Exercice 1

On pose $e_1 = (1, -1, 2)$ et $e_2 = (1, 1, -1)$.

Est-ce que les vecteurs $v_1 = (3,1,0)$ et $v_2 = (4,1,0)$ sont combinaisons linéaires de e_1 et e_2 ? Expliciter, si possible, ces combinaisons linéaires.

Exercice 2

Déterminer une représentation paramétrique et des équations cartésiennes du SEV E.

- 1. E = Vect((-2,3))
- 2. E = Vect((3, -1, 2))
- 3. E = Vect((1, 2, -3), (3, 1, 2))
- 4. E = Vect((1, 2, 1, 4), (1, 2, 3, -1), (-1, -2, -7, 11))

Exercice 3

Déterminer une représentation paramétrique et une famille génératrice du SEV E.

- 1. $(x, y) \in E \iff 2x + 5y = 0$
- 2. $(x, y, z) \in E \iff 3x 2y + z = 0$
- 3. $(x, y, z) \in E \iff \begin{cases} 5x 2y + z = 0 \\ -2x + 3y + 4z = 0 \end{cases}$
- 4. $(x, y, z, t) \in E \iff \begin{cases} 4x 2y + z + 4t = 0 \\ 3x y z + t = 0 \\ -x y + 5z + 5t = 0 \end{cases}$

Exercice 4

Pour chacune des familles de vecteurs suivantes, déterminer si elle est libre ou liée. Lorsqu'elle est liée, donner une relation linéaire entre ses vecteurs.

1. $\mathscr{F}_1 = ((1,2,3), (2,3,4), (3,4,5), (4,5,6)).$

Retrouver ce résultat avec la fonction python np.linalg.matrix_rank.

- 2. $\mathscr{F}_2 = ((1, i, 1-i), (-i, 1, -1-i))$
- 3. $\mathscr{F}_3 = ((1,1,0), (0,-1,1), (1,0,a))$ où a est un paramètre réel.

Exercice 5

Pour les familles de vecteurs suivantes, déterminer si elles sont génératrices de l'espace \mathbb{K}^n considéré. Lorsqu'elles ne le sont pas, donner un exemple de vecteur de \mathbb{K}^n qui n'est pas combinaison linéaire des vecteurs de la famille.

1.
$$\mathscr{F}_1 = ((0,0,1,0), (0,1,1,2), (2,0,0,-2))$$

- 2. $\mathscr{F}_2 = ((1,i),(1,0),(i,i))$
- 3. $\mathscr{F}_3 = ((1,2,0), (0,-2,1), (1,0,1))$. Utiliser 4 méthodes dont 1 informatique.

Exercice 6

Déterminer parmi les ensembles suivants ceux qui sont des sous-espaces vectoriels, et pour chacun d'eux, en donner une base et la dimension.

- 1. $A = \{(x, y, z, t) \in \mathbb{R}^4 \text{ tel que } x + y + z + t = 0\}$
- 2. $B = \left\{ (x, y, z) \in \mathbb{C}^3, \left\{ \begin{array}{l} 2x 5y + z = 0 \\ x 2y + z = 0 \end{array} \right\} \right.$
- 3. $C = \left\{ (x, y, z) \in \mathbb{R}^3, \left\{ \begin{array}{l} x + z = -1 \\ 2x y + 3z = 0 \end{array} \right\} \right.$
- 4. $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y = 0\}$
- 5. $E = \{(a, a b, a + b, b), (a, b) \in \mathbb{R}^2\}.$
- 6. $F = \{(a+3b+c, 2a+b-3c, -a-2b), (a, b, c) \in \mathbb{C}^3\}$

Exercice 7

On considère les ensembles suivants :

$$\begin{split} E &= \Big\{ (x,y,z) \in \mathbb{K}^3/2x - 3y + z = 0 \Big\}, \ F &= \Big\{ (x,y,z) \in \mathbb{K}^3/x - 2y + z = 0 \Big\}, \\ G &= \Big\{ (\lambda - \mu, \lambda + \mu, 2\lambda - 3\mu)/(\lambda, \mu) \in \mathbb{K}^2 \Big\}, \ H &= \Big\{ (\lambda + \mu, 2\lambda + \mu, \lambda + 2\mu)/(\lambda, \mu) \in \mathbb{K}^2 \Big\}. \end{split}$$

- 1. Montrer que ces quatre ensembles sont des sous-espaces vectoriels de \mathbb{K}^3 .
- 2. Déterminer une base de chacun des sous-espaces vectoriels $E \cap F$, $E \cap G$, $G \cap H$.

Exercice 8

Soit (u, v, w) une famille libre de \mathbb{K}^n .

Donner un minorant de n. Montrer que (u+v, v+w, w+u) est une famille libre.

Exercice 9 (Une famille de vecteurs à paramètre)

Soit $m \in \mathbb{R}$ et $v_1 = (1, 1, m)$, $v_2 = (2, m + 1, 2)$, $v_3 = (m, 1, 1)$, u = (x, y, z). On note $E = \text{Vect}(v_1, v_2, v_3)$.

- 1. Pour m=1, déterminer une base et la dimension de E. Jusqu'à la fin de l'exercice on supposera que $m \neq 1$.
- 2. On considère le système (S) $\begin{cases} \lambda + 2\mu + m\gamma = x \\ \lambda + (m+1)\mu + \gamma = y \end{cases}$ d'inconnues λ, μ, γ .

Montrer que u appartient à E (c'est-à-dire u est une combinaison linéaire de v_1, v_2 et v_3) si et seulement si (S) est compatible.

1BCPST2

- 3. Échelonner (S) par la méthode du pivot. On ne cherchera pas à résoudre (S).
- 4. On suppose que m = -3.
 - (a) Montrer que $u \in E \iff x + 2y + z = 0$.
 - (b) En déduire une base de $E \cap F$ où F = Vect((1,0,0),(0,1,0)).
 - (c) Montrer que (v_1, v_2) est une base de E.
- 5. On suppose que $m \notin \{-3, 1\}$.

Justifier que (S) admet une unique solution. Qu'en déduit-on pour (v_1, v_2, v_3) ?

6. On suppose que m = 0 et on note $u_1 = (2, 2, 0)$, $u_2 = (0, -1, 2)$, $u_3 = (1, 4, 0)$. Finir la résolution de (S) et en déduire la matrice des coordonnées de la famille (u_1, u_2, u_3) dans la base (v_1, v_2, v_3) . Quelle est la particularité de cette matrice?

Exercice 10

- 1. Montrer que l'ensemble $E = \{(x, y, z) \in \mathbb{K}^3 / x 2y + z = 0\}$ est un SEVde \mathbb{K}^3 dont on donnera une représentation paramétrique, une base et la dimension.
- 2. Soit F = Vect(u, v) avec u = (1, 1, 1) et v = (3, 1, -1). Montrer que (u, v) est une base de F. Vérifier que $F \subset E$ et en déduire que F = E.
- 3. Déterminer les coordonnées d'un vecteur (x, y, z) de E dans la base (u, v) en fonction de x, y et z.
- 4. Soit $(x, y, z) \in \mathbb{K}^3$ et w = (1, 0, 0).
 - (a) Déterminer $\lambda \in \mathbb{K}$ tel que $(x, y, z) \lambda w \in E$.
 - (b) En déduire que $\mathscr{B} = (u, v, w)$ est une base de \mathbb{K}^3 .
 - (c) Donner les coordonnées de (x, y, z) dans \mathscr{B} .
 - (d) Déterminer une équation cartésienne pour chacun des SEV Vect(u, w) et Vect(v, w).

Exercice 11

Déterminer le rang de chacune des familles suivantes par une méthode matricielle. Sont-elles libres? Sont-elles génératrices de \mathbb{K}^n ? Sont-elles des bases de \mathbb{K}^n ? Vérifier vos résultats avec la fonction python np.linalg.matrix_rank.

- $\mathscr{F}_1 = ((2,1,1,1); (1,2,1,1); (1,1,2,1))$
- $\mathscr{F}_2 = (1, 1, 0, 1); (1, -1, 1, 0); (2, 0, 1, 1); (0, -2, 1, -1)$
- $\mathscr{F}_3 = ((1,0,1); (0,1,1); (1,1,0))$
- $\mathscr{F}_4 = ((1,1,1); (1,-1,1); (1,1,-1); (1,-1,-1)).$

Exercice 12

Soit $E = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y + z - t = 0\}$ et $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = y\}$

- 1. Vérifier que E et F sont deux sous-espaces vectoriels de \mathbb{R}^4 .
- 2. Montrer que $E \cap F$ est de dimension 2 et en donner une base $\mathscr{B} = (u, v)$.
- 3. Déterminer une base de E de la forme (u, v, w).
- 4. Déterminer une base de F de la forme (u, v, w').
- 5. Montrer que (u, v, w, w') est une base de \mathbb{R}^4 .

Exercice 13

Soit \mathscr{F} une famille de p vecteurs de \mathbb{R}^5 .

Que dire du caractère libre ou générateur de \mathbb{R}^5 de la famille \mathscr{F} dans les cas suivants?

(1)
$$p = 5$$
, (2) $p = 7$, (3) $p = 2$, (4) $p = 6$ et $\operatorname{rg}(\mathscr{F}) = 5$, (5) $p = 3$ et $\operatorname{rg}(\mathscr{F}) = 3$,

(6)
$$p = 5$$
 et $rg(\mathscr{F}) = 3$, (7) $p = 4$ et $rg(\mathscr{F}) = 5$, (8) $p = 7$ et $rg(\mathscr{F}) = 6$

Exercice 14 (Matrices d'une famille de vecteurs dans deux bases)

Soit $u_1 = (1, 0, 1), u_2 = (0, 1, 1)$ et $u_3 = (1, 1, 1)$.

- 1. Montrer que $\mathscr{B} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2. On pose $v_1 = (1, 2, 4)$, $v_2 = (3, -1, 0)$ et $v_3 = (-7, 7, 8)$. Déterminer les matrices de (v_1, v_2, v_3) dans la base canonique et dans la base \mathscr{B} . Pour la deuxième matrice on utilisera deux méthodes :

Première méthode. On cherchera les coordonnées du vecteurs (a, b, c) dans \mathscr{B} . **Deuxième méthode.** On exprimera les vecteurs u_1, u_2, u_3 en fonction des vecteurs e_1, e_2, e_3 de la base canonique puis on exprimera les vecteurs e_1, e_2, e_3 en fonction de u_1, u_2, u_3 .

- 3. Utiliser trois méthodes dont 1 informatique pour déterminer le rang de (v_1, v_2, v_3) .
- 4. (v_1, v_2, v_3) est-elle une base de \mathbb{R}^3 ?

Exercice 15 (Inclusion de SEV)

On considère les SEV de \mathbb{R}^4 suivants :

$$E = \text{Vect}((1, -1, 3, -2), (-2, 2, -5, 3), (-3, 3, 7, -10), (2, -2, 1, 1))$$

$$F = \text{Vect}((1,0,1,-1),(0,1,1,-2),(1,0,0,0),(0,0,-1,1))$$

$$E_1$$
 le SEV de \mathbb{R}^4 d'équations cartésiennes
$$\begin{cases} x + y - 3z + 2t = 0 \\ 3x + 2y - 5z + 4t = 0 \end{cases}$$

 F_1 le SEV de \mathbb{R}^4 d'équation cartésienne x-y+5z-2t=0.

- 1. Démontrer que $E \subset F$.
- 2. Démontrer que $E_1 \subset F_1$.
- 3. A-t-on $E_1 \subset F$?