Questions de cours

- 1. Soit X une une variable aléatoire. Définir (au choix du colleur) les notions suivantes :
 - (a) la loi de X,
 - (b) la fonction de répartition de X,
 - (c) l'espérance de X,
 - (d) la variance et l'écart-type de X,
 - (e) la variable aléatoire centrée réduite associée à X,
- 2. Soit X une VA de loi $((x_1, p_1), (x_2, p_2), \dots, (x_{n-1}, p_{n-1}), (x_n, p_n))$.
 - (a) Tracer la fonction de répartition de X.
 - (b) Exprimer $\mathbb{P}(X \leq x_i)$ en fonction des probabilités $\mathbb{P}(X = x_i)$.
 - (c) Exprimer $\mathbb{P}(X = x_i)$ en fonction des probabilités $\mathbb{P}(X \leq x_i)$.
- 3. Soit E un ensemble à n éléments et $p \in \mathbb{N}^*$. Définir (au choix du colleur) :
 - (a) un p-uplet de E (et donner le nombre de p-uplets de E),
 - (b) un p-uplet sans répétition de E (et donner le nombre de p-uplets sans répétition de E),
 - (c) une permutation de E (et donner le nombre de permutations de E),
 - (d) une p-combinaison de E (et donner le nombre de p-combinaisons de E).
- 4. Expliquer ce qui est renvoyé par une fonction python pour approcher $\mathbb{P}(A)$. Même question pour $\mathbb{P}_B(A)$.

Écrire la commande d'importation de la bibliothèque random.

Donner une commande python qui renvoie True avec la probabilité p et False avec la probabilité 1-p, permettant ainsi de simuler un événement de probabilité p.

Soit i et j deux entiers tels que $i \leq j$. Donner une commande python qui renvoie au hasard un nombre entier entre i et j.

Programme

- Python
 - Approximation d'une solution d'une équation f(x) = a par dichotomie.
 - Simulation d'une expérience aléatoire avec rd.random, rd.randint, rd.choice.
 - Approximation de $\mathbb{P}(A)$ par la fréquence de réalisation de A avec un grand nombre de simulations.
 - Approximation de $\mathbb{P}_B(A)$ par le quotient du nombre de réalisations de $A \cap B$ sur le nombre de réalisations de B avec un grand nombre de simulations.
- Estimation de E(X) par $\frac{X_1+\cdots+X_n}{n}$, et de V(X) par $\frac{X_1^2+\cdots+X_n^2}{n}$ $\left(\frac{X_1+\cdots+X_n}{n}\right)^2$ où les X_i sont des simulations indépendantes de X.
- Expériences aléatoires et probabilité : tout le chapitre
- Dénombrement
 - Ensembles finis et cardinaux. Cardinal de [p,q]
 - $Card(A) = Card(B) \iff$ il existe une bijection de A dans B.
 - p-uplets : modèle des tirages successifs avec remise.
 - p-uplets sans répétition : modèle des tirages successifs sans remise.
 - Permutations : modèle des tirages exhaustifs.
 - p-combinaisons : modèle des tirages simultanés.
 - Nombre de parties d'un ensemble à n éléments.
 - Cardinal du complémentaire.
 - Cardinal d'une union d'ensembles deux à deux disjoints.
 - Cardinal d'une union de deux ensembles pas forcément disjoints.
 - Dénombrement par étapes et cardinal d'un produit cartésien.
- Variables aléatoires : début du chapitre
 - Valeurs et univers-image d'une VA. Événements définis par une VA.
 - SCE associé à une variable aléatoire.
 - Loi de probabilité d'une VA. Différentes représentation de cette loi.
 - Fonction de répartition d'une VA. Méthodes pour déterminer la loi connaissant la fonction de répartition et inversement.
 - Espérance, variance, écart type et leurs propriétés. VA centrée réduite.
 - Les lois usuelles n'ont pas encore été vues.