### Graphe G3
G_3 = {0 : [1, 6, 7], 1 : [0, 2, 4, 5, 6], 2 : [1], 3 : [5, 6, 8], 4 : [1], 5 : [1, 3, 6], 6 : [0, 1, 3, 5, 7], 7 : [0, 6, 8], 8 : [3, 7]}

### Graphe G3 en matrice
import numpy as np
G_3m = np.array([[0,  1,  0,  0,  0,  0,  1,  1,  0],
    [1,  0,  1,  0,  1,  1,  1,  0,  0],
    [0,  1,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  1,  1,  0,  1],
    [0,  1,  0,  0,  0,  0,  0,  0,  0],
    [0,  1,  0,  1,  0,  0,  1,  0,  0],
    [1,  1,  0,  1,  0,  1,  0,  1,  0],
    [1,  0,  0,  0,  0,  0,  1,  0,  1],
    [0,  0,  0,  1,  0,  0,  0,  1,  0]])

### Chèvre, loup, etc
# G_berger = {
    # 0:[.....],
    # 1:[....., ........],
    # 2:[5,6,8], 3:[7,8],
    # 4:[7,9],
    # 5:[0,2],
    # 6:[1,2],
    # 7:[1,3,4],
    # 8:[2,3],
    # 9:[4]} à compléter

### Régions de France
G = {'HF': ['N', 'GE', 'IF'], \
    'N': ['HF', 'IF', 'B', 'PL', 'CVL'], \
    'IF': ['HF', 'N', 'GE', 'CVL', 'BFC'],
    'GE': ['HF', 'IF', 'BFC'], \
    'B': ['N', 'PL'], \
    'PL': ['N', 'B', 'CVL', 'NA'], \
    'CVL': ['N', 'IF', 'PL', 'BFC', 'NA', 'ARA'], \
    'BFC': ['IF', 'GE', 'CVL', 'ARA'], \
    'NA': ['PL', 'CVL', 'ARA', 'O'], \
    'ARA': ['CVL', 'BFC', 'NA', 'O', 'PACA'], \
    'O': ['NA', 'ARA', 'PACA'], \
    'PACA': ['O', 'ARA']}

S1 = ['HF', 'N', 'IF', 'GE', 'B','PL','CVL','BFC','NA','ARA','O','PACA']
S2 = ['ARA','BFC','B','CVL','GE','HF','IF','N','NA','O','PL','PACA']
