Programme de colles du 1 au 5/12/2025

• Cette semaine: 1 question de cours en Maths.

1

[MATHS] CALCULS DE SOMMES ET PRODUITS

L'identité $a^n - b^n$ est hors programme.

- Symboles somme et produit. Définition de la somme et du produit, écriture en extension. Convention sur les bornes. Propriétés des symboles. Technique du changement d'indice : translation, et retournement. Sommes et produits téléscopiques. Sommes usuelles : arithmétique, géométrique, somme des carrés et des cubes. Identité de Bernoulli « $a^n b^n$ » [H.P] . Programmation informatique des sommes et produits. Notation factorielle. Mode de définition par récurrence.
- Coefficients binomiaux et formule du binôme. Définition, et convention. Formules sur les binomiaux : symétrie, absorption, PASCAL. Triangle de PASCAL, corollaire : les coefficients binomiaux sont des entiers relatifs. Formule du binôme.
- Sommes doubles. Sommes doubles libres, cas des indices séparables : définition et calcul. Sommes doubles sous contrainte $i \le j$ et contrainte i < j : définition, théorème de permutation et calculs.

[MATHS] NOMBRES COMPLEXES

Pas d'exercices trop techniques (du moins en début de colle) sur les complexes. Il s'agit d'insister sur les thèmes suivants : résolution d'équations (second degré pour préparer EDL_2 et SRL_2 , racines de complexes), calculs (formes algébriques/exponentielles), déterminer une forme exponentielle et applications en trigonométrie.

Attention

- L'exponentielle générale e^z (sauf si $z \in i\mathbb{R}$) n'est pas au programme, mais peut faire l'objet d'exercices si la définition est donnée.
- Au sujet des racines n-ièmes : aucun résultat n'est au programme, même pour l'unité. Les étudiant(e)s doivent uniquement être capables de les calculer sur des exemples en cherchant les solutions sous forme exponentielle, éventuellement algébrique si n=2.
- Les équations du second degré à coefficients non réels sont hors-programme.
- Les applications en géométrie ne sont pas au programme non plus; en particulier, l'interprétation d'angles orientés à l'aide d'un argument.
- **Définition de** \mathbb{C} **et forme algébrique.** Définition de \mathbb{C} comme un sur-ensemble de \mathbb{R} contenant un élément i vérifiant i $^2 = -1$. Unicité de la forme algébrique. Notation pour le complexe j . Identité remarquable $a^2 + b^2$. Lien avec la géométrie à l'aide de la notion d'affixe. Conjugué, module et interprétation géométrique. Propriétés. Complexes de module 1.
- Forme exponentielle. Notation exponentielle imaginaire. Propriétés similaires à l'exponentielle réelle, formule de Moivre. Expression exponentielle de j, et propriétés de j. Formule d'Euler, théorème de relèvement : tout complexe de module 1 est une exponentielle imaginaire. Forme exponentielle d'un complexe. Angle moitié pour la forme exponentielle d'une somme/différence d'exponentielles imaginaires. Propriétés de l'argument. Égalité de complexes et forme exponentielle. Racines n-ièmes de complexes, cas de la racine carrée à l'aide de la forme algébrique. Équations du second degré à coefficients réels : extension des formules du lycée au cas $\Delta < 0$.
- Applications en trigonométrie. Linéarisation, anti-linéarisation (MOIVRE et angle moitié), sommes trigonométriques en « complexifiant » les sommes.

[MATHS] INJECTIONS, SURJECTIONS, BIJECTIONS. BIJECTIONS NUMÉRIQUES.

Attention

- L'image réciproque d'une partie n'est pas au programme.
- Conformément au programme de BCPST, on limitera les exercices aux fonctions numériques dans un premier temps. À la rigueur, dans un second

- temps, des applications complexes, de \mathbb{R}^p dans \mathbb{R}^q linéaire (avec calcul de réciproque), etc.. On évitera tout exercice théorique.
- Éviter les exercices non guidés sur arcsin et arccos (même sans fonction), le(s) question(s) de cours suffira(ont).
- Fonctions & Applications. Définitions. Égalité de deux applications, Graphe. Applications usuelles : identité, indicatrice, ligne de niveau de l'indicatrice. Restriction & prolongement. Composition d'applications. Propriété de la composition.
- Injection, surjection, bijection. Image directe, image directe d'une réunion et intersection. Injection, surjection. Identité. Bijection. Reformulation à l'aide du nombre de solutions d'une équation. Réciproque d'une application. Si f est bijective : définition de f^{-1} , f^{-1} est la réciproque de f. Bijectivité et existence d'une réciproque. Propriété de . -1 : réciproque d'une composée et d'une réciproque.
- Applications aux fonctions numériques. Bijection numérique, obtenir le graphe de f^{-1} à partir du graphe de f. Théorème de la bijection continu : utilisation pour l'existence et l'unicité d'une solution à une équation (plusieurs exemples, cas d'une suite implicite), utilisation pour déterminer des images directes de parties en combinant éventuellement avec la propriété « $f(A \cup B) = ...$ ». Retour sur la racine cubique : existence et unicité, expression exponentielle. Dérivabilité d'une bijection réciproque. Fonctions circulaires réciproques : arcsin, arccos (définition, relations $\arcsin(\sin(...)) = ..., \sin(\arcsin(...)) = ...)$, $\arctan(\text{\'etude complète}:$ définition, relations $\arctan(\tan(...)) = ..., \tan(\arctan(...)) = ..., parité, dérivée, li$ mites, graphe).

Attention

Aucune autre notion que celles indiquées entre parenthèses ne sont au programme pour arcsin, arccos, mais cela peut faire l'objet d'exercices guidés.

QUESTIONS & EXEMPLES IMPORTANTS DE COURS

- **1.** Définir l'exponentielle imaginaire $e^{i\theta}$ pour $\theta \in \mathbb{R}$, et citer les formules d'EULER. Rappeler la forme exponentielle du complexe j. En déduire : la forme algébrique de j, que j³ = 1, et enfin que $1 + j + j^2 = 0$.
- **2.** Déterminer la forme exponentielle $1 e^{i\theta}$ avec $\theta \in [0, \pi[$ uniquement.
- 3. Déterminer, en utilisant la forme exponentielle, les solutions de $z^3 = 1$. Les représenter sur un dessin.
- **4.** Calculer les racines carrées de 3 + 4i à l'aide de la forme algébrique.
- 5. Donner les formules d'EULER. Linéariser, en utilisant des nombres complexes, $\sin^3 x$.

- **6.** Rappeler le développement de $(a+b)^4$, avec $a,b \in \mathbb{C}$. Anti-linéariser $\cos(4x)$ (i.e. l'exprimer en fonction $\cos x$ et $\sin x$) pour tout $x \in \mathbb{R}$, en utilisant des nombres complexes.
- **7.** Soit $f: E \longrightarrow F$ une application. Écrire la **définition** (avec quantificateurs!) de « finjective » et « f surjective ». Écrire ensuite la négation de ces deux propriétés.
- **8.** Soit $f : E \longrightarrow F$ une application bijective. Expliquer ce qu'est $f^{-1} : F \longrightarrow E$ (définition). Montrer, en résolvant une équation, que $f \mid \mathbb{R} \xrightarrow{\mathbb{R}^{+\times}} \mathbb{R}^{+\times}$ est bijective et déterminer sa réciproque.
- **9.** Citer le théorème de la bijection. Montrer que le polynôme $x \mapsto x^3 + tx 1$ admet une unique racine réelle u(t) pour tout $t \ge 0$.
- **10.** Définir les fonctions arccos, arcsin (uniquement la définition en utilisant le théorème de la bijection). Réciter et compléter :

$$\forall x \in ..., \quad \arccos(\cos(x)) = ... \quad \text{et} \quad \forall x \in ..., \quad \cos(\arccos(x)) = ...,$$

 $\forall x \in ..., \quad \arcsin(\sin(x)) = ... \quad \text{et} \quad \forall x \in ..., \quad \sin(\arcsin(x)) =$

- 11. Fonction usuelle arctan : définition, parité, allure du graphe, limites aux bornes du domaine, et dérivée/dérivabilité à justifier.
- 12. Rappeler le domaine de dérivabilité d'arctan, la dérivée et montrer la formule ci-après: $\forall x \in \mathbb{R}^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$

Pour les élèves : rappels et conseils pour les questions de cours -

- Votre colle commence par ça, elles doivent être parfaitement connues.
- Ainsi, tant qu'il existe du flou, on se ré-entraine encore et encore... et on pose des questions (à moi-même, ou à vos camarades!).
- Travailler les questions de cours aide à cibler les méthodes importantes, et donc on travaille la pratique par la même occasion.
- Possibilité d'en faire des fiches chaque semaine, et/ou de les travailler en groupe (l'un passe au tableau sur l'une des questions, et la présente aux autres) : certains de vos camarades auront peut-être compris un point que vous n'aviez pas saisi, et inversement.

À venir : calculs de primitives et intégral.