Exercice 1

Les fonctions suivantes sont-elles majorées, minorées, bornées sur E?

Les trois premières fonctions admettent-elles un maximum, un minimum?

1.
$$E = \mathbb{R}$$
 et $f(x) = -x^2 + 5$

2.
$$E = \mathbb{R} \text{ et } f(x) = \frac{1}{2 + \sin(x)}$$

3.
$$E = \mathbb{R} \text{ et } f(x) = \frac{1}{x^2 + x + 1}$$

1.
$$E = \mathbb{R} \text{ et } f(x) = -x^2 + 5$$
 2. $E = \mathbb{R} \text{ et } f(x) = \frac{1}{2 + \sin(x)}$ 3. $E = \mathbb{R} \text{ et } f(x) = \frac{1}{x^2 + x + 1}$ 4. $E =]0, +\infty[$ et $f(x) = x \left| \frac{1}{x} \right|$

Exercice 2

Montrer les inégalités suivantes :

$$1. \ \forall x > -1, \ \ln(1+x) \leqslant x$$

$$2. \ \forall x \in \mathbb{R}, \ 1 - x \leqslant e^{-x}$$

1.
$$\forall x > -1$$
, $\ln(1+x) \le x$ 2. $\forall x \in \mathbb{R}$, $1-x \le e^{-x}$ 3. $\forall x \ge 0$, $x - \frac{x^2}{2} \le \ln(1+x)$ 4. $\forall x \ge 0$, $e^{-x} \le 1 - x + \frac{x^2}{2}$

4.
$$\forall x \ge 0, \ e^{-x} \le 1 - x + \frac{x^2}{2}$$

Exercice 3

Étudier la parité de la fonction $x \mapsto (1-x^2) \ln \left(\frac{1+x}{1-x}\right)$.

Exercice 4

- 1. Soient f et g deux fonctions impaires définies sur \mathbb{R} . Les fonctions $f+g,fg,f\circ g$ sont elles impaires?
- 2. Mêmes questions en remplacant impaire par paire.

Exercice 5

Montrer que la somme et le produit de deux fonctions bornées sur un même ensemble sont bornées sur cet ensemble.

Exercice 6 (Dérivation par démontage de fonction)

Pour chacune des fonctions suivantes, déterminer son ensemble de définition, un ensemble sur lequel elle est dérivable, puis calculer sa dérivée.

1.
$$f(x) = \cos(2x+3) e^{4x}$$
 2. $f(x) = x^3 \ln(2\sin x)$

$$2. f(x) = x^3 \ln(2\sin x)$$

3.
$$f(x) = \frac{\tan(3x+4)}{x^2-1}$$

4.
$$f(x) = \cos(\sqrt{1+x^2})$$

5.
$$f(x) = \ln\left(\frac{x^x - 1}{x^x + 1}\right)$$

6.
$$f(x) = \frac{1}{\sqrt{2+x}}$$

$$7. f(x) = \tan\left(\frac{2x}{1+x^2}\right)$$

8.
$$f(x) = \sqrt{|1 - x|^2}$$

4.
$$f(x) = \cos(\sqrt{1+x^2})$$
 5. $f(x) = \ln(\frac{x^x-1}{x^x+1})$ 6. $f(x) = \frac{1}{\sqrt{2+x}}$ 7. $f(x) = \tan(\frac{2x}{1+x^2})$ 8. $f(x) = \sqrt{|1-x^2|}$ 9. $f(x) = \ln(|x^2-3x+2|)$

10.
$$f(x) = \sin(x^2 - 5x + 1) \ln(2x + 1)$$

Exercice 7

Soit f la fonction définie par $f(x) = (1+2x)^{\frac{1}{x}}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Calculer f'(x) en tout point x où f est dérivable.
- 3. Étudier les variations de f. On pourra écrire la dérivée de f sous la forme $f'(x) = \frac{u(x)f(x)}{x^2}$ et étudier la fonction u pour trouver son signe.

4. Représenter graphiquement la fonction f.

Exercice 8

Etudier et représenter les fonctions suivantes. On déterminera également l'image directe de leur ensemble de définition.

- 1. $f: x \longmapsto -2\sin^2 x + 2\sin x + 1$
- 2. $g: x \longmapsto \frac{3\cos x}{2\cos x 1}$
- 3. $h: x \longmapsto \ln(e^x + 2e^{-x})$
- $4. i: x \longmapsto \frac{1}{1+e^{\frac{1}{x}}}$
- 5. $i: x \mapsto x + 2 2\sqrt{x+1}$

Exercice 9

- 1. Montrer que la fonction $f: x \longmapsto 2\cos\left(\frac{3x}{4}\right) + 3\sin\left(\frac{4x}{5}\right)$ est périodique. *Indica*tion: on pourra chercher une période commune à $x \mapsto \cos(\frac{3x}{4})$ et $x \mapsto \sin(\frac{4x}{5})$
- 2. Montrer que la somme, le produit et le quotient de fonctions périodiques de période p sont des fonctions périodiques de période p.
- 3. Résoudre dans \mathbb{R} l'équation $\cos(x) + \cos(x\sqrt{2}) = 2$.
- 4. Montrer que les fonctions $x \mapsto \cos x$ et $x \mapsto \cos(x\sqrt{2})$ sont périodiques.
- 5. La somme de deux fonctions périodiques est-elle nécessairement périodique?

Exercice 10

Soit $f(x) = \ln(x + \sqrt{x^2 + 1})$.

- 1. Simplifier le produit $(\sqrt{x^2+1}+x)(\sqrt{x^2+1}-x)$ et en déduire le signe de $\sqrt{x^2+1}+x$ puis l'ensemble de définition de f sur lequel on admettra que f est dérivable.
- 2. Montrer que f est impaire. Déterminer $\lim_{x\to +\infty} f(x)$ et en déduire $\lim_{x\to -\infty} f(x)$.
- 3. Simplifier f'(x) et dresser le tableau de variation de f avec les limites aux bornes.
- 4. Montrer que pour tout $n \in \mathbb{N}$, l'équation f(x) = n admet une unique solution u_n . Montrer que (u_n) est une suite monotone.

Exercice 11

Tracer les courbes des fonctions suivantes :

- 1. $f: x \mapsto -\cos(3x) \text{ sur } [0, \frac{2\pi}{3}]$
- 2. $g: x \mapsto \sin(\frac{x}{2}) + 1 \sup [0, 2\pi]$
- 3. $h: x \mapsto \tan(x + \frac{\pi}{4}) \sin \left[-\frac{3\pi}{4}, \frac{\pi}{4} \right]$
- 4. $\varphi: x \mapsto \frac{1}{2} \ln(2-x) \text{ sur }]-\infty, 2[$