Questions de cours

- 1. Le colleur interrogera sur le formulaire de dérivation.
- 2. Définir $\max(A)$, $\sup(A)$, $\min(A)$ et $\inf(A)$ pour une partie non vide A de \mathbb{R} . Définir une ou plusieurs expressions (au choix du colleur) parmi \sqrt{t} , |t|, |t| pour un réel t vérifiant éventuellement certaines conditions.

Le colleur pourra demander une forme équivalente d'une des assertions suivantes (au choix du colleur) :

 $a^2 = b, a^2 \le b, a^2 < b, a^2 \ge b, a^2 > b, |a| = b, |a| \le b, |a| < b, |a| \ge b, |a| > b$ où $a \in \mathbb{R}$ et $b \in \mathbb{R}_+$.

- 3. On considère le polynôme P défini par $P(x) = ax^2 + bx + c$ avec $(a, b, c) \in \mathbb{R}^3$ et $a \neq 0$. Donner sans démonstration le signe de P(x) en fonction de x et les solutions de l'équation P(x) = 0 en discutant sur le discriminant (prop 4.2). Factoriser P(x) dans les cas où cela est possible.
- 4. Le colleur choisira l'une des trois questions suivantes :
 - (a) Énoncer les cinq règles de calcul sur les inégalités (prop 3.2).
 - (b) Énoncer les trois équivalences provenant de la stricte monotonie d'une (choisie par le colleur) des fonctions usuelles (exp, $\ln, x \mapsto x^n$ ou \sqrt{x} ou $\frac{1}{x}$ avec $n \in \mathbb{N}$) sur un intervalle à préciser (prop 3.1).
 - (c) Donner sans justification une assertion équivalente à $\sqrt{a} = b$ ne faisant pas intervenir le symbole $\sqrt{\ }$.

Règles de succession des questions de cours d'une semaine à la suivante :

- Les questions 3 et 4 disparaissent.
- Les questions 1 et 2 deviennent les questions 3 et 4 et sont remplacées par deux nouvelles questions portant les numéros 1 et 2.

Programme

- Démonstration par récurrence simple, d'ordre 2 et forte
- Les nombres réels

Partie principale du programme de cette semaine.

- Établir une inégalité à l'aide des règles de calcul (somme, produit et composition par une fonction strictement monotone).
- Établir une inégalité par une étude de fonction.
- Règles de calcul avec les puissances.
- Factorisation, développement, identités remarquables.
- Propriétés de l'exponentielle et du logarithme.
- Résolution d'équations et d'inéquations (en particulier celles du second degré).

Ensemble de définition d'une équation et d'une inéquation.

Méthode "algébrique" (règles de calcul) et méthode "analytique" (étude de fonction).

- Résolution des équations et inéquations du type :
 - $\sqrt{a(x)} = (\text{ ou } \leqslant \text{ ou } \geqslant \text{ ou } < \text{ ou } >) b(x) \text{ où } a \text{ et } b \text{ sont définies sur } \mathbb{R}.$
- Valeur absolue. Propriétés dont l'inégalité triangulaire.
- Résolution d'équations faisant apparaître des valeurs absolues par discussions consignées dans un tableau.
- Approximation d'un réel à ε près par excès et par défaut.
- Partie entière et notamment l'encadrement qui la caractérise.
- Majorant, minorant d'une partie de \mathbb{R} . Parties majorées, minorées, bornées.
- Définition de $\max(A)$, $\sup(A)$, $\min(A)$ et $\inf(A)$ pour une partie A de \mathbb{R} .
- Existence de $\sup(A)$ si A est non vide et majorée et de $\inf(A)$ si A est non vide et minorée.
- Lien entre max(A) et sup(A). Lien entre min(A) et inf(A).
- Savoir déterminer $\max(A)$, $\sup(A)$, $\min(A)$ et $\inf(A)$ lorsque A est un intervalle ou bien un ensemble discret simple.
- Dérivées des fonctions usuelles du formulaire et applications

Cette partie pourra être évaluée après un exercice sur les nombres réels ou la récurrence.

— Application au calcul de la dérivée d'une fonction simple à partir des dérivées usuelles et des règles de calcul sur les dérivées (somme, produit, quotient, inverse, composition).