits du cours de Mathématiques.

n
> (Calculde ) a;)
k=p
def somme a(p, n):
S=0
for k in range(p, n+1):
S += a; # le terme a k est a taper a la main en |\
— fonction de la somme
return S

n
Par exemple, la fonction ci-apres réalise le calcul de ) cos(kx), avec x € R
k=p
def somme cos(p, n, X):
S =0
for k in range(p, n+l):
S += ma.cos (k*x)
return S
>>> somme_cos (0, 10, 1)
-0.4174477464559059
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>>> somme_cos (0, 10, 0) # résultat attendu car
— fois
11.0

on somme 1, onze |\

n
(calcutde [] a;)
k=p
def produit(p, n):
P=1
for k in range(p, n+1):
P *= a, # a adapter en fonction de la somme
return P

>_»

n
PmemmmeamnaMndﬂpmsmmmebcdmﬂdeI]e“ﬂmmcxeR
k=p
def produit(p, n, x):
P=1
for k in range(p, n+1):
P *= ma.exp(k*x)
return P
>>> produit(0, 10, 1)
7.694785265142015e+23
>>> produit(0, 10, 0) # résultat attendu
1.0

SUITE RECURRENTE D’ORDRE 1. Pour calculer v, on procede ainsi.

1. On prévoit un test if pour la condition initiale, puis :

2. oninitialise une variable u avec la valeur de .

3. On parcourt a I'aide d’'une boucle for tous les indices i de 1 a n (I'indice mathé-
matique correspondant). Pour chaque valeur de i, on remplace u (qui contient
v;_;) par sa nouvelle valeur, v;, a 'aide de la formule de récurrence.

4, En sortie de boucle, u contient la valeur de v,,; il suffit donc de renvoyer u.

Voici par exemple le code de la fonction terme_v(a,
Uy = a et n en parametre de fonction :

n) qui renvoie le terme v,, avec

mm Terme 7 d’une suite récurrente d’ordre 1
def terme v(a, n):

renvoie la valeur de v_n lorsque v 0 = a

if n ==
return a
else:
u=a
for i in range(1l, n+l):
# u est ici la valeur précédente
u=u+ ma.exp(u)
# u est ici la valeur suivante
return u

>>> terme v(0, 1)
1.0

>>> terme v(0, 2)
3.718281828459045

Remarque 13 (Version «universelle » sans if) Le test if n'est ici pas obliga-
toire. En effet, si n = 0 alors la boucle for ne s’exécutera pas (bornes dans le
mauvais sens) et donc on renverra bienv = a.

SUITE RECURRENTE D'ORDRE 2. Pour calculer w,, on procede ainsi :

1. On prévoit un test if pour les deux conditions initiales, puis :

2. oninitialise deux variables, u et v, avec les valeurs de wj, et de w;.

3. On parcourt a I'aide d'une boucle for tous les indices i de 2 a n (I'indice ma-
thématique correspondant). Pour chaque valeur de 7, on calcule le terme suivant
a l'aide de la relation de récurrence puis on remplace simultanément (donc au
moyen d'une double-affectation) u et v par les nouvelles valeurs.

4. En sortie de boucle, v contient la valeur de w,,.

Voici par exemple le code de la fonction terme_w(a, b, n) quirenvoie le terme w,
avec w, = a, w;, = b et n en parametre de fonction.

mm Terme 7 d’une suite récurrente d’ordre 2
def terme w(a, b, n):

renvoie la valeur de w n lorsque w 0 = a et w1l =50
if n == 0:
return a
elif n == 1:
return b
else:
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u, v=a,b>b
for i in range(2, n+l):
u, v =v, (5/6)*v-(1/6)*u
return v
>>> terme w(0, 1, 0)
0
>>> terme w(0, 1, 1)
1
>>> terme w(0, 1, 2)
0.8333333333333334

Remarque 14 (Version « universelle » sans if) La encore, le test if n'est pas
indispensable. 1l est possible d’adapter la seconde partie de la fonction (chan-
gement de boucle for et dans la récurrence) afin qu’elle convienne également
auxcasn = Oetn = 1.

def terme w bis(a, b, n):

renvoie la valeur de w n lorsque w 0 = a et w1l =5»,
u, v=a,b
for i in range(1l, n+l):
u, v =v, (5/6)*v-(1/6)*u
return u
>>> terme w bis(0, 1, 0)
0
>>> terme w bis(0, 1, 1)
1
>>> terme w bis(0, 1, 2)
0.8333333333333334
Elle renvoie bien également les bons termes.

Calcul du premier terme/indice vérifiant une condition

Pour réaliser ces fonctions, il va falloir calculer les termes successivement jusqu’a
ce que la condition soit vérifiée. Pour cela on utilisera une boucle while : tant que
la condition n’est pas vérifiée, on calcule le terme suivant; reste alors a renvoyer le
dernier terme/indice. On parle en général dalgorithme de seuil.

Attention

Contrairement aux boucle for, une boucle while ne permet pas de parcourir
automatiquement les différents indices. Il faudra donc dans nos programmes
introduire une variable contenant la valeur de I'indice, I'initialiser correctement
et 'augmenter de 1 a chaque passage dans la boucle.

o

SUITE EXPLICITE. Par définition de la limite, on sait par exemple que comme la
suite (u,,) converge vers e, on a:

Ve>0, 3dnyeN,
Voici une fonction cherchant 'entier n, en question.

n =ny, = |u,—e* <e.

mm Algorithme de seuil pour une suite explicite
def seuil u(a,eps):

renvoie le premier indice n pour lequel |u _n-exp(a)|<eps
n=1
u = (l+a/n)**n
while abs(u-exp(a)) >= eps:
n +=1
(1+a/n)**n

u =
return n

Remarque 15 Il est parfois possible de calculer I'entier n, explicitement en ré-
solvant une équation/inéquation, mais cela n'est pas possible sur cet exemple.

SUITE RECURRENTE D'ORDRE 1. Pour réaliser ces fonctions, il y a un unique
changement a apporter aux fonctions précédentes : remplacer la boucle for par une
boucle while.

On sait par exemple que la suite (v,,) tend en croissant vers +oo, donc :
VAeR, 3dnyeN,

Voici la fonction qui renvoie I'indice n,, a et A étant en parametre de fonction.

nz=n, = v, >A.

mm Algorithme de seuil pour une suite récurrente d’ordre 1
def seuil v(a, A):

renvoie le premier indice n pour lequel v n >= A



BCPST1 (€9 2025-2026

30

Lycée Michel MONTAIGNE — Bordeaux

~—

w

n=20
vV =a
while not (v > A):
n += 1
vV =V + ma.exp(v)
return n

>>>n 0 = seuil v(1, 10)
>>>n 0

2

>>> terme v(1, n 0)
44.911837503175164

>>> terme v(1, n 0-1)
3.718281828459045

SUITE RECURRENTE D'ORDRE 2. Pour réaliser ces fonctions, il y a un unique
changement a apporter aux fonctions précédentes : remplacer la boucle for par une
boucle while.

On sait par exemple que la suite (w,) converge vers 0, donc :
VeeR:, 3dnyeN,
Voici la fonction qui renvoie 'indice 7y, a, b et € étant en parametre de fonction.

nzn, = |w,|<e.

mm Algorithme de seuil pour une suite récurrente d’ordre 2
def seuil w(a, b, eps):

renvoie le premier indice n pour lequel |w _n|<eps
n=2~0

u, v=a,hb

while not(abs(u) < eps):

n+=1
u, v =v, (5/6)*fv-(1/6)*u
return n
>>>n_ 0 = seuil w(1, 1, 10**(-3))
>>>n 0

12

>>> terme w(0, 1, n 0)
0.0014535536914610499
>>> terme w(0, 1, n 0-1)
0.002895817324383145

Construction de la liste des termes et tracé

On construit la liste de proche en proche a I'aide d'une boucle for ouwhile et de la
méthode append sur les listes. Vous noterez que les versions avec seuil permettent
de retrouver les algorithmes de seuil précédents (en renvoyant la longueur de la liste
obtenue).

SUITE EXPLICITE.
des termes u; a u,,.

On donne a titre d’exemple les fonctions qui renvoient la liste

mm Liste de termes sous condition ou non - Suite explicite
def liste terme u(a, n):

renvoie la liste [u 1,...,u n] (u 0 n'existe pas !)
L =[]
for i in range(1l, n+l1):
L.append((1+a/i)**1i)
return L

>>> liste terme u(1l, 10)

[2.0, 2.25, 2.37037037037037, 2.44140625,
263717421135, 2.546499697040712,
84, 2.5937424601000023]

def liste seuil u(a, eps):

2.4883199999999994, 2.5216
2.565784513950348, 2.58117479171319

renvoie la liste [u 1,...,u n] ou n est le premier indice n |
— pour lequel |u n-exp(a)|<eps"""

n=1

L = [(1+a/n)**n]

while not abs(L[-1] - ma.exp(a)) < eps:
n+=1
L.append((1+a/n)**n)

return L

>>> liste seuil u(l, 10%*(-1))

[2.0, 2.25, 2.37037037037037, 2.44140625,
263717421135, 2.546499697040712,
84, 2.5937424601000023,
6008878857308]

2.4883199999999994, 2.5216
2.565784513950348, 2.58117479171319
2.6041990118975287, 2.613035290224676, 2.620
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SUITE RECURRENTE D'ORDRE 1. On construit une liste L telle que L[i]
contienne la valeur de v;. Il n'est alors plus nécessaire de conserver le terme pré-
cédent dans une variable : lors du calcul de v;, on dispose de la valeur de v;_;, c’est
précisément L[ - 1], le dernier terme ajouté.

On donne a titre d’exemple une fonction qui renvoie la liste des termes v, a v, et une
autre qui renvoie la liste de tous les termes de (v,,) jusqu’a ce que v, > A.

mm Liste de termes sous condition ou non - Suite d’ordre 1
def liste terme v(a, n):

renvoie la liste [u 0O,...,u n]

L = [a]

for _ in range(1l, n+1):
L.append(L[-1] + ma.exp(L[-1]))

return L

>>> liste terme v(1, 3)

[1, 3.718281828459045, 44.911837503175164, 3.1986240606431162e+19]

def liste seuil v(a, A):

renvoie la liste [v 0O,...,v_.n] ou n est le premier indice n |
— pour lequel v_n>=M
L = [a]
while L[-1] < A:
L.append(L[-1] + ma.exp(L[-1]))
return L
>>> liste seuil v(1, 3)
[1, 3.718281828459045]

SUITE RECURRENTE D'ORDRE 2. On construit une liste L telle que L[i]
contienne la valeur de wj;. La encore, il n’est alors plus nécessaire de conserver les
termes précédent dans des variables : lors du calcul de w;, on dispose de la valeur
de w;_; dans L[i-1] et de w;_, dans L[i-2]. On donne a titre d’'exemple une fonc-
tion qui renvoie la liste des termes wj;, a w,, et une autre qui renvoie la liste de tous
les termes de (w,) jusqu’a ce que |w,,| < €. Notons que dans deux fonctions, et ce
afin d’éviter la gestion de cas particuliers, on suppose que la liste finale contient au
moins w, et w,.

mm Liste de termes sous condition ou non - Suite d’ordre 2
def liste terme w(a, b, n):

renvoie la liste [w O,w 1,...,w n] (n>=1)
if n ==
return [a]
elif n ==
return [a, b]
else:
L = [a, b]
for i in range(2, n+l):
L.append((5/6)*L[-1]1-(1/6)*L[-2]1)
return L
>>> liste terme w(1l, 1, 10)
[1, 1, 0.6666666666666667, 0.38888888888888906, 0.2129629629629631
3, 0.11265432098765445, 0.05838477366255152, 0.029878257887517197, 0
.015167752629172412, 0.007660084209724144, 0.0038554447365747183]
def liste seuil w(a, b, eps):
renvoie la liste [w O,w 1,...,w n] (n>=1) ot n est le premier |\
— indice pour lequel |w_n|<eps
L = [a, b]
while abs(L[-2]) >= eps:
L.append((5/6)*L[-1]1-(1/6)*L[-2])
return L
>>> liste seuil w(1l, 1, 10**(-1))
[1, 1, 0.6666666666666667, 0.38888888888888906, 0.2129629629629631
3, 0.11265432098765445, 0.05838477366255152, 0.029878257887517197]

Remarque 16 (Suitesimbriquées) Ilfautsavoir également en pratique adapter
ces algorithmes a des suites récurrentes imbriquées.

Tracer une suite

On s’y prend comme pour les fonctions, on a besoin donc de la liste des termes de
ladite suite. Tragcons par exemple (u,,).




BCPST1 (€9 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

mm Tracé de la suite (u,,) sur [0, 10]
import matplotlib.pyplot as plt

n =10
X
Y

liste terme u(2, n)

plt.plot(X, Y, "bo") # o :

list(range(l, n+l)) # entiers entre 1 et n

plt.plot(X, Y, marker =
— petit peu plus visuel

2 4 6 8 10

'o') # des points reliés cette fois,

style de marker, des points non reliés

un \

FICHE METHODES

Les méthodes du cours sont toutes reprises dans cette section, elles sont parfois com-
plétées par un nouvel exemple.

Méthode (AN) 41 (Trouver la monotonie d’une suite)

® [Cas 1 : fonction dérivable] Si u, = f(n) avec f dérivable, on étudie la
fonction. Les monotonies coincident.

® [Cas 2 : expression avec des sommes/différences principalement] Pour
étudier la monotonie d’une suite, la méthode la plus fréquente est de calculer
U, — U, et étudier son signe.
o siu,,; —u, =0pourtout n € N, alors la suite (u,,) est croissante,
o siu,,, —u, <0 pourtout n €N, alors la suite (u«,) est décroissante.
En outre, lorsque la suite (u,,) est définie par u,, = f(n) (i.e. de facon expli-
cite), le sens de variation de (u,,) est le méme que celui de f sur [0; +oo].

® [Cas 3 : expression avec des puissances/produits/quotients principale-
ment| Siune suite (u,,) est a termes strictement positifs, elle est :
o croissantesi: VmneN, ”“ =1,

o décroissantesi: VneN, ”"“ <1.
Ce criteére est utile seulement si “”“ donne une expression simple (notam-
ment en cas de présence de factonelles de puissances...).

Méthode (AN) 2.2 (Montrer que u,, — ¢ avec la définition de la limite)

1. Se donner € > 0.

2. Résoudre l'inéquation |u, —¥¢| < € en n € N. Lensemble des solutions
contient un ensemble de la forme [n,, oo, avec n, € N. On a alors prouvé
que: VneN, n=z=zn, = |u,-¥|<e.

3. Ceci étant vrai pour tout € > 0, on amontré que: u,

l.

n—oo

Méthode (AN) 2.3 (Montrer que u,,

1. Sedonner A eR.

2. Résoudre I'inéquation u, > A en n € N. Lensemble des solutions contient
un ensemble de la forme [, co[, avec n, € N. On a alors prouvé que: Vne
N, n=n, = u,>A.

3. Ceci étant vrai pour toutA € R, on amontré que: u,

+00 avec la définition de la limite)
—>00

+00.
n—oo

Méthode (AN) 4.4  (Déterminer des équivalents a laide d’'un encadre-
ment) Supposons que u, < v, < w, au moins pour n assez grand. Alors si
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u, ~ a,,w, ~ a, ou (a,) est une suite strictement positive, on montre que
n—oo

n—oo

U, ~ Q,en:
n—oo
1. divisant par a, toutl'encadrement: 2% <2t <22,
n n

n
2. On conclut a ’'aide du théoreme d’encadrement en faisant n — oo.
La méme méthode s’applique pour les suites strictement négatives bien str, en
inversant I’encadrement.

Méthode (AN) 4.5 (Déterminer un équivalent d’'une somme) Se ramener a une
limite usuelle a I'aide d’'une factorisation.

Méthode (AN) 4.6 (Déterminer un équivalent d’'une composée) Il faut utili-
ser la transitivité de I'équivalence et donc, contrairement a d’habitude, travailler
«de l'extérieur vers l'intérieur ».

Méthode (AN) 2.7 (Plan d’étude d’une suite implicite)

1. Etablir I'existence et 'unicité de la suite grace au théoréme de la bijection.

2. Chercher la monotonie en cherchant le signe de f,,,(x, ). Par exemple, si
fui1(x,) = 0 = f,,.1(x,,1), on exploite ensuite la monotonie de f,,,, pour
comparer x, et X, .

3. Trouver la valeur de la limite : en général on raisonne par I'absurde dans
I'identité f,(x,) = 0.

QUESTIONS DE COURS POSEES AU CONCOURS AGRO—VETO

Question Réponse Commentaire

Donner la définition de Ve>0,an,eN, Vnz=ng|u,—¥| < | Attention aux

u ¢ € quantificateurs
n n—:aoo

Donner la définition de YM>0,3n,eN, VYn=ngu,>M | Attention aux

u, +00 quantificateurs

n—:o0
Enoncer la définition et le Définition : deux suites de Attention au

théoreme des suites
adjacentes

monotonie différente dont la
différence tend vers zéro. Théoréme :
les deux suites convergent vers la
méme limite

mélange entre les
deux!
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n EXERCICES

La liste ci-dessous représente les éléments a maitriser absolument. Pour les travailler,
il sagit de refaire les exemples du cours et les exercices associés a chaque item.

Savoir-faire
1. Concernant les limites :

® Connaitre I'idée intuitive de la définition mathématique des limites .......... O

® savoir déterminer des limites en utilisant les théorémes (somme, produit, quo-
[8720 18 PSP O

® savoir utiliser le théoréme d’encadrement et les théorémes de comparaison .. [J

® Connaitre les croissances comparées et savoir les détecter ................... O

® savoir appliquer le théoréme de la limite monotone ......................... O

2. Savoir reconnaitre les suites adjacentes mutuelle, et ne pas mélanger hypotheses
(monotonie et différence) et conclusion (convergence) .................oeuvn... O

3. Savoir démontrer que deux suites sont équivalentes ................. ... ... (I

Signalétique du TD

® Lelogo B désigne les exercices que vous traiterez en devoir 4 la maison. Vous pouvez
m'en rendre un ou plusieurs, au plus tard le lundi qui précede un devoir surveillé
concernant ce chapitre. Ce travail est facultatif mais fortement conseillé.

® Lelogo @ désigne les exercices un peu plus difficiles; a aborder une fois le reste du

TD bien maitrisé.

Exercice 1 | Propositions sur les suites solution Soit (u,,),cy Une suite réelle.
Ecrire a l'aide des quantificateurs les assertions suivantes puis les nier :

1. Lasuite (u,),y €St croissante. 2. Lasuite (u,),en €st strictement dé-
croissante.
3. Lasuite (u,,),e €St constante. 4. Lasuite (u,),y €St majorée.

5. Lasuite (u,), €St minorée par m € 6.
R.

La suite (u,,),,cn €St minorée.

7. Lasuite (|u,|),en diverge vers +co. 8.  Lasuite (u,),cn CcOnverge.

m Suites explicites

Exercice 2 | Etudes de monotonies
lement APCR) des suites définies par :

solution Etudier la monotonie (ou éventuel-

n
1. VneN, un:(zzlk)—n 2. VneN*, un—¥
k=0
2n (—l)k
3. VneN, u,= 4 VneN, u,=n+2(-1)"
k=0 k+1
n n
5. VneN, u":kgzklr}(k)’ 6. VneN, u,=2%.

Exercice 3 | Limites de suites définies explicitement solution Etudier le com-
portement en +oo des suites ci-dessous, éventuellement au moyen d’équivalents.

1 u,= cos”(%) 2. u,=In(n+1)-In(n?)
3. u,=(1+2)" 4 u, =230

" n
5 u,= Zjl(T_(;)g) 6. u,= # kz=:1 k

7 u, =35 8 u,= 1+(;1)n

9. u,=n*-ncosn+2 10. u,= "'(J'n(f;),l)'

M. u,=In(2"+n) 12. u,= n

13. u,=(Inn)" 14. u,= %

5. u,=(n*+n+1)n 16. u,=n’ (cos(#)—l).

Exercice 4 | Etude de la suite de Po1ssoN
cice la suite (u,) définiepar: VneN,

solution On considére dans cet exer-

u, = )‘7';, avec A € R*.

1. Etudier la monotonie de (u,,) dansles cas A = 1,A = 2.

2. >_%® En cherchant une relation de récurrence sur les termes de (u,,), écrire une
fonction d’en-téte trace poisson(lamba) sans argument qui trace la suite (u,,)
sur [0, 10] pour A € {3,1,2}. Que conjecturer quant a la monotonie? la nature?
lamba correspond donc ici bien siir a A.

3. Démontrer ces conjectures.
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m Suites définies par des sommes ou des produits

Exercice 5| solution En encadrant les termes généraux, étudier la convergence
des suites suivantes :

n n
* _ 1 * _ 1
1. VneN”, un—kgl o 2. VneNT, un_k§1 —
“ _k
3. Vne N*, u, = Z ik
k=1
Exercice 6 | solution

1. Montrer que pour tout entier n = 1,on a:
1
2(Vn+1-y/n)< NG <2(vn-vn-1).
n
2. En déduire les limites quand n tend vers +oo des deux suites (u,,) et (v,,) dont
n

le terme général est pour toutn e N*:  u, = ¥ %, v, = “2. En déduire un
RV v
équivalent simple de u,,.

Exercice 7| sowtion Montrer que les suites (S,,),,, et (T,), ., définies par :

n n
VneN*, sn=zi—2 n+l, Tn:ZL—Z\/ﬁ.
k=1 k k=1vk

N

sont adjacentes. Qu'en conclure?

Exercice 8| sowtion Soit x € R fixé. Etudier le comportement de la suite (u,,) ,cp«
n
définiepar: u, = ¥ |kx].
k=1
Exercice 9 | & Isolution

2
1. Montrer que, pour toutx >0,ona: x-% <In(l1+x)<x.
2. En déduire la limite quand 7 tend vers +oo de la suite définie par:

Pn = lﬂl(l+%)

k=1

VneN*,

m Suites récurrentes

Exercice 10 | Calcul de termes explicites (1) solution Pour ces suites définies
par récurrence, calculer le terme général en fonction de n :

3(n+1 o . .
1. u =1 VneN", u,, = %un Indication : On cherchera a conjecturer

une formule, que l'on démontrera par récurrence
2. uy=2, VneN, u,,, =2u. Indication: On pourra procéder comme précé-
demment, ou en introduisant la suite (In(u,,)),, aprés avoir justifié son existence.

Exercice 11| Calcul de termes explicites (2)
rifie la relation de récurrence: VneN,

solution Soit une suite (u,,) qui vé-
Uy = —US+2U,.

1. Calculer 1 - u,_, en fonction de 1 — u,, pour tout n € N.
2. Déterminer la limite de la suite (u,,), si elle existe, en fonction du premier terme
Uy.

Exercice 12| u,,, = f(u,),avec f polynomiale
paruy €Ret: Vn=0, u,.,= %ui—Zun +3.

solution On définit la suite (u,,)

—® FEcrire une fonction termes_u(u_0, n) quirenvoie la valeur de u,,.
Etudier la fonction f associée.
Etudier le signe de g : x — f(x) — x.
Calculer les limites finies éventuelles de la suite (u,,).
On suppose que u, > 2.

AN

51) Montrer que la suite est bien définie et que pourtoutn e N:  u, > 2.
5.2) FEtudier la monotonie de la suite (u,,).
5.3) Etudier la limite de la suite (u,,).
6. On suppose que i, € |%,2].
6:1) Montrer que la suite est bien définie et que pour tout n e N:  u, € |4,2].

6.2) FEtudier la monotonie de la suite (u,,).
6.3) Etudier la limite de la suite (u,,).

Couples de suites récurrentes
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Exercice 13 |
let: Vn €N,

solution Soient (a,,) ,en €t (b,,) ey deux suites telles que a; = 0, by =
Apy1 = =20, + bn’ bn+1 =3ay,.

1. Démontrer que la suite (a,, + b,,) e €St constante.
2. Pour tout n € N, exprimer a,, en fonction de n.
3. Pour tout n € N, déterminer b,, en fonction de n.

Exercice 14| solution On définit deux suites (,,) ,en+ €t (V) pen+ PAT
u, +2v, U, +3y,

uy,=1 =12, VneN", u,,,=—"—", Up=
3 4
1. 2% Ecrire une fonction termes_uv(n) quirenvoie la valeur de (,, v, ). Conjec-
turer I'existence et la valeur des limites de u et v.

2. On souhaite trouver la limite éventuelle des suites u et v.

21) Onpose, pour tout n € N*, w, = v, — u,,. Donner I'expression de (w,,) ,ens-
2.2) Montrer que (u,,),en* €t (V) ,en+ SONt adjacentes.
23) On pose pour tout n € N*, ¢, = 3u,, + 8v,. Donner 'expression de (£,,) ,en+

et en déduire la limite de (u,,) ,en+ €t (V) pens-
3. On souhaite retrouver les résultats précédents a I’aide d'un calcul matriciel.

-8
31) OnnoteP= ( i 1), montrer que P estinversible et déterminer son inverse.
u
32) OnnoteX, = (V") pour tout 7 € N. Chercher une matrice A € 9, , (R) tel
n

que: VneN, X,,; =AX,, puisrappeler sans justifier une expression
de X,, en fonction de n € N.

3.3) Calculer P"'AP, puis en déduire que A est semblable & une matrice diago-
nale D € 9, , (R). Donner sans justification une expression de A" en fonc-
tion de D".

3.4) Déterminer une expression de (u,,) enfonction de n, puis retrouver lalimite

de (u,,). La méme démarche pourrait étre appliquée a (v,,).

E Suites d'intégrales

Exercice 15| soltion On définit la suite (I,,) ,en pAT :

Vn=0, In:fztan”(t)dt.
0

1. Justifier que (I,,),,c est bien définie, puis calculer I, et I,.

2. 21) Démontrerque: Vn=0, I,=0.

Exercice 16 |

1.
2,
3.

Exercice17 | &

Exercice 18 |

1.

o FWwN

Exercice 19 |

1.

2.2) Endéduire que (I,,),,.\ converge.

Solution On définit la suite (u,,) ey par:

1 "
Yn=0, u,= f dr.
o 1+1¢?
Calculer u, et u;.
. 1
Montrer que: VneN, Osu,< 5.

Montrer que la suite (u,,),,en cOnverge et déterminer sa limite.

Solution On définit la suite (I,,) ,en par:

vn=0, I,= fe x*(In(x))" dx.
1

Calculer I, et1;.

. Montrer que la suite (I,,) .5 €St convergente.

Montrer que :  Vx € [l,e], 0 < In(x) < Z. En déduire la limite de la suite
(In)nel\l' 3
Montrerque: VneN, I,,=%-221,.

m Suites implicites

Solution

Soit n = 1. Montrer que I'équation x"” + x — 1 = 0 d'inconnue x € R admet une
unique solution x,, dans R™.
Montrer que la suite (x,,),n €St majorée par 1 et minorée par 0.
Etudier la monotonie de la suite.
Etudier la convergence de la suite.
Montrer qu'il est impossible que la suite converge vers une limite £ < 1.
Conclure que lim x,=1.
n—-+oo

solution Pour tout n € N*, on définit la fonction f,, sur R par :
VxeR, f,(x)=nx®+n*x-2.

Soit n € N*. Montrer que I’équation f,(x) = 0 admet dans R une unique solution.
On notera a,, cette solution.
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2. Prouver que la suite (a,,),,cn €St positive, décroissante.
3. Etudier la convergence de la suite (a,,) ,en-

Devoir-maison ﬁn

Exercice 20 | Suitesimplicites, équivalents. Solution Pourtout 7z € N* on consi-
dere ’équation d'inconnue x € R, :

(E,): x+e™=2.

1. Pour tout n € N*, on définit f, la fonction définie sur R, par
fux)=x+e"-2.
Montrer que pour tout n € N*, 'équation (E,,) admet une unique solution, que
l'on note x,,, dans R, .
Ainsi, x,, + €™ =2 pour tout n € N*.
2. 21) Soit n € N*. Montrer que pour tout x € R,, f,,,;(x) - f,(x) = 0.
En déduire le signe de f,, ., (x,,) puis la monotonie de la suite (x,,).
2.2) Montrer que la suite (x,,) converge. On notera ¢ sa limite.
2.3) Montrer al'aide d'un raisonnement par I'absurde que ¢ = 0.
3. Montrer que pour tout n € N*, nx,, =In(2 — x,,). En déduire que :
In(2)

~~
n—+oo n

. In(2)
4. Pourtoutn e N* onposeeg, =x,— —.
In (1 - ﬂ)
Montrer que €, = _\ 2) et en déduire que :
o n
En n:\-:oo W’

avec a et p deux réels a déterminer.
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SOLUTIONS DES EXERCICES

Solution (exercice 1) tnonce Etude de chaque propriété :
1. VneN u,,,=u, 2. VneN, u,,,<u,

Négation: IneN, u,,, <u,. Négation: 3IneN, u,,, = u,.
3. VneN, u,=u, 4 IMeR, VneN, u,<M
Négation: 3IneN, u, + y, Négation: VMeR,dneN, u, >
M.
5. VneNu,=zm 6. ImeR VneN, u,=m
Négation: 3IneN, u, <m. Négation: VmeR,IneN, u, <
m.

7. VYAeR InyeN,VneN,nzn, = u, =A
Négation: FJAER,VnyeN,IneN, n=n; et u, <A.

8 J/eR, VeeR",IngeN,VneN, n=n, = |u,—¥|<e.
Négation: VIZeR,JeeR", VnyeN,IneN, n=nyet |u,—¥¢| =«

Solution (exercice 2) tnonce
1. Lasuite (u,) est définie par une somme, on étudie doncle signede u,,,; — u,,.
n+1 1

1
Uyl — Z_k_(n+1)_kzoz_k+n=2"+1_1

Or, pourtoutneN,ona: W < 1. Ainsi la suite ‘ (u,,) est décroissante ‘
2. Lasuite (u,,),n+ €St une suite définie explicitement et u,, = f(n) avec
lnx
frx—fx)=—
Létude dela monotonle de la fonction f sur [1, +oco[ permet d’en déduire di-
rectement la monotonie de la suite.
La fonction f est dérivable sur R** comme quotient dont le dénominateur
ne s'annule pas de fonctions dérivables. On obtient
1-Inx
xz

Vx e R, f'(x) =

Etudionsle signe de 1-In x (x? = 0 doncle signe de la dérivée est bien le signe
del-Inx):1-Inx >0 < Inx <1 < x <e car la fonction exponentielle
est strictement croissante.

Ainsi, la fonction f est strictement décroissante sur [ e, +oo[. Ainsi, a partir du
rang 3, la suite | (u,,) .53 est décroissante]

3. Lasuite (u,,) est définie par une somme, on étudie donc le signede u,,,., — u,,.
2(n+1) ( 1)k 2n ( 1)k

Upiy — Uy = Z

k= k+1 ovVk+1
2n+2 ( l)k 2n (—l)k

Z

k=0 Vk+1 k+1
\/2n+3 \/2n+2

<0 puisque \/2n+3> \/2n+2.
Ainsi, la suite |(u,) est décroissante)
4. Onremarque que
Uy — U, = n+1+2(=1)""—n-2(-1)" = 1+2(-1)"" +2(=1)"*! = 1+4(-1)"*.
A1n31, si n = 2p pair, on obtient : uy,,; — u

p=5>0etsin=2p+1impair,

on obtient : uy,,, — i, = —3 < 0. Ainsi la suite|(u,) n'est pas monotone|
5. Lasuite (u,,) est définie par une somme, on étudie donc le signede u,,,, — u,,.

n+l 1 n 1
e = Un = D G0 ™ L Fng
Ainsi, la suite | (u,) est croissante|
6. La suite u est bien entendu strictement positive. De plus, pour tout n e N :
Upyy  (n+1)! ><n_"_ (a+1Tn" _( n )n<1
u, (m+1)" pl (mDn+1)" \n+l

(u,) est décroissante].

s s 0

Ainsi,

Solution (exercice 3) ctnonce Je ne donne ici que les réponses et quelques
indications pour trouver les limites demandées. Une telle rédaction dans une
copie serait tres insuffisante.

1. lim ’zl) = +o0 par composée et produit de limite car cos(0) = 1.
n—00 CoS n

2. lim In(n+1) -
n—oo
noémes de plus haut degré.

3. lim (1+2)"=e¢’enutilisantlefaitqueln(1+2)~

n(n?) = —co en utilisant ln(”“) et le théoreme des mo-

2 . . N .
= (limite tres classique

nf+oo n—oo
fait en cours).
: 2"+n _ : 3
4. lim <57 =1 en mettant en facteur en haut et en bas le terme dominant, a
n—oo

savoir 2" et en utilisant une croissance comparée car 2" = e""2,

5. lim % =1 en mettant en facteur en haut et en bas n et en remarquant
n—aoo

In(n?)

—-1)"
que lim % = 0 par le théoréme des gendarmes et que lim —— =
n—+oo n—-+oo
. 3In(n) _
lim === =0 par croissance comparée.
n—-+oo
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n(n+1)

6. lim # Yia k= % en écrivantque Y.} _; k = et d’apres le théoréme sur
n—oo - -

les mondmes de plus haut degré.

7. hm gn +i" = —1 en mettant en facteur en haut et en bas 4” le terme dominant

et apphquant le théoreme sur les suites géométriques.
lim M = 0 en utilisant le théoreme des gendarmes car: 0 < % < %
n—oo

9. lim n?-ncosn+2 = +oo en mettant en facteur le terme dominant n? et en

n—:o0
utilisant le théoréme des gendarmes avec |
. nl+(n+1)! _
10. lim “oow =
1. hm In (2” + 1) = +oo par propriété sur les somme et composée de limites.

cosnl < l.
n

= 0 en utilisant la définition des factorielles.

12. llm nn = 1 car nl/n — el/nlnn

n—oo

puis par croissance comparée, on a :

13. l1m (ln n)" = +oo. Il n'y a pas de forme indéterminée ici, il suffit d’écrire

que (ln n)" = enin(inn)

. 3 n , g .
14. lim ”3;,,2 = 0 enmettant 2" en facteur au numérateur et en utilisant ensuite
n—oo
le théoréme sur la convergence des suites géométriques et les croissances
n-

3 3
— : n —
comparées car hm = nhn-}—oo_enlnz =0.

15. lim (n®+n+ 1) n =1 en transformant I'expression en mettant le terme do-
n—:oo
minant n? en facteur :
(nz +n+ 1)% — e1/nln(n2+n+1)

Le terme en exposant dans I'exponentielle est alors
1 1
In(n*+n+1) In(n?) ln(l tat p)
= + .
n n n
On obtient alors la limite voulue en utilisant les croissances comparées.

16. lim n? (cos (#) - 1) : on utilise ici les équivalents usuels. On a: u,, ~ n? x
n—:o0 n—oo

_ 1

2n?

= -1, donc lim +oou,, = -1
Solution (exercice 4) (tnonce
1. Soit n € N. Alors

)\n+1 )\n
(n+1)! n!

(it
Tl \n+1l

AMA-n-1
n on+1
Donc u,,,; — u,, < 0si, et seulement si, A — n — 1 < 0 donc si, et seulement si,
n=zA-1.

Upyy — Uy =

® lorsque A = 1, on constate que u,,.; — 4, < 0 pour tout n € N. Donc
|(u,,) est décroissante].

® lorsque A = 2, on constate que u,,; — U, < 0 pour tout n = 1. Donc
Ku , et croissanteentren =0etn = 1.

. 2>_® On alarelation de récurrence suivante :

A AA
wel el
Avec en terme initial u, = 1. D’ol1 le programme ci-apres pour construire la
liste des n + 1 premiers termes.
def trace poisson(lamba):

VneN, u,,= X Uy.

Renvoie la liste [u O,...,u n]
L = [1]
u=1
for i in range(1, n+l1):
u = u*(lamba/i)
L.append(u)
return L

for lamba in [1/2, 1, 3/2]:

plt.plot(trace poisson(lamba), label=str(lamba),marker = '
0')

plt.legend()

On conjecture alors que la suite semble tendre vers zéro et pour tous les A
testés. Pour la monotonie, on constate qu'elle semble décroissante globale-

ment si A € [0, 1] et décroissante a partir d'un certain rang si A > 1. C’est ce
que nous allons établir.

. Par croissances comparées, on a| lim u, =0|.
n—oo

Pour la monotonie, on reprend les calculs précédents, on a u, ., — u,, < 0si,
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et seulement si,
nzA-1<nz|A-1]+1.
Onrappelle que n), = [A — 1] +1 estle plus petit entier supérieur a A — 1. Deux
cas se présentent alors :
® SiA>1alorsA—1>0et(u,) estdécroissante a partir du rang n,.
® SiAe[0,1],alors A —1 <0 etdonc (u,) est décroissante.

Solution (exercice 5) tnonce. Comme souvent lorsque 'on doit étudier
des suites définies par des sommes, on essaye d’encadrer le terme général de la
suite en utilisant que k est compris entre, par exemple, 1 et 7.
1. Soit n € N*. On a, pour tout k € {1,...,n}:
1 1 1
< < .

1+n>2 n?+k n’+n
Comme la derniére inégalité est vraie pour tout k € {1, ..., n}, on somme cette
inégalité pour k allant de 1 a n et on obtient :

i 1 <Uu, < i 1 <~ n <u, < —n

Zn2+l " AEn?+n 1+n2 " n(l+n)
Or le théoreme sur les monéme de plus haut degré pour les limites donne

n

lsksn << n*+l1sn’+k<n’+n

im
n—+oo] + n2
Ainsi, d’apres le théoréme des gendarmes, on obtient que la suite (u,,),en>
convergeetque: lim u, =0.
n—-+o00

2. Le méme raisonnement donne :
n n n

= = .
1+n?2 n’+k n’+n
Puis, en sommant, on obtient :
nooon noo] n? n

> >u, = S >u, = :

o n?+1 ioin+1 1+ n? 1+n
Or le théoréme sur les monémes de plus haut degré pour les limites donne

2

lsk<sn <<

=1=

lim .
n—itoo]l +n
Ainsi, d’apres le théoréme des gendarmes, on obtient que la suite (u,,),en
convergeetque: lim wu,=1.

im
n—+oo] + n2

n—+oo
3. Le méme type de raisonnement donne :
k k k
lsksn < = =—

1+n n+k 2n
Puis, en sommant, on obtient :

"ok nof n(n+1) n(n+1) n n+l
Y U, ) — > ——— U, >———— = —>u,=
i n+l =1 2n 2(n+1) 4n 2 4
Comme lim 2 = +oco et que pour tout 7 € N : u,, = %, le théoreme de

n—-+oo

minoration assure que la suite (u,,) diverge vers +oo.

Solution (exercice 6) cnonce
1. Soit n € N*. Quand une expression comporte des racines carrées, une idée
est d’utiliser la quantité conjuguée. On obtient alors :

1
vn+l-y/n= ——— vVn-1=
v sz tovn- \/_+\/_
On obtient alors :

(\/nT—\/_) 74:»Vn+1+\/ﬁ>2\/_

Or la derniere inégalité est toujours vérifiée car n + 1 = n et que la racine
carrée est croissante sur R*. Un raisonnement analogue permet de montrer
l'autre sens de 'inégalité.

2. ® Pourtout k = 1, on a donc démontré que

2(Vi+1-vk)< 7<2(\/_ Vi-1)
On somme alors cette inégalité pour k allant de 1 a n et on obtient
2y (\/k+ —\/E)sunszz (\/E—\/k—l).
k=1 k=1

Les deux sommes de chaque c6té sont télescopiques et se calculent donc
grace a un changement de variable. Faisons le par exemple pour la pre-

kﬁ(\rﬁ Vi) $ VRS VR
- VE-3 Vn
n+1-1.

Un calcul similaire donne pour la deuxieéme somme télescopique :
n
Y (VE-Vk-1)=n.
=1

Ainsi, on obtient que, pour tout n € N*,

2(\/n+1—1)<un<2\/ﬁ.

® On peut alors en déduire la limite de la suite (u,,) ,en+ €n utilisant le théo-
réme de minoration : en effet, on a

unaz(\/n+1— ) lim 2(\/n+1—1) +o0o = lim u, = +oo.

n—+oo n—-+oo
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® En divisant I'inégalité trouvée ci-dessus par \/ﬁ > 0, on obtient que

Or,ona
, (\/n+1 1 )
lim 2 -——|=2
n—+0o \/ﬁ \/ﬁ

et ainsi le théoreme des gendarmes assure que la suite (v,,),,cn+ CONverge
et que

lim v, =2.
n—+oo

Conséquence immédiate :

U, ~ 2\/5.

n—oo

Solution (exercice 7) (enonce
® Soitn=1,0na:

n+1 1 n 1
S..1-S5, = —=-2Vn+2- —+2vVn+1
e ch=:1\/E kgl\/E

1
= -2vn+2+2vn+1
Vn+l
1 2

- \/n+1_\/n+l+\/n+2

en utilisant la quantité conjuguée. On a de plus :
2 1

<
Vn+l+vn+2 n+l

On en déduit que [la suite (S,,) 5, est croissante.|

® Soitn=1,ona:
n+1 1 n

Ty —Tp=Y —-2vVn+1-Y L+2\/Z
k=1vk k

k=1

Vin+l+Vn+2=2Vn+1= =S,,,-S, =0.

1

vn+l
1 3 2
vn+l /n+yn+1

en utilisant la quantité conjuguée. On a de plus:

Vn+vn+l1<2vn+l = 2 S
Vi+yn+l n+1
On en déduit que [la suite (T,,) 5, est décroissante. |
® Pourtoutn=1,0ona:T,-S, =2(y/n+1-+/n).Afin de lever I'indétermina-

-2vn+1+2yn

- Tn+1_TnSO'

tion, on utilise la quantité conjuguée et on obtientque : T, —S,, = \/T++\/5

Ainsi par propriété sur les composée, somme et quotient de limites, on a :
lim T,-S,= 0.‘
n—+oo n n

Ainsi on vient de montrer que |1es suites (S,,) 1 €t (T,,),=; sont adjacentes.|
D’apres le théoréeme sur les suites adjacentes,
|les suites (S,,),,»; et (T,),>; convergent vers la méme limite.|

Solution (exercice 8) itnonce Laseule chose que I'on puisse faire avec une
partie entiére est d'utiliser I'inégalité qui la détermine, a savoir que

VyeR, |ylsy<lyl+1
avec |y| € Z. On sait donc que, pour tout k € N*, on a
lkx| <kx<|kx|+1 < kx—-1<|kx]| < kx.
On somme alors cette inégalité pour k allant de 1 a n et on obtient que

n

Y(kx-1)< ) lkx]< ) kx = = Y (kx-1)<u,<— ) kx
k=1 k=1 k=1 n= =1 n= =1

car # > 0. Calculons séparemment chaque somme :
1 Z x & n xnn+1 1
—ZZ(ICX—I):—ZZ k——2:¥——.
n° n° o n 2n n
Un calcul similaire donne pour 'autre somme
1 2 xn(n+1)
2 ) kx= T o2
n° 2n
On obtient alors que

x(n+1) 1 —_ x(n+1).
2n n 2n
Or,ona
. o x(n+1) 1 x . x(n+1)
lim ———-—=—-= lim ————,
n—+o0 2n n 2 n—+oc0 2n
ainsi, le théoréme des gendarmes assure que la suite (u,,) ,en+ CONvVerge et que :
. X
lim u,=—|
n—-+oo 2

Solution (exercice 9) icnonce

1. Il s’agit ici d’étudier les variations des deux fonctions suivantes : f : x —
X — %2 —In(1+x)etg:x—In(1+x)—x etden déduire leur signe. a faire.

2. Une idée classique lorsque 'on doit étudier un produit est de le transformer
en somme en passant au logarithme népérien. C’est ce que I'on va faire ici.
® On pose pour tout n € N*, S, = In(p,,). Par propriété sur le logarithme
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d’un produit, on obtient que : On en déduit que (v,,) est une suite arithmético-géométrique. La méthode
” k habituelle donne ensuite v, en fonction de n, puis u, = 2 x 3t _ L soit
VneN?, sn=21n(1+—2). 1 " PUS Un =275 7%
k=1 n U = 23"*2 -1
0=

® On encadre S,, en encadrant le terme a l'intérieur grace a I'inégalité dé-
montrée a la question précédente puis on somme. On obtient donc en . . ‘
posant x = & >0 cark > 1: Solution (exercice 11) nonce
PR p p 1. SoitneN,ona:1l—u,,; =1+u%—-2u,=(1-u,)*
—1_ _ .2 . —
priab < ln(l + ﬁ) < Pl On pose v, =1 —u,. On a alors v,,; = v;. Essayons de calculer v, :ona v, =

2 4 8 : "
s N . = =1,.0ncon I nc: VneN = .
On somme alors cette inégalité pour k allant de 1 a n et on obtient, en Up» V2 = Uy, Uy = Uy - On conjecture donc EN, Un =l
utilisant la linéarité de la somme, que :

, n
Montrons par récurrence sur n € N que pour toutn €N, v, = vo2 .

0
1 & I & 1 & Initialisation. pourn =0onauv? = v,. La propriété est vérifiée au rang zéro.
=Y k- Y k*< Sp<— Y k AT p o = Y- LA pTop g
n= k=1 2n® 5 n= k=1 Hérédité. Soit n € N. On suppose la propriété vraie a I'ordre n, montrons
n+l (n+1)2n+1) - ntl qu’elle est vraie a I'ordre 7 + 1. On a vu que : v,,; = v2. On utilise alors I'hy-
2n 12n3 s C2n pothése de récurrence et on obtient
® Enutilisant le théoreme sur les monémes de plus haut degré, on remarque T (Uzn)z =2
n+l — 0 (] .
que: . o - .
; n+el 1 (n+1)2n+1) Conclusion : il resulte2 ,(,iu principe de récurrence que
im ==, = -
n—+o0 2p 2 n—itoo 12n3 VneN, v,=y; .
Ainsi en utilisant le théoréeme des gendarmes, on obtient que la suite On obtient donc pour tout 7 € Nz, = 1 — (1 — 1)* .
(Sy)nens converge vers 3. ® Sil—uy;>1 < uy<0,alors: lim (1-uy)® =+oo,donc lim u, =
, “ . * S . n—+oo n—+oo
® Par définition de S,,, on a pour tout n € N* : p,, = e>. Puis par pro- —00.
priété sur la composition de limite, on obtient que : lirrJlr Pn = ez. Ainsi ® Siuy=0,alorsl-u,=1etainsi: VneN, u,=0etdonc nlin}rmun =0.
n—+00 -
- 1 ® Si-1<l-uy<l <<= 0<uyy,<2alors: lim u,=1.
la suite (p,,) ,;en+ CONVerge vers ez. . n—+oo
® Siuy=2,alorsl-uy=-let(1-uy)* =1,etainsi: VneN, u,=0et
donc lim u,=0.
n—-+oo n
Solution (exercice 10) nonce Pour toutes ces suites, on conjecture le ® Sil-uy<-1< ug>2alors(1-ug)* > 1,etdonc lim (1-1,)* = +oo,
résultat en itérantla relation de récurrence puis on le démontre rigoureusement soit lim u, = —cc.
n—+oo

par récurrence. Je ne fais pas ici la récurrence mais elle doit étre présente dans
toute copie. Je ne donne ici que le résultat, a savoir u,, en fonction de 7.

Solution (exercice 12) ¢nonce

n-1
1. VneN, u,= gZ—jnul = ;_1 n|. Puis on prouve cette formule avec une 1. def termes u(u_ @, n):
récurrence. ifn==
2. ® Méthode 1: on conjecture que : return u_0
v _ 3 32 gn-l gn _ _yn gk ghtl else:
neN, u,=2x2>x2" x-x2 Uy =2%k=0% =277, u=uo
puis on fait une récurrence. for _ in range(1l, n+l):
® Méthode 2 : par récurrence immeédiate, la suite (u,,) est bien strictement u = (3/4)*u**2-2%u+3
positive, et donc (v,,) existe. En passant au logarithme dans la relation dé- return u
finissant (u,,), on déduit : >>> termes u(2.1, 5)
vneN, v,,,=In2+3y,. 2.1525846157129767
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>>> termes u(2.1, 8)
2.2193040775769752
>>> termes u(2, 5)
2.0

>>> termes u(2, 8)
2.0

>>> termes u(4/5, 5)
1.9137294769724056
>>> termes u(4/5, 8)
1.9285042786265398

. ® Lafonction f est bien définie sur R comme fonction polynomiale.

® Lafonction f estdérivable sur R comme fonction polynomiale et pour tout
xeR: f'(x)=3x-2.
® On obtient ainsi les variations suivantes :

X —00

f'(x) - 0 +
+00 +00

v/

f \/z

® Leslimites en +o0o s'obtiennent avec le théoreme du monome de plus haut
degré.

[SS1[S)]

. Le discriminant vaut A = 0 et 'unique racine est 2. Ainsi :

|la fonction g est positive sur R et ne s'annule qu'en 2.|

. On suppose dans cette question que la suite (u,,) converge vers un réel ¢ €

2; = R et par ailleurs la fonction f est continue sur R comme fonction poly-
nomiale donc elle est en particulier continue en ¢. Donc d’apres le théoréme
sur les suite et fonction, on obtient que : nli_rr}roof (u,)=f(¢).Deplusona:
nirqmun+1 = ¢. On peut donc passer a la limite dans I'égalité : u,,,, = f(u,,)
etonobtientque: ¢ = f(¢).Onadonc: ¢ =f(¥) < g(¥)=0 < ¢ =2.
|La seule limite finie éventuelle est donc 2.]

5. 51) Onpeut commencer par montrer que l'intervalle ]2, +oo[ est stable par

f.

On a f strictement croissante sur [2, +ool, et f(2) = 2. Donc pour tout
x € [2,+00[, f(x) > 2 et I'intervalle ]2, +o0[ est stable par f. On montre
par récurrence sur n € N que : u,, existe etu,, > 2.

5.2)

5.3)

6. 6.1)

Initialisation. pour n = 0: par définition de la suite, u, existe et u, > 2.

Hérédité. Soit n € N fixé, on suppose que la propriété vraie a I'ordre

n. Par hypothese de récurrence, on sait que u,, existe et que u, > 2.

Donc f(u,) existe c’'est-a-dire u,,,, existe. De plus, I'intervalle ]2, +oo[

est stable par f. Donc f(u,) > 2 c'est-a-dire u,,,; > 2. La propriété est

bien héréditaire.

Conclusion : il résulte du principe de récurrence que

‘la suite (u,,) est bien définie et que pourtoutneN, u, >2.

SoitneN,ona: u,,; —u, = f(u,)—u, = g(u,). Ainsi comme le signe

de g est positif sur R, on obtient que pour toutn e N: u, ., —u, =0.

Ainsi|la suite (u,) est croissante.|

® La suite (u,) est croissante donc d’apres le théoréme sur les suites
monotones, elle converge ou elle diverge vers +oo.

® On suppose par I'absurde que la suite (u,,) converge vers un réel £.
On a alors puisque la suite (u,,) est croissante, que pour tout 7 € N :
U, =u.
D’apres le théoreme de passage a la limite, on obtient donc que :
¢ = u,. Or par hypothese, on sait que u, > 2. Ainsi on obtient que :
¢ > 2. Absurde car la seule limite éventuelle de la suite (u,,) est 2.
Ainsi|la suite (u,) diverge vers +oo.]

On peut commencer par montrer que l'intervalle %,2[ est stable par

f. Attention, ici f n’est pas monotone sur ]g, 2|, il faut donc traiter les

deux intervalles |2, 2] et |3, 2] séparemment.

Sur |2,2], f est strictement décroissante et f(2) = 2, f($) = 2. Donc

pour tout x € |4, 1], f(x) € ]2,2], donc f(x) € ]%,2][.

Sur |3, 2],4f est stricterr;ent croissante et fz(2) =2, f(3)= 2. Donc pour

tout x € |3,2], f(x) €]2,2], donc f(x) € ]5,2].

En en déduit que pour tout x € |%,2[, onabien f(x) € |%,2[ : 'intervalle
2,2[ est stable par f.

On montre par récurrence sur n € N la propriété « u,, existeet u,, €
2

]5,2[ »

Initialisation. pour n = 0 : par définition de la suite, i, existe et u, €
£,2[. Donc 2(0) est vraie.

Hérédité. soit n € N fixé, on suppose que la propriété vraie a I'ordre
n, montrons la au rang n + 1. Par hypothese de récurrence, on sait que
u, existe et que u,, € ]%,2[. Donc f(u,,) existe c’est-a-dire u,,,, existe.

De plus, u, € ]%,2[. Or I'intervalle |2,2[ est stable par f. Donc f(u,) €
2,2[ clest-a-dire u,,,, €]3,2[.

Conclusion : il résulte du principe de récurrence que
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‘la suite (u,) est bien définie et que pour tout n €N, u, € |%,2] |
6.2) SoitmneN,ona:u,,,—u,=f(u,)—-u,=g(u,).Ainsi comme le signe
de g est positif sur R, on obtient que pour toutn e N: u,,; —u, =0.
Ainsi|la suite (u,) est croissante.|
6.3) ® La suite (u,) est croissante et majorée par 2 donc d’apres le théo-
reme sur les suites monotones, elle converge.

® Comme la seule limite éventuelle est 2,
[la suite (u,,) converge vers 2.|
Solution (exercice 13) tnonce
1.
2. Soitn e NJona: a,,+Db,, = -2a,+b,+3a, = a,+ b,. Ainsi

|1a suite (a,, + b,,) ;e €St constante| et donc pourtout n e N: a, + b, = a, +
by=1.Donc|VneN, a,+b, =1

3. Soit n € N. On a, en utilisant le fait que pour tout n € N, a,, + b,, = 1, que pour
toutneN: b, =1-a,.Ainsi on obtient que pour tout n € N :

a,;, =—-2a,+b, < a,.,=1-3a,.
On reconnait une suite arithmético-géométrique. En appliquant la méthode
du cours, on obtient :

1
neN, a, = (1-(-3)").

4, Comme pour tout n € N, on a : b,,; = 3a, on a : b, = 3a,_,.
Puis en utilisant le résultat de la question précédente, on obtient que
]Vn eN, b, =3(1- (—3)"—1).\

Solution (exercice 14) nonce
1. def termes uv(n):
if n ==
return (1, 12)
else:
u, v=1, 12
for in range(l, n+l):
u, v = (u+2*v)/3, (u+3*v)/4
return u, v
>>> termes uv(10)
(8.999999999870797, 9.000000000048452)
>>> termes uv(100)
(9.000000000000002, 9.000000000000002)
Conjecture : les suites semblent converger vers 9.

2. 21)

2.2)

2.3)

Soitn e N*,ona:
u,+3v, u,+2v, v,—u, 1
- = =—uw,.
4 3 12 12"
Ainsi la suite (w,,) ,en+ €St Une suite géométrique de raison ﬁ etde pre-
mier terme w; = v; — u; = 11. On en déduit donc I'expression explicite

dew, :

W1 =

1 \n-1 1 \n-1
Vnz=l, wn:wl(—) :11(—) .
12 12
® Ftude de la monotonie de la suite (u,,) ey : SOit 7= 1,0na:
u, +2v, 2(v,—u,) 2
Upg—Up=——F—— U, = ————— = —W,.
n+l1 n 3 n 3 3 n

Or on connait 'expression de w,,, on obtient donc:

2 n-1
VneN, unﬂ—un:—xll(ﬁ) =0.

3
Ainsi, la suite (u,,) ,en+ €St CTOiSsante.

® Ftude de la monotonie de la suite (v,,) ,,en»
Soitn=1,0ona:

u, +3v, u,-v, -1
Upel —Up=————— U, = —— = —W,.
n+l n 4 n 4 4 n
Or on connait 'expression de w,,, on obtient donc:
VneN _H(l)n_l<o
neN, v, —-v,=—|— <0.
n+1 n 4 12

Ainsi, la suite (v,,),,cn+ €St décroissante.
® Montrons que nirgmvn -u,=0:
On a montré a la question précédente que pour tout n € N* : v, —
u, =11(%)""'. Comme:-1< L <1,0na: nli_rﬂoo(ﬁ)"_l = 0. Puis
par propriété sur le produit de limites, on obtient que : nhlqrmvn -
u, =0.
Ainsi, on a donc montré que les deux suites (u,),en+ €6 (V) nen+
sont adjacentes. D’aprés le théoréme sur les suites adjacentes,
lelles convergent donc vers la méme limite. |
® Expression de ¢, pourtoutn =1:
Soitn > 1,0na:t,, =32 8% =3y, 48y, = t,. Ainsi
\la suite (7,,) ,cn+ et constante égale a £; = 3u,; +8v; = 99.|
® (Calcul de la valeur de la limite ¢ :
Comme la suite (f,,),en+ €St constante, ona: Vn € N*, 3u, +8v, =
99. De plus on a démontré a la question 2 que les deux suites
(u,,) pen> €t () pen+ convergent vers la méme limite ¢ et ainsi par
propriété sur les produits et somme de limites, on obtient que :

lirri (3u,, + 8v,) = 11¢. Par passage a la limite dans I'égalité :
n—+oo
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3u, +8v, =99, on obtient donc que

114 =99 < [/ =9.]

3. 31) Alaide de la formule du cours, on a|P~! = (

|°":|w
o2l

—
—
—
—

) et P est inversible

car de déterminant 11 # 0.
3.2) OnapourtoutneN:

_1 2
Upt1 = §un+§vn

_1 3
Upt1 = Zun+ZUn

Ona: |X,=A""'X,|pourtout n e N*.

1

= 0

12 ) Onadeplus:|A"” = PD"P!|

01

— X, =AX,, avec:A:(

= o =
FN[SYT N
~————

3.3) Apres calculs, on trouve D =

1
34) OnaX,; = 12). Donc pour tout 77 € N* :
U, = (Xp)i1
1 \n-1
> 0
= (P((lz()) 1)P—lxl)
1,1
-8 -1 -3 3
1 1 0 U\ 11 12 n
_ 3 Losangionqpy (E - i25—2"31—")
11 11 11 11
3+12x8 99
— 1 u 2

Solution (exercice 15) ¢nonce
1. Lafonction tan” est bien continue sur [0, %] doncI,, est bien définie. De plus,

i T
10:f41dt:,
0 4

I, = fz tan(z)dt = [-In|cos tl]g
0

V2

2
2. 21) Soit n €N, alors tan > 0 sur l'intervalle [0, ¥ ], donc :

02| anzo—

2.2) Lasuite (I,,) est donc positive, analysons a présent sa monotonie. Soit

=0-In

1
=|=1n2|
2

Yte

neN:
L-1,= fz tan”*!(¢)dr - fz tan”(t)dt
0 0

= fz tan"(t) x (tan(¢) —1)dt
0 Dtan—lsOsur [0,%]
<0.

La suite (I,,) est donc décroissante, et minorée vers 0 donc [converge].

Solution (exercice 16) tnonce
11 T

1. Onauy, = f ——dt = arctan(1) — arctan(0) = . De-méme, par calcul
o 1+12 4

1t 1 In2
direct, u =f ——dr=-[In|1+£2]]} =|—==|
o 12T T2 [nft el =| 75
2. Soit n € N. Alors
t" t"
Vte[0,1], 0s—— < .
1+¢2 140
Donc en intégrant entre 0 et 1, on déduit que :
1 " 1 1 1
VneN, Osunsf dt = =
o 1+0 n+l|, n+l
Donc:
1
VnelN, O=<u,s< .
n+1
3. Par théoreéme des gendarmes, comme — —— 0, on obtient “
n—:oo n—oo

Solution (exercice 17) fnonce
1. Ona:

e
Iozf x*dx =
1

_
=3

Ilzfe x? In(x)dx
1

=v'(x) .

3]e

= . 2 . . 3
u(x) intégration par parties, car In,x — %~ sont ©!

1

=79 [l + =

2. Sur[l,e],onaln(x) € [0,1] pour tout x € [1,e], donc:
vxe[l,e], 0s<In"(x)<In"(x)<l1.
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Donc en multipliant par x? qui est bien positif, on déduit :
Vxe[l,e], 0<x?’In"*!(x)<x?’In"(x)<1.
Puis en intégrant : 0 <1,,; <I,. Ainsi la suite (I,,) décroit et est minorée

par zéro donc [converge].

. Notons f: x € [1,e] — In(x) — . Alors f est dérivable sur son domaine de

définition, et f'(x) = J—lc - % = 0 puisque x < e sur le domaine considéré. Ainsi,

f est décroissante, donc pour tout x € [1,e], f(x) < f(e) = 0. Ainsi, f est
négative, on a donc bien établi :

X
Vxe[l,e], 0<In(x)<—|
e

On integre alors la relation précédente, apres I'avoir élevée a la puissance n
(encadrement positif), puis multipliée par x? (qui est positif), on obtient :

e(x\n
Oslnsf (—) x? dx.
1 e

Mais,
e(x\n 1 e
f (—) xzdxz—f x"?dx
1 \e e
1 n+3

_ e 1
“e"\n+3 n+3
e’ e "

T n+3 n+3 n—oo
On a donc par théoréme d’encadrement, que| lim I,, =0.
n—oo

. Faisons une intégration par parties, comme nous I'avons faite pour I;.

e
L= f x2 In"*1(x)dx
=v/(x) ::uv(x) intégration par parties, car

3
n+l X 1
3 e In"" x — 5 sont €

e 1 3
:—/ x——(n+1)1n"(x)dx+
1 3 x

X
1 n+l
3 n"" (x)

n+1 e’

—I,+—.
3 " 3

e n+1

VnelN, In_Hzg—Tn.

Solution (exercice 18) (tnonce
1. Soit n e N*, on pose: f,: x € R" — f,(x) = x" + x — 1. Cette fonction est

définie, continue et dérivable sur R* comme fonction polynéme. De plus, on
a:
VxeR", fi(x)=nx""1+1.

Ainsi, sur R*, la fonction f; est toujours positive comme somme de deux
nombres positifs et la fonction f, est croissante sur R*. On applique alors
le théoreme de la bijection sur R*. En effet, on a

® [ estcontinue sur R*

® [ eststrictement croissante sur R*

® f,(0)=-Tet lim_f,(x)=+oo

Ainsi, d’apres le théoréeme de la bijection, il existe une unique solution sur R*
al’équation f,,(x) =0.

. On remarque que, pour tout n € N*, f,(1) = 1 > 0. En réappliquant alors le

théoréme de la bijection sur [0, 1], on obtient que : x,, €]0, 1[ et cela pour tout
n € N*. Ainsi, |la suite (x,,),,en+ €St majorée par 1.|

. Pour étudier la monotonie de la suite, on doit trouver le signe de f,,(x,,,;)-

Soitdoncn=1:

— N
fn (xn+1) =Xp t X — 1
il car x, €[0,1]
Z Xpi1 T X4~ 1

= fur1(Xp41) = 0= f,,(x,,).
Or, la fonction f,, est strictement croissante et f,,(x,,,;) = f,,(x,) donc x,,,, =
x,, et ce pour tout n € N. Donc la suite |(x,,) ,en+ €St croissante|.

. Lasuite (x,,),cn+ €St Croissante et majorée par 1, ainsi elle converge vers une

limite finie £ € R d’apres le théoréme sur les suites monotones. De plus, un
passage a la limite dans 'inégalité : x,, €]0, 1[ donne que ¢ vérifie, comme la
suite converge vers £ : 0 < ¢ < 1. On suppose par 'absurde que ¢ < 1. Comme
la suite (x,,),cn+ €St Croissante et majorée, le théoreme des suites monotones
nous dit aussi que la suite vérifie :

VneN*, x,</.
Ainsi, on obtient, pour tout n € N* que : 0 < x)! < ¢". Or, par hypothese, on
a: ¢ <1, ainsi, on sait que : nli»nl ¢" = 0. Ainsi, d’'apres le théoreme des gen-
darmes, on sait que la suite (x); ),y converge vers 0. De plus, par définition
de la suite (x,,),,cn+»> ON S2It quE

VneN*, x!'+x,-1=0.
Les deux suites (x,,) ,en+ €t (X11) ,,en+ SONt convergentes, on peut donc passer
a lalimite en faisant tendre 7 vers I'infini dans 1'égalité ci-dessus. On obtient
en utilisant I'unicité de la limite : 0+ ¢ — 1 = 0. Ainsi, on obtient £ = 1.
Contradiction car on a supposé que ¢ < 1.

. Finalement, on obtient bien que la suite (x,,),cn+ converge vers 1. En effet,

on sait que £ € [0,1] et on a vu que £ < 1 est impossible. Donc .
n—+oo
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Solution (exercice 19) (enonce
1. Soitn e N*,onpose: f,: x € R— f,(x) = nx® + n’x — 2. Cette fonction est

définie, continue et dérivable sur R comme fonction polyndéme. De plus, on
a
VxeR, fI(x)=3nx*+n

Ainsi, sur R, la fonction f, est toujours positive comme somme de deux
nombres positifs et la fonction f,, est croissante sur R. On applique alors le
théoréme de la bijection sur R*. En effet, on a:
® f estcontinue sur R,
® f eststrictement croissante sur R,
® lim f,(x)=-occet lim f,(x)=+o0.

X—>—00 X—>+00
Ainsi, d’apres le théoreme de la bijection, il existe une unique solution sur R
al’équation f,,(x) =0.

. On remarque que, pour tout n € N, on a: f,(0) = —2 < 0. Ainsi, en réappli-

quant le théoreme de la bijection sur R*, on obtient que : a,, > 0.

. Pour étudier la monotonie de la suite, on doit trouver par exemple le signe de

Jue1 (@)

fon(a,) = (n+Da, +(n+1)’a, -2
= fu(a,) +(ay +(2n+1)a,)
=0+a;+(2n+1)a,
=0 = fh1(ap.)-

Or, f,,; est strictement croissante, donc a,, = a,,,; et la suite (a,,),en+ €St

donc|décroissante|.

. La suite (a,,),en+ €St décroissante et minorée par 0, elle converge donc vers

une limite finie ¢ € R d’aprés le théoreme sur les suites monotones. Et un
passage a la limite donne : £ = 0.
Supposons par I'absurde que ¢ > 0. Par définition de la suite (a,, ) ,en+, ON sait
que, pour tout n € N*, on a:

na: +n*a,—2=0 < na> +n’a, = 2.
Si ¢ > 0, alors le terme de droite de Iégalité ci-dessus tend vers +oo quand n
tend vers I'infini. Contradiction car il est constant égal a 2. Ainsi, on vient de
montrer que : £ = 0. Donc la suite |(an)n€,\,* converge vers 0|.




BCPST1 (€9 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

Correction Devoir-maison fﬁ (Chapitre (AN) 4)

Solution (exercice 20) (tnonce
1. Soit n € N*. Lafonction f,, : x — x + e™* — 2 est définie, et dérivable
sur l'intervalle R, eton a, pour tout x e R, :

fa(x) =1+ ne™
>1
> 0.

Ainsi f est |strictement croissante sur R, |

Enfin|f, (0) = —1|et xgglmfn(x) = +00|.

D’apres le théoréme de la bijection, f,, réalise une bijection de R, sur I'inter-
valle [—1,+oo[. Enfin 0 € [—1, +oo[ donc :

[Léquation f, (x) = 0 admet une unique solution, notée x,,, dans R, |

2. 21) SoitneN"etsoitxeR,,ona:
fon1(X) = f(x) =x+e"D¥ 2 - x — " 42

— e(n+1)x —el¥

=e"(e"-1)
Puisque x = 0, on a e* = e° (par croissance de x — e sur R, ) donc
e* = 1etdonc f,,,(x) - f,(x) = 0.
Ainsi :

fn+1(xn) _fn(xn) 20 = fn+1(xn) an(xn)~

Or, f,,(x,) =0,donc: f,,;(x,) = 0,maisonaaussi f,,;(x,,;) =0,donc:
fui1(x,) = fr41(x,41) ce qui est équivalent, f,,, étant strictement
croissantesur R, ,a x,, = x,,,1- |La suite (x,,) est donc décroissante.|

X 0 Xn+1 Xn +00

i) —
Foor (%) /(‘)/ w1 (X

-1

+00

2.2) La suite (x,) est décroissante et minorée par 0, elle est donc conver-
gente d’apres le théoreme de la limite monotone. Si on note ¢ sa limite,
onapourtoutneN: 0</¢<x,<x,.

2.3) Par définition de la suite (x,,), on a e + x,, = 2 pour tout n € N*.

Soit: lim (e +x,)=2.
n—+oo

Si¢ >0, alors lim nx, = +oo (par produit de limites) soit, par somme
n—+oo

et composition de limites:  lim e"*" + x,, = 400,

n—+oo

ce qui est ab-
surde.
Puisque ¢ = 0 (cf question précédente), on a nécessairement [£ = 0].

3. Soit n € N*, on a par définition de la suite (x,,) :

e +x,=2 < e"m=2-x,

< |nx,=In(2-x,)| car2-x,=e"">0

1
— x,=—In(2-x,).
n

Puisque lim x, =0, ona par composition de limites: lim In(2-x,)=1In2
n—+oo n—+oo

avecIn2 # 0.
On en déduitque:In(2-x,) ~ In2.

In(2
On en déduit par produitque: |x, ~ n(2) .

n—+oo n

4, SoitneN*,ona:
In(2)
n

€, =Xy

= lln(z—xn)—@
n n

_ In(2-x,)-1In(2)

2 ) n—+oo 2

—In(2)

n—+0 2N ’

: : —In(2)
soit, par produit: €, ~ 52
(04 —In(2
Onabieng, ~ — avec a= @) p=2
n—+oo P 2




