1BCPST2 Comment étudier le signe d'une fonction périodique?

On considère une fonction f périodique de période T. On note \mathcal{D}_f l'ensemble (ou domaine) de définition de f. Une telle fonction vérifie f(x+kT)=f(x) pour tout $x\in\mathcal{D}_f$ et tout $k\in\mathbb{Z}$.

Pour déterminer le signe de f(x) sur \mathcal{D}_f , il suffit d'étudier celui-ci sur un ensemble plus "petit" appelé ensemble (ou domaine) d'étude.

La T-périodicité de f entraı̂ne que le tableau de signe de f sur $\left[-\frac{T}{2}+kT,\frac{T}{2}+kT\right]$ est obtenu en translatant de kT celui de f sur $\left[-\frac{T}{2},\frac{T}{2}\right]$. Par conséquent :

- 1. Sans information supplémentaire sur f, l'ensemble d'étude choisi sera $\mathcal{D}_f \cap \left[-\frac{T}{2}, \frac{T}{2} \right]$.
- 2. si f est **paire** alors l'ensemble d'étude choisi sera $\mathcal{D}_f \cap \left[0, \frac{T}{2}\right]$. En effet :

Le tableau de signe de f sur $\left[-\frac{T}{2}, \frac{T}{2}\right]$ est symétrique par rapport à 0 donc on peut le déduire de celui de f sur $\left[0, \frac{T}{2}\right]$.

3. si f est **impaire** alors l'ensemble d'étude choisi sera $\mathcal{D}_f \cap \left[0, \frac{T}{2}\right]$. En effet :

Le tableau de signe de f sur $\left[-\frac{T}{2}, \frac{T}{2}\right]$ est antisymétrique par rapport à 0 donc on peut le déduire de celui de f sur $\left[0, \frac{T}{2}\right]$.

Application de la méthode sur trois exemples.

1. $f(x) = \sin(x + \frac{\pi}{4}) \sin(2x)$. La fonction f est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$ et $k \in \mathbb{Z}$, $f(x + 2k\pi) = \sin(x + 2k\pi + \frac{\pi}{4})\sin(2x + 4k\pi) = \sin(x + \frac{\pi}{4})\sin(2x)$ car sinus est une fonction périodique de période 2π . On en déduit que f est périodique de période 2π . On choisit $[-\pi, \pi]$ comme domaine d'étude.

Étudions le signe de $\sin(x + \frac{\pi}{4})$ sur $[-\pi, \pi]$. En posant $y = x + \frac{\pi}{4}$, cela revient à étudier le signe de $\sin(y)$ sur $[-\pi + \frac{\pi}{4}, \pi + \frac{\pi}{4}] = [-\frac{3\pi}{4}, \frac{5\pi}{4}]$. Sur cet intervalle on a : $\sin(y) > 0 \iff y \in]0, \pi[$.

On a donc sur le domaine d'étude : $\sin\left(x + \frac{\pi}{4}\right) > 0 \iff y \in]0, \pi[\iff x \in]-\frac{\pi}{4}, \frac{3\pi}{4}[$ car $x = y - \frac{\pi}{4}$.

Étudions le signe de $\sin(2x)$ sur $[-\pi,\pi]$. En posant z=2x, cela revient à étudier le signe de $\sin(z)$ sur $[-2\pi,2\pi]$.

Sur cet intervalle on a : $\sin(z) > 0 \iff z \in]-2\pi, -\pi[\bigcup]0, \pi[.$

On a donc sur le domaine d'étude : $\sin(2x) > 0 \iff z \in]-2\pi, -\pi[\bigcup]0, \pi[\iff x \in]-\pi, -\frac{\pi}{2}[\bigcup]0, \frac{\pi}{2}[\operatorname{car} x = \frac{z}{2}]$

x	$-\pi$		$-\frac{\pi}{2}$		$-\frac{\pi}{4}$		0		$\frac{\pi}{2}$		$\frac{3\pi}{4}$		π
$\sin\left(x + \frac{\pi}{4}\right)$		_		_	0	+		+		+	0	_	
$\sin(2x)$	0	+	0	_		_	0	+	0	_		_	0
f(x)	0	_	0	+	0	_	0	+	0	_	0	+	0

D'après la 2π -périodicité de f, on en déduit que f(x) > 0 si et seulement si x appartient à un intervalle de l'un des trois types suivants :

$$\left]-\frac{\pi}{2}+2k\pi,-\frac{\pi}{4}+2k\pi\right[\text{ ou }\right]2k\pi,\frac{\pi}{2}+2k\pi\left[\text{ ou }\right]\frac{3\pi}{4}+2k\pi,\pi+2k\pi\left[\text{ où }k\in\mathbb{Z}.\right]$$

2. $f(x) = \frac{\cos(4x)}{\cos(x)}$. On a $x \in \mathcal{D}_f \iff \cos(x) \neq 0$ par conséquent $\mathcal{D}_f = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$.

Soit $x \in \mathcal{D}_f$ et $k \in \mathbb{Z}$, $f(x+2k\pi) = \frac{\cos(4x+8k\pi)}{\cos(x+2k\pi)} = \frac{\cos(4x)}{\cos(x)} = f(x)$ car cosinus est une fonction 2π -périodique. On en déduit que f est périodique de période 2π .

 \mathcal{D}_f est symétrique par rapport à 0 et pour tout $x \in \mathcal{D}_f$, on a $f(-x) = \frac{\cos(4(-x))}{\cos(-x)} = \frac{\cos(-4x)}{\cos(-x)} = \frac{\cos(4x)}{\cos(x)} = f(x)$ car cosinus est pair donc f est paire. On choisit $\mathcal{D}_f \cap [0,\pi] = [0,\frac{\pi}{2}[\cap],\frac{\pi}{2},\pi]$ comme domaine d'étude.

Étudions le signe de $\cos(4x)$ sur $[0,\pi]$. En posant y=4x, cela revient à étudier le signe de $\cos(y)$ sur $[0,4\pi]$. Sur cet intervalle on a : $\cos(y)>0 \iff y\in \left[0,\frac{\pi}{2}\right]\bigcup\left[\frac{3\pi}{2},\frac{5\pi}{2}\right]\bigcup\left[\frac{7\pi}{2},4\pi\right]$.

On a donc sur $[0, \pi]$:

 $\cos(4x) > 0 \iff y \in \left[0, \frac{\pi}{2} \left[\bigcup \right] \frac{3\pi}{2}, \frac{5\pi}{2} \left[\bigcup \right] \frac{7\pi}{2}, 4\pi \right] \iff x \in \left[0, \frac{\pi}{8} \left[\bigcup \right] \frac{3\pi}{8}, \frac{5\pi}{8} \left[\bigcup \right] \frac{7\pi}{8}, \pi \right] \text{ car } x = \frac{y}{4}.$ Toujours sur $[0, \pi]$, on a : $\cos(x) > 0 \iff x \in \left[0, \frac{\pi}{2} \right[$.

x	0		$\frac{\pi}{8}$		$\frac{3\pi}{8}$		$\frac{\pi}{2}$		$\frac{5\pi}{8}$		$\frac{7\pi}{8}$		π
$\cos(4x)$		+	0	_	0	+		+	0	_	0	+	
$\cos(x)$		+		+		+	0	_		_		_	
f(x)		+	0	_	0	+		_	0	+	0	_	

La fonction f étant paire, son tableau de signe sur $[-\pi, \pi]$ est symétrique par rapport à 0.

x	$-\pi$	$-\frac{7\tau}{8}$	-	$-\tfrac{5\pi}{8}$	_	$-\frac{\pi}{2}$	$-\frac{3\pi}{8}$		$-\frac{\pi}{8}$		0		$\frac{\pi}{8}$		$\frac{3\pi}{8}$		$\frac{\pi}{2}$		$\frac{5\pi}{8}$		$\frac{7\pi}{8}$		π
f(x)		- 0	+	0	_	+	0	_	0	+		+	0	_	0	+		_	0	+	0	_	

D'après la 2π -périodicité de f, on en déduit que f(x) > 0 si et seulement si x appartient à un intervalle de l'un des cinq types suivants :

3. $f(x) = \cos(3x)\sin(x)$. La fonction f est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$ et $k \in \mathbb{Z}$,

 $f(x+k\pi) = \cos(3x+3k\pi)\sin(x+k\pi) = \cos(3x+k\pi+2k\pi)\sin(x+k\pi) = \cos(3x+k\pi)\sin(x+k\pi)$ car cosinus est 2π -périodique.

Si k est pair alors $\cos(3x + k\pi) = \cos(3x)$ et $\sin(x + k\pi) = \sin(x)$ car cosinus et sinus sont 2π -périodiques.

Si k est impair alors k-1 est pair et $\cos(3x+k\pi) = \cos(3x+\pi+(k-1)\pi) = \cos(3x+\pi) = -\cos(3x)$. $\sin(x+k\pi) = \sin(x+\pi+(k-1)\pi) = \sin(x+\pi) = -\sin(x)$.

Dans tous les cas on a $f(x + k\pi) = \cos(3x + k\pi) \sin(x + k\pi) = \cos(3x) \sin(x) = f(x)$ donc f est π -périodique.

 $f(-x) = \cos(3(-x))\sin(-x) = \cos(-3x)\sin(-x) = -\cos(3x)\sin(x) = -f(x)$ car cosinus est pair et sinus est impair. On en déduit que f est impaire.

On choisit $\left[0, \frac{\pi}{2}\right]$ comme domaine d'étude.

Étudions le signe de $\cos(3x)$ sur $\left[0, \frac{\pi}{2}\right]$. En posant y = 3x, cela revient à étudier le signe de $\cos(y)$ sur $\left[0, \frac{3\pi}{2}\right]$. Sur cet intervalle on a : $\cos(y) > 0 \iff y \in \left[0, \frac{\pi}{2}\right]$.

On a donc sur $\left[0,\frac{\pi}{2}\right]$:

 $\cos(3x)>0\iff y\in\left[0,\tfrac{\pi}{2}\right[\iff x\in\left[0,\tfrac{\pi}{6}\right[\,\mathrm{car}\ x=\tfrac{y}{3}.$

Toujours sur $\left[0,\frac{\pi}{2}\right],$ on a : $\sin(x)>0\iff x\in\left]0,\frac{\pi}{2}\right].$

x	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$
$\cos(3x)$		+	0	_	0
$\sin(x)$	0	+		+	
f(x)	0	+	0	_	0

La fonction f étant impaire, son tableau de signe sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ est antisymétrique par rapport à 0.

x	$-\frac{\pi}{2}$		$-\frac{\pi}{6}$		0		$\frac{\pi}{6}$		$\frac{\pi}{2}$
f(x)	0	+	0	_	0	+	0	_	0

D'après la π -périodicité de f, on en déduit que f(x) > 0 si et seulement si x appartient à un intervalle de l'un des deux types suivants : $\left] -\frac{\pi}{2} + k\pi, -\frac{\pi}{6} + k\pi \right[$ ou $\left] k\pi, \frac{\pi}{6} + k\pi \right[$ où $k \in \mathbb{Z}$.