Nombre de tirages possibles dans un ensemble à n éléments suivant le mode de tirage

Soit E un ensemble de cardinal $n \in \mathbb{N}^*$

Nombre d'éléments tirés	Types de tirages	Répétitions	Ordre	Objets combinatoires correspondant	Notations	Nombre de tirages
p	successifs avec remise	autorisées	l'ordre compte	p-uplets de E	(x_1, x_2, \ldots, x_p)	n^p
p	successifs sans remise	non autorisées	l'ordre compte	p-uplets sans répétition de E	(x_1, x_2, \dots, x_p)	$\frac{n!}{(n-p)!} = p! \binom{n}{p}$
n	successifs sans remise	non autorisées	l'ordre compte	permutations de E	(x_1,x_2,\ldots,x_n)	n!
p	simultanés	non autorisées	l'ordre ne compte pas	p-combinaisons de E	$\{x_1, x_2, \dots, x_p\}$	$\binom{n}{p} = \frac{n!}{p!(n-p)!}$
quel conque entre 0 et n	simultanés	non autorisées	l'ordre ne compte pas	parties de E	$\{x_1, x_2, \dots, x_k\}$	2^n

Techniques de dénombrement

On cherche à dénombrer un ensemble fini A.

Dénombrement à l'aide du complémentaire

On doit trouver un ensemble E contenant A. On a alors $\boxed{\operatorname{Card}(A) = \operatorname{Card}(E) - \operatorname{Card}(\overline{A}) \text{ où } \overline{A} \text{ est le complémentaire de } A \text{ par rapport à } E}$.

Dénombrement par découpage

On doit trouver des ensembles A_1, \ldots, A_n deux à deux disjoints $(i \neq j \Longrightarrow A_i \cap A_j = \emptyset)$ tels que $x \in A \iff (x \in A_1)$ ou $(x \in A_2)$ ou \cdots ou $(x \in A_n)$. On a alors

$$\operatorname{Card}(A) = \operatorname{Card}\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} \operatorname{Card}(A_{k})$$

Dénombrement par étapes

Si on peut détailler en p étapes la description de tous les éléments de A, et si pour tout $k \in [1, p]$, il y a n_k choix possibles à la $k^{\text{ième}}$ étape $(n_k \text{ doit être indépendant des choix faits aux étapes précédentes})$, alors $Card(A) = n_1 n_2 \cdots n_p$.

Dénombrement à l'aide de la formule du crible

- On doit trouver E et F tels que $A = E \cup F$. On a alors $\operatorname{Card}(A) = \operatorname{Card}(E \cup F) = \operatorname{Card}(E) + \operatorname{Card}(F) \operatorname{Card}(E \cap F)$
- On doit trouver E et F tels que $A = E \cap F$. On a alors $\boxed{\operatorname{Card}(A) = \operatorname{Card}(E \cap F) = \operatorname{Card}(E) + \operatorname{Card}(F) \operatorname{Card}(E \cup F)}$