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Chapitre (NUM) 3
Tableaux Numpy. Application au
calcul matriciel et traitement
d’images

1 Présentation succinte de la bi-
bliothèqe numpy . . . . . . . . . . . . . . . .

2 Application au calcul matriciel . .

3 Application au traitement
d’images . . . . . . . . . . . . . . . . . . . . . . . .

4 Solutions des exercices . . . . . . . . .

Résumé & Plan
Nous revoyons dans cette section
certains éléments sur la mani-
pulation de tableaux numpy, puis
leur utilisation pour manipuler
des matrices (opérations élémen-
taires, résolutions de systèmes
linéaires, Pivot de GAUß, recherche
des éléments propres), ainsi qu’en
traitement d’images. Il existe
d’autres exemples d’utilisation, par
exemple en théorie des graphes
(Chapitre (ALGO) 8) au travers de
la notion de matrice d’adjacence.
On termine par leur application au
traitement d’images.

• Les chapitresd’Informatique sont composésde cours et d’exercices intégrés. Le cours
sera projeté au tableau.

• Il n’est pas attendu que toute la classe aborde tous les exercices. Traitez donc en prio-
rité les exercices présents dans la liste donnée à chaque début de séance.

• ExercicesBOMB /Pour aller plus loin : exercices plus difficiles, ou plus techniques. À ne
regarder que si les autres sont bien compris.

1 PRÉSENTATION SUCCINTE DE LA BIBLIOTHÈQE NUMPY

La librairie numpy est consacrée entièrement au calcul numérique en Python. Elle
comprend les principales fonctions mathématiques (à l’instar du module math).

Elle utilise essentiellement des variables de type ndarray (en abrégé array), que l’on
peut voir comme des tableaux à plusieurs dimensions. Les calculs avec numpy sont
particulièrement optimisés car les array sont homogènes (ils ne contiennent que
des valeurs d’un même type) et de taille fixée à la création.¹ Traditionnellement on
charge la librairie numpy avec la ligne :
>>> import numpy as np

Remarque 1 On pourrait utiliser aussi des listes de listes. L’avantage du type
array est qu’on accède à toute une batterie de fonctions matricielles déjà dé-
finies (rang, recherche d’inverse, résolution de systèmes linéaires, etc.).

1.1 Généralités

Définir un tableau, taille. On définit un tableau avec la fonction np.array.
Regardons ensuite comment obtenir ses dimensions.
>>> A = np.array([[8, 3, 2] , [5, 1, 6]])

>>> A.shape # nb lignes / nb colonnes

(2, 3)

>>> A.dtype # le type des données contenues dans le tableau

dtype('int64')

>>> B = np.array([[8, 3, 2]])

>>> B.shape # nb lignes / nb colonnes

(1, 3)

Attention Récupérer le nombre de lignes et de colonnes
,

Pour récupérer le format, l’inconvénient de shape est que la taille de ce tuple
varie (pour un vecteur ligne, il n’aura qu’une seule dimension, donc l’instruction

1. C’est donc une différence notable avec les listes de listes
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n, p = A.shape échouera). On conseille donc plutôt l’instruction suivante :
>>> A = np.array([[8, 3, 2]])

>>> n = len(A) # nombre de lignes

>>> n

1

>>> p = len(A[0]) # nombre de colonnes

>>> p

3

>>> A = np.array([[8, 3, 2] , [5, 1, 6]])

>>> n = len(A)

>>> n

2

>>> p = len(A[0])

>>> p

3

qui fonctionne donc aussi bien sur un vecteur ligne qu’une matrice plus clas-
sique.

Attention aux indices
,

Pourn lignes etp colonnes, la numérotationPython s’effectue entre0 etn-1pour
les lignes, et 0 et p-1 pour les colonnes. Il y a donc un décalage avec l’indice des
Mathématiques, source d’erreurs au début.
>>> A[1][2] # c'est bon

np.int64(6)

>>> A[1][3] # là ça ne va plus

Traceback (most recent call last):

  File "<input>", line 1, in <module>

IndexError: index 3 is out of bounds for axis 0 with size 3

Onne peut pas non plusmodifier un coefficient en le remplaçant par une valeur
d’un autre type. Par exemple,
>>> A[1][1] = [-1, -1]

Traceback (most recent call last):

  File "<input>", line 1, in <module>

TypeError: int() argument must be a string, a bytes-like object \

↪ or a real number, not 'list'

Ainsi, les seules modifications autorisées sont celles de type initial que l’on ob-
tient avec la méthode dtype :
>>> A.dtype # Donc ici, uniquement par un entier.

dtype('int64')

Attention Toutes les lignes ont même nombre d’éléments
,

Par exemple, la définition suivante échoue :
>>> M = np.array([[1, 2], [2]])

Traceback (most recent call last):

  File "<input>", line 1, in <module>

ValueError: setting an array element with a sequence. The \

↪ requested array has an inhomogeneous shape after 1 \

↪ dimensions. The detected shape was (2,) + inhomogeneous part.

On ne peut donc pas convertir n’importe quelle liste de listes en tableau : il faut
que chaque ligne ait même nombre d’éléments.

Pour créer unematrice, on peut définir une liste de listes puis la convertir en tableau
avec np.array. Mais on utilise généralement des fonctions permettant de créer fa-
cilement les matrices usuelles.

CONSTRUCTEURS DE TABLEAUX

Operations Commande Commentaire

Création A = np.array(...) On indique une liste de listes en
argument

Matrice nulle A = np.zeros((n, p)) Un tuple est demandé en
argument, donc deux parenthèses

Matrice ATTILA
((avec que des 1))

A = np.ones((n, p)) Un tuple est demandé en
argument, donc deux parenthèses

Matrice identité A = np.identity(n) ou
A = np.eye(n)†

Matrice
diagonale

A = np.diag(L) La liste L contient la diagonale

Subdivision de
pas h de [𝑎,𝑏]

np.arange(a, b, h) Analogue de list(range(a, b,

h))

Subdivision à n
points de [𝑎,𝑏]

np.linspace(a, b, n) On s’en est servi pour tracer des
suites, fonctions, etc.

Coefficients A[i, j] ou A[i][j] Terme i,j du tableau

Ligne i A[i]

Colonne j A[:, j] « : » signifie en slicing « on prend
tout »

† eye comme identity en anglais.
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Attention Copies
,

Commepour les listes, attention aux copies. En cas de copie «endur» souhaitée,
on utilisera la syntaxe N = np.copy(M) qui réalise une copie indépendante de
M, dans N.

Voici quelques exemples.

Exemple 1
>>> np.identity(5)

array([[1., 0., 0., 0., 0.],

       [0., 1., 0., 0., 0.],

       [0., 0., 1., 0., 0.],

       [0., 0., 0., 1., 0.],

       [0., 0., 0., 0., 1.]])

>>> np.zeros((2, 3))

array([[0., 0., 0.],

       [0., 0., 0.]])

>>> np.zeros((3, 2))

array([[0., 0.],

       [0., 0.],

       [0., 0.]])

Exercice 1 ∣ [Solution] Créer les matrices suivantes en Python à l’aide des fonc-
tions précédentes (i.e. sans boucle).

A= ⎛⎜
⎝

2 2 2
2 2 2
2 2 2

⎞⎟
⎠
, B =

⎛⎜⎜⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎟
⎠

.

On tapera directement les résultats dans la console.

Méthode (NUM) 3.1 (Créer unematrice) Plusieurs options s’offrent à vous.
• Si la matrice est de petite taille, on écrit directement les coefficients.
• Si la matrice est de grande taille (typiquement dépendant d’un certain entier

n), on peut :
⋄ soit utiliser des commandes existantes si la matrice est proche d’une ma-

trice usuelle. Par exemple, np.eye, np.zeros, np.ones, etc.
⋄ Soit partir d’unematrice nulle initialisée à la bonne taille (avec np.zeros),

puis la compléter des bons coefficients à l’aide d’une boucle for.

Opérations. On peut effectuer un grand nombre d’opérations directement sur
les array. On peut tout d’abord y appliquer des fonctions coefficient par coefficient.
Par exemple,
>>> A = np.array([[1, 2], [3, 4]])

>>> A**2

array([[ 1, 4],

       [ 9, 16]])

Ainsi, A**2 va élever au carré chaque coefficient de A. Ce n’est donc pas A×A. En
utilisant les fonctions de numpy, on peut appliquer une fonction coefficient par co-
efficient.
>>> np.log(A)

array([[0. , 0.69314718],

       [1.09861229, 1.38629436]])

La plupart des fonctions mathématiques sont définies par numpy. La particularité de
ces fonctions est qu’elles peuvent s’appliquer à un réel (commeavec lemodule math)
mais aussi sur un tableau (voir l’exemple précédent avec la fonction ln).

OPÉRATIONS

Operations Commande

Somme de deux matrices
compatibles

A + B

Produits de deux matrices
compatibles

A @ B OU np.dot(A,B)

Transposée np.transpose(A)

Somme de tous les éléments np.sum(A)

Produits de tous les éléments np.prod(A)

Remarque 2 Pensez au symbole @ pour des expressions matricielles compli-
quées (bien plus pratique que np.dot()).

Parcourir un tableau. Puisqu’on s’y repère comme dans une liste de listes,
les parcours se font de la même manière. On imbrique donc deux boucles : l’une
dont la variable parcourt les indices des lignes de lamatrice et l’autre dont la variable
parcourt les indices de ses colonnes. Supposons que n, p désignent le nombre de
lignes et colonnes.
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SQUARESQUARE En indice
n, p = len(A), len(A[0])

for i in range(n):

    for j in range(p):

        ...

SQUARESQUARE En valeur
for L in M:

    for x in L:

        ...

        # L est ici une ligne de \

↪ la matrice

Exercice 2 ∣ Matrices à créer [Solution] On considère les matrices A,B ∈ 𝔐𝑛 (ℝ)
définies par :

1. ∀(𝑖, 𝑗) ∈ {1,…𝑛}2, A𝑖𝑗 = 𝑖𝑗,
2. ∀(𝑖, 𝑗) ∈ {1,…𝑛}2, B𝑖𝑗 = 𝑖2−𝑗2 si 𝑖 ≤ 𝑗, B𝑖𝑗 = 0 sinon.

Créer ces deux matrices en Python dans deux fonctions d’en-têtes
creer_matrice_A(n), creer_matrice_B(n).

Exercice 3 ∣ Somme [Solution] Écrire une fonction d’en-tête somme(M) qui renvoie
la somme des éléments de M.On s’interdira bien entendu d’utiliser np.sum.

1.2 Différences entre tableaux numpy et listes

Même si les objets ndarray et list (listes de listes) semblent être très proches, il y a
néanmoins quelques différences à bien garder en tête.

• La méthode append n’existe pas sur les tableaux, même unidimensionnels. Ainsi,
un tableau a une certaine taille lors de sa création et conservera sa taille tant qu’il
existe. Ce qui n’empêche pas de construire une liste de liste avec append, puis de
convertir le tout en tableau avec np.array().

• Une liste peut contenir des objets de natures différentes, alors que tous les élé-
ments d’un tableau sont de même type. Type là encore défini lors de sa création
et fixé jusqu’à la fin. Ainsi, la conversion en array d’une liste de listes ne respectant
pas cela échouera.

2 APPLICATION AU CALCUL MATRICIEL

Nous avons vu pour l’instant comment créer un tableau, le parcourir, modifier ses
éléments etc. et qu’un tableau permettait de coder une matrice en Mathématiques.

L’objectif de cette section est de traiter des problèmes du cours de calcul matriciel à
l’aide du module numpy.

Cadre
Ô

Dans toute cette section, l’ensemble 𝕂 désignera ℝ ou ℂ, et 𝑛,𝑝 désignent
deux entiers supérieurs ou égaux à 1.

2.1 Calcul de puissances

Méthode (NUM) 3.2 (TERMINALPython Calcul des puissances d’une matrice avec Py-
thon) Soit M un tableau carré correspondant à unematriceM carrée. Il n’y a pas
de fonction toute faite dans numpypour calculerM𝑘. Rappelons également que
M**k élève les coefficients de M à la puissance 𝑘 mais n’effectue pas le produit
matriciel. On procède comme suit :
• on initialise un tableau P à l’identité, de même format que A.
• On effectue 𝑘 fois l’affectation P = P @ M.
• On renvoie P.

Exercice 4 ∣ Puissances et suites [Solution] On considère trois suites
(𝑥𝑛), (𝑦𝑛), (𝑧𝑛) vérifiant :

∀𝑛 ∈ℕ,
⎧⎪
⎨⎪
⎩

𝑥𝑛+1 =−𝑥𝑛−3𝑦𝑛+3𝑧𝑛
𝑦𝑛+1 = 3𝑥𝑛−7𝑦𝑛+3𝑧𝑛
𝑧𝑛+1 = 6𝑥𝑛−6𝑦𝑛+2𝑧𝑛

𝑥0 = 𝑦0 = 1, 𝑧0 = 2.

On note par ailleurs : ∀𝑛 ∈ℕ, X𝑛 = ⎛⎜
⎝

𝑥𝑛
𝑦𝑛
𝑧𝑛

⎞⎟
⎠
.

1. Donner une matrice A telle que : ∀𝑛 ∈ ℕ, X𝑛+1 = AX𝑛. Créer cette matrice
dans Python sous forme de tableau numpy. On peutmontrer par récurrence que :
∀𝑛 ∈ℕ,   X𝑛 =A𝑛X0.
PEN-FANCY
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2. Créer une fonctiond’en-têtepuissance_mat(A, k)qui renvoie le tableau corres-
pondant à A𝑘 pour un entier 𝑘. En déduire une fonction val_xyz(n) qui renvoie
𝑥𝑛,𝑦𝑛,𝑧𝑛 étant donné un entier n. Conjecturer leur nature en exécutant pour plu-
sieurs valeurs jusqu’à 𝑛 = 50.

3. Proposer une version récursive puissance_mat_rec de la fonction
puissance_mat.

Exercice 5 ∣ Indice de nilpotence [Solution] En cas d’existence, on dit qu’une ma-
trice A ∈𝔐𝑛,𝑛 (𝕂) est nilpotente s’il existe 𝑝 ∈ ℕ tel que A𝑝 = 0𝑛,𝑛. On appelle indice
de nilpotence le plus petit entier 𝑝 vérifiant cette propriété.

1. SoitM=⎛⎜
⎝

0 1 2
0 0 3
0 0 0

⎞⎟
⎠
. Montrer queM est nilpotente, préciser son indice.

PEN-FANCY

2. Écrire une fonction d’en-tête indice_nilpo(M) prenant en argument une ma-
trice carrée M et renvoyant l’indice en question. On pourra constater que la com-
mande np.all(P == np.zeros(P.shape)) teste si une matrice P est nulle.
def indice_nilpo(M):

    ind =

    P = np.copy(M)

    while :

        P =

        ind += 1

    return ind

3. Le défaut de la fonction précédente est qu’elle ne s’arrête pas lorsqu’une matrice
est nilpotente. Adapter le code enprévoyant unarrêt à la 100 èmepuissance; dans
ce cas on décrète que la matrice n’est pas nilpotente et on renvoie False. Tester
sur la matrice ATTILA de taille 3.

2.2 Propriétés

Exercice 6 ∣ Triangulaire ou pas? [Solution] On rappelle qu’une matrice carrée
M ∈ 𝔐𝑛,𝑛 (𝕂) est triangulaire supérieure si tous ses coefficients strictement en-
dessous de la diagonale sont nuls, i.e. :

∀(𝑖, 𝑗) ∈ J1 , 𝑛K2, 𝑗 < 𝑖 ⟹ M𝑖,𝑗 = 0.

1. Écrire une fonction d’en-tête est_triangulaire_sup(M) qui renvoient True si la
matrice M est triangulaire supérieure, False sinon. Testez sur les matrices M =

⎛⎜
⎝

1 2 3
0 4 5
0 0 6

⎞⎟
⎠

etM′ = ⎛⎜
⎝

1 2 3
0 4 5
0 5 6

⎞⎟
⎠
.

2. Même chose pour tester si une matrice est triangulaire inférieure, en utilisant la
fonction est_triangulaire_sup.

3. En déduire une fonction est_diagonale(M) qui renvoient True si lamatrice M est
diagonale, False sinon.

Exercice 7 ∣ Matrice des entiers consécutifs [Solution]

1. Créer fonction d’en-tête creer_mat_entiers(n) qui renvoie une matrice de for-
mat 𝑛×𝑛 contenant tous les entiers entre 1 et 𝑛2 (de gauche à droite et haut en
bas). Par exemple, creer_mat_entiers(3) renverra [[1, 2, 3], [4, 5, 6],

[7, 8, 9]].
2. Que vaut∑𝑛2

𝑘=1𝑘? Le retrouver à l’aide de la question précédente et d’un exercice
précédent.On exécutera les fonctions sur plusieurs valeurs de 𝑛

Exercice 8 ∣ Min / Max [Solution]

1. Écrire une fonctiond’en-tête min_max(L)qui renvoie lemaximumet leminimum
d’une liste L.

2. On souhaite trouver iciℳ défini par :
ℳ=maxE−minE, E = {sin2 (3𝑘) |𝑘 ∈ ℕ,3𝑘 ⩽ 100}.

2.1) Créer un tableau A qui contient tous les multiples de 3 entre 0 et 100. On
répondra en une seule commande dumodule numpy.

2.2) Créer un tableau ligne B qui contient les éléments de E.On répondra en une
seule commande dumodule numpy.

2.3) En déduire la valeur deℳ.

Exercice 9 ∣ Matrices stochastiques [Solution] On dit qu’une matrice M ∈
𝔐𝑛,𝑛 (ℝ) est stochastique si la somme sur chaque ligne vaut 1 et chaque coefficient

5
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est entre 0 et 1, i.e. :

∀𝑖 ∈ {1,𝑛},
𝑛
∑
𝑗=1

M𝑖,𝑗 = 1, ∀(𝑖, 𝑗) ∈ J1 , 𝑛K2, M𝑖,𝑗 ∈ [0,1].

Une matrice stochastique est dite bistochastique si en plus la somme sur chaque
colonne vaut 1. Ce type de matrice apparait souvent en probabilités, ce qui légitime
leur étude.

1. Parmi les matrices suivantes, dire si elles sont stochastiques et/ou bistochas-

tiques. A= 1
2 J2, B = I2, C = (

1
2

1
2

 0 1), D = (
−1 2
2 −1).

PEN-FANCY

2. Écrire une fonction d’en-tête est_stochastique(M), qui étant donnée une ma-
trice carrée renvoie True si elle est stochastique, et False dans le cas contraire.

3. Écrire une fonctiond’en-tête est_stochastique_prod(M, N), qui étant données
deux matrices carrées (de formats compatibles) renvoie True siMN est stochas-
tique, et False dans le cas contraire. Tester sur plusieurs couples de matrices sto-
chastiques. Que conjecturer?

4. En utilisant la fonction stochastique, écrire une fonction d’en-tête
est_bistochastique(M) qui renvoie True si M est bistochastique.

2.3 Sous-module np.linalg

Le sous-module np.linalg de numpy possède des fonctions dédiées au calcul nu-
mérique en Algèbre linéaire (résolution de systèmes linéaires, calculs d’éléments
propres, etc.). Nous allons en voir quelques unes.

Remarque 3 L’utilisation de np.linalg n’est pas un attendu du programme. En
cas d’utilisation nécessaire, le sujet vous rappellera les commandes utiles.

OPÉRATIONS PLUS ÉVOLUÉES

Opérations Commande

Inverse de A (en cas d’existence) np.linalg.inv(A)

Rang np.linalg.matrix_rank(A)

OPÉRATIONS PLUS ÉVOLUÉES

Résolution du système AX= B np.linalg.solve(A, B)

Exercice 10 ∣ Matrice deHILBERT [Solution] Pour tout𝑛 ∈ℕ∗, on appelle matrice
de HILBERT d’ordre 𝑛 la matrice H𝑛 de terme général 𝑎𝑖,𝑗 = 1

𝑖+𝑗−1 pour tout (𝑖, 𝑗) ∈
J1 , 𝑛K2.

1. Écrire une fonction hilbert(n) qui renvoie la matriceH𝑛.
2. Écrire, sur feuille, les matrices H2,H3 et justifier qu’elles sont inversibles. On ad-

met qu’elle l’est pour tout 𝑛 ∈ℕ⋆.
3. Étudier le rang deH𝑛 avec Python. Commenter.

Exercice 11 ∣ Résolution d’un système linéaire [Solution] On considère le sys-
tème suivant :

⎧⎪⎪
⎨⎪⎪
⎩

2𝑥+2𝑦−3𝑧 = 2
−2𝑥− 𝑦−3𝑧 = −5
6𝑥+4𝑦+4𝑧 = 16.

Résoudre alors le système avec Python, puis vérifier que le résultat renvoyé est bien
solution à l’aide de Python.

2.4 Méthode du miroir & Pivot de Gauß

Cette partie optionnelle n’est à traiter que si tout le reste a été terminé.

L’objectif est ici de programmer la méthode du Pivot de GAUß et du miroir pour
l’inversion matricielle. Ce dernier thème a fait l’objet de la partie Informatique du
sujet de modélisation 2019. Nous commençons par un exercice de fonctions préli-
minaires.

Exercice 12 ∣ Codage des opérations élémentaires [Solution] On souhaite coder
ici les opérations élémentaires sur les lignes du cours de Mathématiques.

1. Programmer une fonction d’en-tête transvection(M, i, j, lamba) qui modi-
fie le tableau M directement, en appliquant L𝑖 ←L𝑖+λL𝑗.

2. Même question pour permut(M, i, j) correspondant à L𝑖 ↔L𝑗.
3. Même question pour dilatation((M, i, lamba) correspondant à L𝑖 ←λL𝑖.

6
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Exercice 13 ∣ Codaged’unchoixdepivot [Solution] Soit la colonnenuméro 𝑗dans
la matrice M. On cherche le numéro 𝑖⋆ d’une ligne où est situé le plus grand coeffi-
cient (en valeur absolue) de cette colonne parmi les lignes 𝑗 à𝑛−1. Autrement dit,

|M[𝑖⋆, 𝑗]| =max{|M[𝑖, 𝑗]| pour 𝑖 tel que 𝑗 ≤ 𝑖 ≤ 𝑛−1}.

1. Pourquoi imposer la condition 𝑗 ≤ 𝑖 ≤ 𝑛−1 dans l’ensemble précédent? À quoi
cela correspond-il dans la méthode du miroir ou du pivot de GAUß?

2. Écrire une fonction d’en-tête rang_pivot(M, j) prenant pour argument M et 𝑗,
et qui renvoie cette valeur de 𝑖⋆. Lorsqu’il y a plusieurs choix possibles pour cet
indice, dire si votre algorithme renvoie le plus petit, le plus grand ou autre.

Méthode du miroir. Nous allons implémenter la méthode du miroir pour l’in-
version de matrices dans ce paragraphe.

Exercice 14 ∣ [Solution] Compléter la fonction suivantepourqu’elle renvoie la ver-
sion échelonnée de M, une matrice carrée, et qui renvoie une matrice où les mêmes
opérations ont été réalisées sur la matrice identité.
def echelonnement(M):

    """

    modifie M pour avoir sa version échelonnée

    """

    n = len(M)

    N = np.eye(n, n)

    for j in range(n):

        i_star = rang_pivot(M, j)

        # On place le pivot au bon endroit

        permut(___, ___, ___)

        permut(___, ___, ___)

        # Élimination en-dessous du pivot

        for k in range(j+1, n):

            lamba = - M[k, j]/M[j, j]

            transvection(___, ___, ___, lamba)

            transvection(___, ___, ___, lamba)

    return N

On souhaite à présent obtenir la version échelonnée réduit de M.

Exercice 15 ∣ Échelonnement réduit [Solution] Compléter la fonction ci-dessous
afinque la fonction calcule l’échelonnée réduit deechelonnement(M), et qui renvoie
une matrice où les mêmes opérations ont été réalisées sur la matrice identité.
def echelonnement_reduit(M):

    """

    modifie M pour avoir sa version échelonnée

    """

    n = len(M)

    echelonnement(M)

    #On fait apparaitre des pivots égaux à 1

    for i in range(n):

        ____________

        ____________

    # On fait apparaître des zéros au-dessus des pivots, en \

↪ commençant par la dernière colonne

    for j in range(n-1, 0, -1):

        for k in range(j-1, -1, -1):

            lamba = ____________

            transvection(_____________)

            transvection(_____________)

Résolution de systèmes linéaires. Toutes les briques de bases sont là pour
pouvoir résoudre des systèmes linéaires à l’aide d’un algorithme d’échelonnement,
comme nous l’avons fait supra. Soient 𝑏 une matrice colonne, etA une matrice dont
le nombre de colonnes est égal à la taille de 𝑏.

On commencepar programmer une fonction remontee(T, b)qui résout le système
T X = b, où T est une matrice triangulaire supérieure. Plus précisément, si le sys-
tèmeest deCRAMER,remontee renvoie l’unique solution, sinonelle renvoieFalse.

SQUARESQUARE Fonctions de remontée et opération
import numpy as np

T = np.array([[1,7],[3,-4]])

b = np.array([1,1])

def remontee(T, b):

    """

    (T,b)->X solution de TX=b

    """

7
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    n, p = len(T), len(T[0])

    if n == p and 0 not in [T[i,i] for i in range(n)]:

            # Systeme de Cramer

            X = np.zeros(p)

            i = p-1

            X[i] = b[i]/T[i,i]

            while i > 0:

                i = i-1

                X[i] = (1/T[i,i])*(b[i]-np.dot(X[i:],T[i][i:]))

            return X

    return False

On en déduit alors une fonction de résolution du système.
def resol_systeme(T, b):

    """

    T,b->solution au système TX=b, s'il est de cramer

    renvoie false sinon

    """

    n, p = len(T), len(T[0])

    if n == p and 0 not in [T[i,i] for i in range(n)]:

        echelonnement(T)

        return remontee(T, b)

    return False

On peut ensuite résoudre le système correspondant àMX=𝑏.

3 APPLICATION AU TRAITEMENT D’IMAGES

Les images peuvent être codées sous forme de tableaux numpy, nous précisons
quelques points sur le sujet dans cette section.

3.1 Format & Codage d’une image

Il existe de nombreux formats d’image. Le plus fréquent est le format « .jpg » utilisé
par exemples par les appareils photo numériques mais il a le défaut de comprimer
les images au détriment de la richesse de l’information. On trouve ensuite le format
« .bmp» essentiellement dans des contextes scientifiques. Il occupeplus demémoire
mais ne comprime en rien l’image. Nous utiliserons nous un format entre les deux,
le png.

Remarque 4 (Matplotlib nécessite du png)
• matplotlib, qui sera utilisé dans la suite, ne permet de travailler qu’avec des

images au format « .png ». Ça n’a rien de gênant si on considère qu’il est facile
d’utiliser un logiciel de traitement d’image pour exporter au format « .png »
des images de format « .bmp » ou « .jpg ». Pour autant on évitera si on le peut
ces exportations qui se font au détriment d’une perte d’information et donc
de la qualité de l’image.

• En cas de besoin de travail avec d’autres formats (TIPE par exemple), on uti-
lisera le module pillow qui, une fois installé, permet l’acquisition et le traite-
ment par matplotlib.image de plus de formats.

Dans tous les cas, une image sera comprise en informatique comme une grande
grille. Chaque élément de la grille étant appelé « pixel », c’est-à-dire une portion
d’image considérée de couleur constante (identique en tout point dudit pixel). Si
l’image est composée de 𝑛×𝑝 pixels, chacun d’entre eux sera codé de façon diffé-
rente selon que l’image est en niveaux de gris ou pas.

• Si c’est le cas, l’intensité lumineuse sera codée sur 8 bits et l’image aura deux di-
mensions.

• Sinon, dans le cas des images en couleur, c’est l’intensité lumineuse des trois cou-
leurs fondamentales Rouge,Vert et Bleuqui est transcrite dans le domaine de sen-
sibilité de l’oeil humain via un triplet de valeurs également codées sur 8 bits. On
parle alors de mode « RGB » (pour Red, Green, Blue).

• Parfois, certaines images couleur possèdent en plus une composante de transpa-
rence. Les pixels auront donc chacun une 4 ème coordonnée. On peut ensuite
facilement n’extraire que les trois premières et travailler ensuite avec cela. Un
exemple sera fait plus tard.

Exemple 2 (Petits tableaux) Pour une image en noir et blanc, il y a deux états
possibles et un bit suffira (0 pour un pixel noir,1 pour le blanc). Par exemple, on
précise ci-dessous un tableau ainsi que l’image associée.
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T =
0 1 0
1 0 1
0 1 0

codera l’image :

T =
[0.4, 0.4, 0.4] [0,1,0] [1,0,0]

[0,1,0] [0,1,1] [0,1,0]
[0,0,1] [0,1,0] [0,0,1]

codera l’image :

• Si 𝑟 = 𝑔 = 𝑏 = 0, le pixel est noir. Si 𝑟,𝑔 et 𝑏 ont leur valeur maximale (donc 1
ou 255, la valeur par défaut étant 255), le pixel est blanc.

• Supposons chaque coordonnée soit un entier entre 0 et 1, alors : [1,0,0] est
du rouge pur, [0,1,1] est le cyan (complémentaire du rouge), etc. Les cou-
leurs ayant des proportions identiques de rouge, vert et bleu [x,x,x] sont
des gris de plus en plus clair lorsque x augmente.

Exemple 3 (Le soleil et l’oiseau) Autre exemple un peu plus sophistiqué, on
considère les trois matrices ci-après (ici l’intervalle des valeurs n’est plus [0,1]
mais [0,255], on bien sûr se ramener à [0,1] en divisant chaque coordonnée par
255) :

R=
⎛⎜⎜⎜⎜
⎝

153 153 153 153 153 153 153 255 255 255
153 153 153 0 153 153 153 255 255 255
0 153 0 153 153 153 153 153 255 255
153 0 153 153 153 153 153 153 153 153
153 153 153 153 153 153 153 153 153 153
153 153 153 153 153 153 153 153 153 153
153 153 153 153 153 153 153 153 153 153
153 153 153 153 153 153 153 153 153 153
181 34 181 34 181 34 181 34 181 34
181 34 181 34 181 34 181 34 181 34

⎞⎟⎟⎟⎟
⎠

, G =
⎛⎜⎜⎜⎜
⎝

217 217 217 217 217 217 217 201 201 201
217 217 217 0 217 217 217 201 201 201
0 217 0 217 217 217 217 217 201 201
217 0 217 217 217 217 217 217 217 217
217 217 217 217 217 217 217 217 217 217
217 217 217 217 217 217 217 217 217 217
217 217 217 217 217 217 217 217 217 217
217 217 217 217 217 217 217 217 217 217
230 177 230 177 230 177 230 177 230 177
230 177 230 177 230 177 230 177 230 177

⎞⎟⎟⎟⎟
⎠

,

B =
⎛⎜⎜⎜⎜
⎝

234 234 234 234 234 234 234 14 14 14
234 234 234 0 234 234 234 14 14 14
0 234 0 234 234 234 234 234 14 14
234 0 234 234 234 234 234 234 234 234
234 234 234 234 234 234 234 234 234 234
234 234 234 234 234 234 234 234 234 234
234 234 234 234 234 234 234 234 234 234
234 234 234 234 234 234 234 234 234 234
29 76 29 76 29 76 29 76 29 76
29 76 29 76 29 76 29 76 29 76

⎞⎟⎟⎟⎟
⎠

.

IMAGE OBTENUE PAR FUSION DES TROIS
MATRICES

Alors le tableau demême taille que cesmatrices, obtenu en assemblant les 3 va-
leurs des matrices pour former un pixel donnera l’image ci-après (par exemple,
tout en haut à gauche, on aura [153, 217, 234]). On voit bien l’oiseau qui est
matérialisé par les 0 dans chaquematrice, qui donne le pixel [0, 0, 0]. Le bleu
ici est plutôt un cyan, a contrario du bleu précédent : ceci est normal puisque ce
n’est pas un bleu « pur » mais un mélange de rouge (poids 153), vert (poids 217)
et bleu (poids 234).

3.2 Importation & Sauvegarde d’une image

L’objectif de cette sous-section est de voir comme on peut importer une image de-
puis l’arborescence vers un tableau numpy, de forme précédente.

Exemple 4 (Importation d’une image couleur sur un exemple)
• Après avoir copié l’image Vache.png du cahier de prépa (dans le dossier

« Données ») vers le dossier contenant votre fichier Python, on importe
l’image puis on exécute en faisant « Ctrl+Shift+E » à l’aide du code suivant :
import numpy as np

import matplotlib.pyplot as plt

M = plt.imread('Vache.png') lecture de l’image et stockage dans un tableau
numpy M
plt.imshow(M) on peut la réafficher si on veut

plt.imshow(M, cmap = "gray") ou avec cmap, dans le cas d’un niveau de gris

plt.show()

9
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• Analysons le tableau en question.
>>> type(M) le résultat est bien un tableau numpy
<class 'numpy.ndarray'>

>>> np.shape(M) à 336 lignes x 496 colonnes
(336, 496, 3)

>>> M[0, 0] un pixel à 3 coordonnées (codage RGBA, flottants dans [0, 1])
array([0.7294118 , 0.8 , 0.84313726], dtype=float32)

>>> N = M[:,:,:3] on ne garde que les coordonnées RGB si besoin (cordonnées 0, 1, 2),
mais inutile ici
>>> N[0, 0]

array([0.7294118 , 0.8 , 0.84313726], dtype=float32)

Bien entendu, si les pixels ont déjà 3 coordonnées, on travaille directement
avec M plutôt que N.

Remarque 5 (Convertir directement l’image png en RGB) On peut utiliser
le module PIL afin de modifier directement l’image de départ, afin qu’elle soit
convertie en un tableau sans opacité.
SQUARESQUARE RGBA vers RGB
import PIL.Image as pim

im_RGBA = pim.open('Vache.png')

im_RGB = im_RGBA.convert('RGB')

im_RGB.save("Vache.png")

Ce sont ces commandes qui ont servi à créer l’image Vache.png.
import numpy as np

import matplotlib.pyplot as plt

M_vache = plt.imread('Vache.png')

plt.imshow(M)

Exemple 5 (Sauvegarde d’une image sur un exemple) Pour sauvegarder un
tableau sous forme d’une image, on utilise les commandes suivantes.
plt.savefig("nom_image_voulu.png") # pour une image couleur

plt.savefig("nom_image_voulu.png", cmap = "gray") # pour une \

↪ image noir et blanc

Cadre
Ô

Dans toute la suite, le tableau M_vache fera référence au tableau M importé
précédemment.

3.3 Quelques transformations

Maintenant que nous savons gérer des images en Python (importation et exporta-
tion), nous allons étudier quelques algorithmes permettant de convertir une image
en une autre.

Il est important de bien aborder les exercices dans cet ordre

3.3.1 Sur les couleurs
Exercice 16 ∣ Convertirune imagecouleur enniveaudegris [Solution] Il est pos-
sible de convertir une image couleur RGB en image en niveau de gris en moyennant
chaque pixel, c’est-à-dire en créant un pixel de valeur :

Gris=
1
3
Rouge+

1
3
Vert+

1
3
Bleu=Moyenne([Rouge,Vert,Bleu].

En utilisant np.mean, qui renvoie la moyenne d’un tableau, compléter la fonction
niveaux_gris prenant en argument un tableau M correspondant à une image cou-
leur, et renvoyant un nouveau tableau satisfaisant cette règle. Utilisez cette fonc-
tion sur M_vache et affichez l’image correspondante, sauvegardez-la sous le nom
Vache_NG.png.
def niveaux_gris(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_ng = np.zeros((n, p))

    for i in range(n):

        for j in range(p):

            pixel =

            M_ng[i, j] = np.mean( )

    return

Voici ce que vous devriez obtenir (n’oubliez pas le paramètre cmap au moment de l’affichage,
voir une remarque précédente)

10
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Exercice 17 ∣ Convertir une image en niveaux de gris en noir et blanc par
seuillage [Solution]

1. L’idée est ici de mettre à 1 tous les pixels qui sont supérieurs à une valeur fixée
𝑚 ∈ [0,1], et 0 pour les autres. Écrire une fonction d’en-tête seuillage(M_ng,

m) effectuant cette opération, elle renverra donc un nouveau tableau.
2. L’utiliser sur la vache en niveaux de gris, faire varier le paramètre en utilisant no-

tamment la moyenne de M (avec np.mean) pour seuille m.

Exercice 18 ∣ Saturer une couleur [Solution]

1. Dans M_vache, on peut affecter la valeur 1 au pixel bleu. Écrire une fonction
d’en-tête sature_bleu(M) qui effectue cette opération. On dit que l’on a « sa-
turé le bleu ».On commencera par créer une copie du tableau M en écrivant : M_b =

np.copy(M), puis on le parcourera, et on modifiera la bonne composante.
2. Faire afficher l’image associée à sature_bleu(M_vache).
3. Comment saturer le rouge? Le vert?

Exercice 19 ∣ Inversion [Solution]

1. Soit P = np.array([[1, 2, 3]]). Observez l’effet de la commande 1 - P dans
la console.

2. Écrireune fonctioninversionquiprendenargumentun tableauM, et qui renvoie
un autre tableau où chaque valeur𝑥d’unpixel est remplacée par 1−𝑥, sur chaque
composante en cas d’image couleur.

3. L’appliquer à M_vache, puis à sa version noir et blanc.

3.3.2 Sur le contraste On peut essayer d’améliorer le contraste d’images,
tout se fait en appliquant des fonctions bien choisies aux pixels au but d’exagérer les
différences entre les niveaux. On détaille uniquement le contraste au travers d’un
exemple.

Exemple 6 (Contraste en appliquant une fonction) On travaille ici avec la
version en noir et blanc, donc M_ng_vache.
• Essayons dans un premier temps d’appliquer la fonction racine à chaque

pixel.)
def contraste_1(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_b = np.copy(M)

    for i in range(n):

        for j in range(p):

            pixel = M_b[i, j]

            M_b[i, j] = np.sqrt(pixel)

    return M_b

M_ng_vache_contr1 = contraste_1(M_ng_vache)

plt.imshow(M_ng_vache_contr1, cmap = 'gray')

En comparant avec l’image originale, cette fonction ne semble pas vraiment
augmenter le contraste.

• On considère 𝑓 ∶ 𝑥⟼ 1
2 +

1
2 sin(π(𝑥−1/2)) (courbe en rouge), que l’on peut

par exemple tracer avec la racine (courbe en bleu) sur [0,1].

11
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𝑥

𝑦 La racine carrée croît très vite au voi-
sinage de 0 (pixels noirs) donc elle a
tendance à éclaircir l’ensemble, c’est
ce que nous avons observé). La se-
conde fonction est beaucoup mieux
car elle est proche de zéro au voisi-
nage de zéro (maintient le noir), et
proche de 1 au voisinage de 1 (main-
tient le blanc) et croit très vite entre
(donc les pixels entre 0 et 1 se rap-
prochent sensiblement de 0 ou de 1).

• def contraste_2(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_b = np.copy(M)

    for i in range(n):

        for j in range(p):

            pixel = M[i, j]

            M_b[i, j] = 1/2+1/2*np.sin(np.pi*(pixel-1/2))

    return M_b

M_ng_vache_contr2 = contraste_2(M_ng_vache)

plt.imshow(M_ng_vache_contr2, cmap = 'gray')

Remarque6 Il existed’autresméthodespour contrasterune image.Par exemple,
la méthode de convolution par un masque, qui ne sera pas vue dans ce TP.

3.4 Croissance de blob

Cette partie optionnelle n’est à traiter que si tout le reste a été terminé.

IMAGE (SCHÉMATIQUE) DU BLOB AU TEMPS 𝑡 = 11 HEURES

Exercice 20 ∣ Le blob [Solution] Le Physarumpolycephalum, plus communément
appelé «blob », est une espèce demyxomycète faisant partie de la famille des Physa-
raceae et du règne des Amoebozoaires (comme l’amibe). Ce curieux organisme est
composé d’une seule et unique cellule géante. Bien que dépourvu de cerveau ou de
système nerveux, cet organisme vivant est tout de même capable d’apprendre. Ce
n’est ni un animal, ni une plante, ni un champignon. Il vit dans les sous-bois de-
puis plus d’un milliard d’années. À l’état naturel, il se nourrit de bactéries et de moi-
sissures (champignons). En laboratoire, les scientifiques leur donnent des flocons
d’avoine, mais ils se nourrissent en fait des bactéries présentes sur l’avoine. Il existe
plus de 1 000 espèces différentes de blob.

Vous trouverez dans le répertoire « Données » de cahier de prépa des images de la
forme Blob_xxx.png, montrant l’évolution (schématique) d’un blob où xxx désigne
la durée en heures depuis le début de l’expérience. L’objectif de cet exercice est de
mesurer la proportion de surface colonisée par le blob en un temps donné, puis de
la tracer en fonction des temps relevés. Il faudra bien faire attention au fait suivant :
la surface totale colonisable est donc celle en gris clair, alors que celle en gris foncé
n’est pas accessible.

12
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1. Importer et lire l’image Blob_11.png, ne garder qu’un tableau avec les trois pre-
mières coordonnées de chaque pixel. Passer la souris sur le jaune foncé, le jaune
clair, le gris clair, et le gris foncé, la valeur du pixel s’affiche en haut de la fenêtre.
Notez ces valeursdansdes tableauxnumpyquevousappellerezJ, J_c, G, G_c.
On créera en plus le pixel noir N, et le pixel blanc B.

2. Que fait la fonction suivantepour deux tableaunumpyX,Y? S’ils sont de longueur
2 avec X = [x_1, x_2], Y = [y_1, y_2], à quoi correspond distance(X, Y)?
Que signifie sur les coordonnées de X et Y que distance(X, Y) est très petit ?
def distance(X, Y):

    return np.sqrt(np.sum((X-Y)**2))

3. Recopiez et complétez la fonction suivante pour que, étant donné un tableau
numpy M et un réel positif prec, renvoie un autre tableau de même taille où :
• un pixel de M noté pixel tel que distance(pixel, J) < prec ou

distance(pixel, J_c) < prec est mis à la valeur J,
• un pixel de M noté pixel tel que distance(pixel, G_c) < prec ou

distance(pixel, B) < prec est mis à la valeur G_c,
• et enfin un pixel de M noté pixel tel que distance(pixel, G) < prec est mis

à la valeur N.
Affichez alors l’image obtenuepar cette fonction, pour plusieurs précisions, com-
mentez. Dans la suite, vous choisirez alors une précision qui vous semble opti-
male.

4. Modifiez la fonction précédente pour qu’elle renvoie en plus la proportion de sur-
face colonisée par le blob et la surface colonisable.

5. Conclure.

13



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

14
BC
PS
T1

Creative-Commons
20
25
-2
02
6

4 SOLUTIONS DES EXERCICES

Solution (exercice 1) [Énoncé]

>>> A = 2*np.ones((3, 3))

>>> B = np.ones((4, 4)) - np.eye(4)

Solution (exercice 2) [Énoncé] Les matrices ont des grands formats, donc
on part d’unematrice nulle que l’on complète correctement. Attention au déca-
lage entre les indices Maths / Python.
def creer_matrice_A(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            A[i, j] = (i+1)*(j+1)

    return A

def creer_matrice_B(n):

    B = np.zeros((n, n))

    for i in range(n):

        for j in range(i, n):

            # j >= i uniquement

            B[i, j] = (i+1)**2-(j+1)**2

    return B

>>> creer_matrice_A(4)

array([[ 1., 2., 3., 4.],

       [ 2., 4., 6., 8.],

       [ 3., 6., 9., 12.],

       [ 4., 8., 12., 16.]])

>>> creer_matrice_B(4)

array([[ 0., -3., -8., -15.],

       [ 0., 0., -5., -12.],

       [ 0., 0., 0., -7.],

       [ 0., 0., 0., 0.]])

Solution (exercice 3) [Énoncé]

def somme(M):

    S = 0

    n, p = len(M), len(M[0])

    for i in range(n):

        for j in range(p):

            S += M[i, j]

    return S

def somme(M):

    S = 0

    for L in M:

    # L est une ligne de M

        for x in L:

            S += x

    return S

>>> A = np.array([[1, 2], [3, 4]])

>>> somme(A)

np.int64(10)

Solution (exercice 4) [Énoncé]

1. La matrice A= ⎛⎜
⎝

−1 −3 3
3 −7 3
6 −6 2

⎞⎟
⎠

convient. On la code en python dans la question

suivante.
2. A = np.array([[-1, -3, 3], [3, -7, 3], [6, -6, 2]])

def puissance_mat(A, k):

    n, p = len(A), len(A[0])

    P = np.eye(n)

    for _ in range(k):

        P = P @ A

    return P

>>> puissance_mat(A, 3)

array([[ -28., -36., 36.],

       [ 36., -100., 36.],

       [ 72., -72., 8.]])

def val_xyz(n):

    P = puissance_mat(A, n)

    X_0 = np.array([[1], [1], [2]])

    X_n = P @ X_0

    return X_n[0], X_n[1], X_n[2]

>>> val_xyz(1)

(array([2.]), array([2.]), array([4.]))

>>> val_xyz(2)

(array([4.]), array([4.]), array([8.]))

>>> val_xyz(3)

(array([8.]), array([8.]), array([16.]))
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>>> val_xyz(7)

(array([128.]), array([128.]), array([256.]))

>>> val_xyz(10)

(array([1024.]), array([1024.]), array([2048.]))

>>> val_xyz(50)

(array([1.12589991e+15]), array([1.12589991e+15]), array([2.25

179981e+15]))

Les suites semblent diverger vers +∞.
3. La version récursive est basée sur la relation suivante : ∀𝑘 ∈ ℕ, A𝑘+1 =

A×A𝑘.
def puissance_mat_rec(A, k):

n, p = len(A), len(A[0])

if k == 0:

return np.eye(n)

else:

return A @ puissance_mat_rec(A, k-1)

>>> puissance_mat(A, 3)

array([[ -28., -36., 36.],

       [ 36., -100., 36.],

       [ 72., -72., 8.]])

>>> puissance_mat_rec(A, 3)

array([[ -28., -36., 36.],

       [ 36., -100., 36.],

       [ 72., -72., 8.]])

Solution (exercice 5) [Énoncé]

1. Un calcul simple montre queM3 = 03,3 alors queM2 ≠ 03,3, elle est donc nil-
potente d’ordre 3.

2. def indice_nilpo(M):

    ind = 1

    P = np.copy(M) # ou ici P = M n'est pas gênant

    while not np.all(P == np.zeros(P.shape)):

        P = P @ M

        ind += 1

    return ind

>>> M = np.array([[0, 1, 2], [0, 0, 3], [0, 0, 0]])

>>> indice_nilpo(M)

3

3. def indice_nilpo(M):

    ind = 1

    P = np.copy(M) # ou ici P = M n'est pas gênant

    while not np.all(P == np.zeros(P.shape)) and ind <= 10**2:

        P = P @ M

        ind += 1

    if ind == 10**2+1:

        return False

    else:

        return ind

>>> indice_nilpo(M)

3

>>> indice_nilpo(np.ones((3, 3)))

False

Solution (exercice 6) [Énoncé] L’idée est de parcourir la matrice et de ren-
voyer False dès qu’on trouve un coefficient non nul strictement en-dessous de
la diagonale.
def est_triangulaire_sup(M):

    n = len(M) # matrice carrée donnée en entrée, m = n

    for i in range(n):

        for j in range(i):

            if M[i, j] != 0:

                return False

    return True

def est_triangulaire_inf(M):

    return est_triangulaire_sup(np.transpose(M))

def est_diagonale(M):

    return est_triangulaire_sup(M) and est_triangulaire_inf(M)

>>> M = np.array([[1, 2, 3], [0, 4, 5], [0, 0, 6]])

>>> est_triangulaire_sup(M)

True

>>> Mp = np.array([[1, 2, 3], [0, 4, 5], [0, 0, 6]])

>>> est_triangulaire_sup(Mp)

True

>>> est_diagonale(M)

False

>>> A = np.eye(3)
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>>> A

array([[1., 0., 0.],

       [0., 1., 0.],

       [0., 0., 1.]])

>>> est_diagonale(A)

True

>>> est_triangulaire_sup(A)

True

>>> est_triangulaire_inf(A)

True

Solution (exercice 7) [Énoncé]

def creer_mat_entiers(n):

    M = np.zeros((n, n))

    m = 1

    for i in range(n):

        for j in range(n):

            M[i][j] = m

            m += 1

    return M

>>> creer_mat_entiers(3)

array([[1., 2., 3.],

       [4., 5., 6.],

       [7., 8., 9.]])

On peut aussi utiliser une expression explicite aussi :
def creer_mat_entiers(n):

    M = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            M[i][j] = (i*n)+(j+1)

    return M

>>> creer_mat_entiers(3)

array([[1., 2., 3.],

       [4., 5., 6.],

       [7., 8., 9.]])

D’après le cours de Maths, ∑𝑛2
𝑘=1𝑘 = 𝑛2(𝑛2+1)

2 . Donc par exemple 10 pour 𝑛 = 2,
et 45 pour 𝑛 = 3.
>>> somme(creer_mat_entiers(2))

np.float64(10.0)

>>> somme(creer_mat_entiers(3))

np.float64(45.0)

Solution (exercice 8) [Énoncé]

def min_max(L):

    mini, maxi = L[0], L[0]

    for x in L[1:]:

        if x > maxi:

            maxi = x

        if x < mini:

            mini = x

    return mini, maxi

La fonction précédente fonctionne aussi très bien pour un tableau numpy qui ne
comporte qu’une ligne.
>>> A = np.arange(0, 100, 3)

>>> B = (np.sin(A))**2

>>> B

array([0.00000000e+00, 1.99148567e-02, 7.80730206e-02, 1.69841646

e-01,

       2.87910496e-01, 4.22874275e-01, 5.63981845e-01, 6.99992657

e-01,

       8.20072170e-01, 9.14654916e-01, 9.76206490e-01, 9.99823728

e-01,

       9.83625294e-01, 9.28901547e-01, 8.40011748e-01, 7.24036808

e-01,

       5.90215225e-01, 4.49207148e-01, 3.12245201e-01, 1.90239694

e-01,

       9.29095147e-02, 2.80079304e-02, 7.04963780e-04, 1.31755535

e-02,

       6.44262995e-02, 1.50374597e-01, 2.64173853e-01, 3.96758885

e-01,

       5.37568045e-01, 6.75384557e-01, 7.99230035e-01, 8.99239019

e-01,

       9.67444853e-01, 9.98414297e-01])

>>> mini, maxi = min_max(B)

>>> maxi - mini

np.float64(0.9998237279831751)

Solution (exercice 9) [Énoncé]
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1. On a A= (
1
2

1
2

1
2

1
2
), donc A est bistochastique, tout comme B.

2. L’idée est la suivante : on parcourt la somme des coefficients de chaque ligne
et on renvoie False dès que l’une des sommes est différente de 1, ou qu’un
des coefficients n’est pas dans [0,1]. Sinon, on renvoie True et la matrice sera
bien stochastique.
def est_stochastique(M):

    n, p = len(M), len(M[0])

    for i in range(n):

        somme = 0

        for j in range(p):

            somme += M[i, j]

            if not 0 <= M[i, j] <= 1:

                return False

        if somme != 1:

            return False

    return True

>>> M = np.array([[1/2, 1/2], [0.1, 0.9]])

>>> est_stochastique(M)

True

>>> M = np.array([[0, 1/2], [0.1, 0.9]])

>>> est_stochastique(M)

False

3. def est_stochastique_prod(M, N):

    P = M @ N

    return est_stochastique(P)

>>> M = np.array([[1/2, 1/2], [0.1, 0.9]])

>>> N = np.array([[0, 1], [1, 0]])

>>> est_stochastique_prod(M, N) # c'est gagné

True

>>> M = np.array([[1/2, 1/2], [0.1, 0.9]])

>>> N = np.array([[1, 0], [0.1, 0.9]])

>>> est_stochastique_prod(M, N) # encore gagné

True

On conjecture raisonnablement que le produit de deux matrices stochas-
tiques est encore stochastique. Pour savoir si une matrice stochastique est
bistochastique, il suffit de regarder si la transposée est stochastique.
def est_bistochastique(M):

    return est_stochastique(M) and \

↪ est_stochastique(np.transpose(M))

>>> M = np.array([[0, 1], [1, 0]])

>>> est_bistochastique(M)

True

>>> M = np.array([[0, 1/2], [0.1, 0.9]])

>>> est_bistochastique(M)

False

Solution (exercice 10) [Énoncé]

1. import numpy as np

def hilbert(n):

    A = np.zeros((n, n))

    for i in range(n):

        for j in range(n):

            A[i,j] = 1/((i+1)+(j+1)-1)

    return A

2. H2 = (
1 1/2
1/2 1/3), det(H2) = 1/3− 1/4 ≠ 0 donc elle est bien inversible. Pour H3,

on échelonne :

3.

⎛⎜
⎝

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/2

⎞⎟
⎠

L2←L2−1/3L1
L3←L3−1/3L1∼

⎛⎜
⎝

1 1/2 1/3
0 1/6 5/36
0 1/12 5/12

⎞⎟
⎠

L3←L3−1/2L2∼

⎛⎜
⎝

1 1/2 1/3
0 1/6 5/36
0 0 25/72

⎞⎟
⎠
.

Donc : Rg(H3) = 3 etH3 est donc inversible.Lapreuve de l’inversibilité dans
le cas général nécessite des théorèmes de 2ème année; nous l’admettons.

4. On tape simplement : np.linalg.matrix_rank(hilbert(10)) qui renvoie
10.

5. En testant pour les valeurs de𝑛 ⩽ 10, on remarque que lamatrice deHILBERT
semble de rang 𝑛. En particulier elle est donc inversible.
Cependant dès que 𝑛 > 10, on voit que les rangs ne sont plus égaux à 𝑛.
On pourrait ainsi en déduire que hilbert(n) n’est plus inversible pour ces
𝑛, sauf que mathématiquement nous sommes capables de démontrer le
contraire. En fait, la responsable dans l’histoire est la méthode de calcul du
rang utilisée par Python (gardez donc un regard critique des résultats), qui
fait intervenir des divisions et des flottants.
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Solution (exercice 11) [Énoncé]

>>> import numpy as np

>>> A = np.array([[2,2,-3], [-2,-1,-3], [6,4,4]]) # la matrice \

↪ du système

>>> B = np.array([[2], [-5], [16]]) # le second membre

>>> X = np.linalg.solve(A, B)

>>> X

array([[-14.],

       [ 21.],

       [ 4.]])

>>> A@X - B # vérification. OK si résultat proche du vecteur nul.

array([[-8.88178420e-16],

       [ 2.66453526e-15],

       [-3.55271368e-15]])

Solution (exercice 12) [Énoncé]

def permut(M, i, j):

    """

    M->tableau où Li Lj sont permutées

    modifie M

    """

    p = len(M[0])

    for k in range(p):

        M[i,k], M[j,k] = M[j,k], M[i,k]

def dilatation(M, i, lamba):

    """

    M->tableau où Li<- lamba Li

    modifie M

    """

    p = len(M[0])

    for j in range(p):

        M[i, j] = lamba*M[i, j]

def transvection(M, i, j, lamba):

    """

    M->tableau où Li<- Li+lamba Lj

    """

    p = len(M[0])

    for k in range(p):

        M[i, k] += lamba * M[j, k]

Faisons quelques tests.
M = np.array([[1, 2], [2, 3]], dtype = 'float') # il faut \

↪ imposer un type flottant, sinon les coefficients seront \

↪ toujours considérés comme des entiers et seront arrondis à \

↪ chaque opération

permut(M, 0, 1)

La matrice vaut alors [[2. 3.] [1. 2.]].
M = np.array([[1, 2], [2, 3]], dtype = 'float')

dilatation(M, 0, 10)

La matrice vaut alors [[10. 20.] [ 2. 3.]].

Solution (exercice 13) [Énoncé]

1. Lorsque l’algorithme se trouve en la 𝑗-èmecolonne, on souhaite éliminer uni-
quement les coefficients sous le pivot, on ne touche pas à ceux du dessus ! On
recherche donc le plus grand coefficient en valeur absoluea que l’on consi-
dère comme un pivot.

2. def rang_pivot(M, j):

    n = np.shape(M)[0]

    maxi = np.abs(M[j, j])

    ind_maxi = j

    for i in range(j+1, n):

        if np.abs(M[i, j]) > maxi:

            maxi = np.abs(M[i, j])

            ind_maxi = i

    return ind_maxi

M = np.array([[-2, 2], [-1, 3]])

Avec la matrice de test précédente, nous obtenons pour rang_pivot(M, 0) :
0. Avec l’algorithme précédent, on renvoie le plus petit 𝑖⋆ possible.

Solution (exercice 14) [Énoncé]

def echelonnement(M):

    """

    modifie M pour avoir sa version échelonnée

    """

    n = len(M)

    N = np.eye(n, n)

a. choix qui permet d’avoir un algorithme plus efficace, mais n’importe quel coefficient non nul
ferait l’affaire

18



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

19
BC
PS
T1

Creative-Commons
20
25
-2
02
6

    for j in range(n):

        i_star = rang_pivot(M, j)

        # On place le pivot au bon endroit

        permut(M, i_star, j)

        permut(N, i_star, j)

        # Élimination en-dessous du pivot

        for k in range(j+1, n):

            lamba = - M[k, j]/M[j, j]

            transvection(M, k, j, lamba)

            transvection(N, k, j, lamba)

    return N

M = np.array([[1, 2], [2, 3]], dtype = 'float')

N = echelonnement(M)

Pour cette matrice, la fonction a transformé M en [[2. 3. ] [0. 0.5]]. La matrice N

vaut [[ 0. 1. ] [ 1. -0.5]].

Solution (exercice 15) [Énoncé]

def echelonnement_reduit(M):

    """

    modifie M pour avoir sa version échelonnée

    """

    n = len(M)

    N = echelonnement(M)

    #On fait apparaitre des pivots égaux à 1

    for i in range(n):

        lamba = 1/M[i, i]

        dilatation(M, i, lamba)

        dilatation(N, i, lamba)

    # On fait apparaître des zéros au-dessus des pivots, en \

↪ commençant par la dernière colonne

    for j in range(n-1, 0, -1):

        for k in range(j-1, -1, -1):

            lamba = -M[k,j]

            transvection(M, k, j, lamba)

            transvection(N, k, j, lamba)

    return N

M = np.array([[1, 2], [2, 3]], dtype = 'float')

N = echelonnement_reduit(M)

Pour cette matrice, la fonction a transformé M en [[1. 0.] [0. 1.]]. La matrice N

vaut [[-3. 2.] [ 2. -1.]]. On peut ensuite vérifier que l’inverse convient, en effet
N@np.array([[1, 2], [2, 3]]) renvoie : [[1. 0.] [0. 1.]].

Solution (exercice 16) [Énoncé]

M_vache = plt.imread('Vache.png')

def niveaux_gris(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_nb = np.zeros((n, p))

    for i in range(n):

        for j in range(p):

            pixel = M[i, j]

            M_nb[i, j] = np.mean(pixel)

    return M_nb

M_ng_vache = niveaux_gris(M_vache)

plt.imshow(M_ng_vache, cmap = 'gray')

Solution (exercice 17) [Énoncé]

def seuillage(M_ng, m):

    n = len(M_ng) # nb de lignes

    p = len(M_ng[0]) # nb de colonnes

    M_nb = np.zeros((n, p))

    for i in range(n):

        for j in range(p):

            pixel = M_ng[i, j]

            if pixel > m:

                M_nb[i, j] = 1

    return M_nb
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M_nb_vache = seuillage(M_ng_vache, np.mean(M_ng_vache))

plt.imshow(M_nb_vache, cmap = 'gray')

Solution (exercice 18) [Énoncé]

1. def sature_bleu(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_b = np.copy(M)

    for i in range(n):

        for j in range(p):

            M_b[i, j][2] = 1

    return M_b

2. M_b_vache = sature_bleu(M_vache)

plt.imshow(M_b_vache)

3. Pour saturer les autres couleurs, on vient modifier les autres pixels, par
exemple le rouge :
def sature_rouge(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_b = np.copy(M)

    for i in range(n):

        for j in range(p):

            M_b[i, j][0] = 1

    return M_b

4. M_r_vache = sature_rouge(M_vache)

plt.imshow(M_r_vache)

Solution (exercice 19) [Énoncé]

1. Cela applique sur chaque coordonnée la fonction 𝑥⟼1−𝑥.
>>> P = np.array([[1, 2, 3]])

>>> 1-P

array([[ 0, -1, -2]])

2. def inversion(M):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_inv = np.copy(M)

    for i in range(n):

        for j in range(p):

            pixel = M[i, j]

            M_inv[i, j] = 1 - pixel

    return M_inv

3. M_inv_vache = inversion(M_vache)

plt.imshow(M_inv_vache)
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M_invnb_vache = inversion(M_nb_vache)

plt.imshow(M_invnb_vache, cmap = 'gray')

Solution (exercice 20) [Énoncé] En affichant l’image comme d’habitude,
on trouve les valeurs des pixels ci-après.
blob_RGBA = plt.imread('Blob_11.png')

blob_11 = blob_RGBA[:,:,:3]

plt.imshow(blob_11)

J = np.array([0.949, 0.906, 0.243])

J_c = np.array([0.686,0.675,0.553])

G_c = np.array([0.627, 0.62, 0.624])

G = np.array([0.42, 0.42, 0.42])

B = np.array([1, 1, 1])

N = np.array([0, 0, 0])

La fonctiondistance renvoie la racinede la sommedes carrés desdifférencesdes
coefficients. Plus concrètement, si les vecteurs sont des lignes de taille 2, alors
il s’agit de la distance euclidienne entre les deux vecteurs. Avec les notations de
l’énoncé :

distance(X,Y) =√(𝑥1−𝑦1)2+(𝑥2−𝑦2)2.
Si distance(X,Y) est très petite, alors les coefficients des deux vecteurs (ou des
deuxmatrices) seront très proches.Dans la suite, les vecteurs enquestion seront
des pixels ! La distance va alors nous servir à détecter les couleurs très proches.
def distance(X, Y):

    return np.sqrt(np.sum((X-Y)**2))

def garde_jaune(M, prec):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_jaune = np.zeros(M.shape)

    for i in range(n):

        for j in range(p):

            pixel = M[i, j]

            if distance(pixel, J) < prec or distance(pixel, \

↪ J_c) < prec:

                M_jaune[i,j] = J

            elif distance(pixel, G_c) < prec or distance(pixel, \

↪ B) < prec:

                M_jaune[i,j] = G_c

            elif distance(pixel, G) < prec:

                M_jaune[i,j] = N

            else:

                M_jaune[i,j] = pixel

    return M_jaune

Observons à présent l’image obtenue par exemple au temps 11, et ce pour plu-
sieurs précisions.
M_jaune_0 = garde_jaune(blob_11, 0.01)

plt.imshow(M_jaune_0)
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M_jaune_1 = garde_jaune(blob_11, 0.1)

plt.imshow(M_jaune_1)

M_jaune_2 = garde_jaune(blob_11, 0.5)

plt.imshow(M_jaune_2)

M_jaune_3 = garde_jaune(blob_11, 1)

plt.imshow(M_jaune_3)

Une précision trop élevée donne bien sûr une image jaune, puisqu’alors le pre-
mier test if est toujours satisfait. On choisit alors prec = 0.1 pour la suite. On
modifie la fonction comme suit.
def garde_jaune(M, prec):

    n = len(M) # nb de lignes

    p = len(M[0]) # nb de colonnes

    M_jaune = np.zeros(M.shape)

    nb_blob = 0

    nb_vide = 0

    for i in range(n):

        for j in range(p):

            pixel = M[i, j]

            if distance(pixel, J) < prec or distance(pixel, \

↪ J_c) < prec:

                M_jaune[i,j] = J

                nb_blob += 1

            elif distance(pixel, G_c) < prec or distance(pixel, \

↪ B) < prec:

                M_jaune[i,j] = G_c

                nb_vide += 1

            elif distance(pixel, G) < prec:

                M_jaune[i,j] = N

            else:

                M_jaune[i,j] = pixel

    return M_jaune, nb_blob/(nb_blob+nb_vide), \

↪ nb_vide/(nb_blob+nb_vide)

def trace():

    temps = [0, 5, 8, 11, 16, 26]

    P_blob = []

    for t in temps:
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        blob_RGBA = plt.imread("Blob_%s.png" % t)

        blob = blob_RGBA[:,:,:3]

        P_t = garde_jaune(blob, 0.1)[1]

        P_blob.append(P_t)

    plt.plot(temps, P_blob, marker = 'o')

trace()
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Il nous faudrait plus de points pour être plus convaincant, mais la courbe res-
semble fortement à celle d’un modèle logistique (dynamique avec capacité de
milieu).

23


