NOMBRES COMPLEXES

1. Nombres complexes, conjugaison et module

1.1 Définition

Théorème et Définition 1 : Rappel.

Il existe un ensemble noté $\mathbb C$, appelé ensemble des nombres complexes qui possède les propriétés suivantes :

- C contient l'ensemble des nombres réels.
- L'addition et la multiplication des nombres réels se prolongent aux nombres complexes et les règles de calcul restent les mêmes.
- Il existe un nombre complexe noté i tel que $i^2 = -1$.
- Tout nombre complexe z s'écrit de manière unique z = x + iy avec x et y réels.

L'écriture z = x + iy avec x et y réels est appelée la forme algébrique du nombre complexe z, x est la partie réelle de z, notée $\operatorname{Re}(z)$, y est la partie imaginaire de z et notée $\operatorname{Im}(z)$. L'ensemble des nombres complexes dont la partie réelle est nulle, est appelé ensemble des imaginaires purs et noté $i\mathbb{R}$.

Définition 1 : Opérations sur les nombres complexes.

Soient z = a + ib et z' = a' + ib' deux nombres complexes (avec a, a', b et b' des nombres réels). Alors on pose

- z + z' = (a + ib) + (a' + ib') = a + a' + i(b + b')
- $z \times z' = (a + ib) \times (a' + ib') = (aa' bb') + i(ab' + a'b)$

Proposition 1 : Propriétés algébriques des nombres complexes.

Soit $(z, z', \tilde{z}, \lambda) \in \mathbb{C}^3 \times \mathbb{R}$.

- 1. z + 0 = 0 + z = z (Élément neutre pour l'addition)
- 2. z + z' = z' + z (Commutativité de l'addition)
- 3. $(z+z')+\tilde{z}=z+(z'+\tilde{z})=z+z'+\tilde{z}$ (Associativité de l'addition)
- 4. $z \times 1 = 1 \times z = z$ (Élément neutre pour la multiplication)
- 5. $z \times z' = z' \times z$ (Commutativité de la multiplication)
- 6. $z \times z' \times \tilde{z} = z \times (z' \times \tilde{z})$ (Associativité de la multiplication)
- 7. $\exists ! w \in \mathbb{C} \mid z + w = 0$ (**Opposé unique**, noté -z)
- 8. $\forall z \in \mathbb{C}^*, \exists! \ w \in \mathbb{C} \mid zw = 1, \text{ noté } w = \frac{1}{z}$ (Inverse unique)

9. $z \times (z' + \tilde{z}) = zz' + z\tilde{z}$ (Distributivité de × par rapport à +)

10.
$$zz' = 0 \iff z = 0 \text{ ou } z' = 0$$
 (Intégrité de \mathbb{C})

11.
$$\operatorname{Re}(\lambda z + z') = \lambda \operatorname{Re}(z) + \operatorname{Re}(z')$$
 (Linéarité de la partie réelle)

12.
$$Im(\lambda z + z') = \lambda Im(z) + Im(z')$$
 (Linéarité de la partie imaginaire)

A Attention

La partie réelle/imaginaire du produit n'est pas ce que vous croyez. En général,

$$\operatorname{Re}(zz') \neq \operatorname{Re}(z)\operatorname{Re}(z')$$
 et $\operatorname{Im}(zz') \neq \operatorname{Im}(z)\operatorname{Im}(z')$.

Exemple : Considérez z = z' = i. Alors $zz' = i^2 = -1$, donc :

$$\operatorname{Re}(zz') = -1$$
 mais $\operatorname{Re}(z)\operatorname{Re}(z') = 0 \times 0 = 0$.

Exemple 1.

Donner la forme algébrique des nombres complexes suivants :

- 1. (1+3i)(1-i).
- 2. $(3+i)^2$.

Corollaire 1.

Pour tous $z, z' \in \mathbb{C}$:

- $z = z' \iff \operatorname{Re}(z) = \operatorname{Re}(z')$ et $\operatorname{Im}(z) = \operatorname{Im}(z')$.
- $z = 0 \iff \operatorname{Re}(z) = \operatorname{Im}(z) = 0$.
- $z \in \mathbb{R} \iff \operatorname{Im}(z) = 0$.
- $z \in i\mathbb{R} \iff \operatorname{Re}(z) = 0$.

A Attention

On ne compare pas les complexes, seulement les réels.

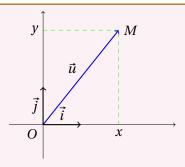
Il n'y a pas de \leq , <, \geq ou > définis sur \mathbb{C} .

1.2 Affixe d'un point du plan, affixe d'un vecteur

Définition 2.

Soit \mathcal{P} le plan euclidien d'un repère orthonormal $\mathcal{R}=(O,\vec{i},\vec{j}).$

- Soit M un point du plan de coordonnées (x,y). On appelle affixe du point M le nombre complexe x+iy, et inversement M est appelé l'image du nombre complexe x+iy.
- Soit \vec{u} un vecteur de coordonnées (x, y). On appelle affixe du vecteur \vec{u} le nombre complexe x + iy.



Remarque 1.

- ► L'axe des abscisses (O, \vec{i}) est appelé axe réel.
- ► L'axe des ordonnées (O, \vec{j}) est appelé axe imaginaire.

Proposition 2 : Propriétés de l'affixe.

- (a) Soient \vec{u} et \vec{v} deux vecteurs d'affixes respectifs $u, v \in \mathbb{C}$ et $\lambda, \mu \in \mathbb{R}$. Alors le vecteur $\lambda \vec{u} + \mu \vec{v}$ a pour affixe $\lambda u + \mu v$.
- (b) Soient A et B deux points du plan d'affixes respectifs $a, b \in \mathbb{C}$. Alors le vecteur \overrightarrow{AB} a pour affixe (b-a).

Démonstration

Exemple 2.

Représenter dans le plan complexe les points d'affixe :1, -1, i, -i.

1.3 Conjugué d'un nombre complexe

Définition 3.

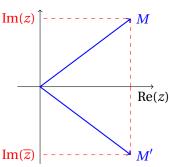
Soient $x, y \in \mathbb{R}$ et z = x + iy. On appelle conjugué de z, le nombre complexe noté \bar{z} et défini par $\bar{z} = x - iy$.

On a par conséquent

$$\operatorname{Re}(\bar{z}) = \operatorname{Re}(z)$$
 et $\operatorname{Im}(\bar{z}) = -\operatorname{Im}(z)$.

Interprétation géométrique du conjugué

Le point M' d'affixe \overline{z} est l'image du point M d'affixe z par la symétrie par rapport à l'axe des abscisses.



Proposition 3.

Soient $z, z' \in \mathbb{C}$.

• Propriétés des parties réelle et imaginaire :

 $2 z \in \mathbb{R} \iff \bar{z} = z.$

3 z est imaginaire pur $\iff \bar{z} = -z$.

• Propriétés de la conjugaison :

$$\mathbf{6} \ \overline{z+z'} = \bar{z} + \overline{z'}.$$

 $\mathbf{6} \ \overline{zz'} = \bar{z}\overline{z'}.$

$$\overline{\left(\frac{z'}{z}\right)} = \frac{\bar{z}'}{\bar{z}} \text{ si } z \neq 0.$$

Démonstration

Exemple 3.

Donner la forme algébrique de $\frac{1}{1-i}$

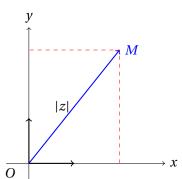
1.4 Module d'un nombre complexe

Définition 4.

Soient $x,y\in\mathbb{R}$ et $z=x+iy\in\mathbb{C}$ un nombre complexe sous forme algébrique. On appelle module de z le nombre réel positif noté |z| et défini par

$$|z| = \sqrt{x^2 + y^2} = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}.$$

Interprétation géométrique du module



- Si M est le point du plan d'affixe z, alors OM = |z|.
- Si \vec{u} est un vecteur d'affixe z, alors $|z| = ||\vec{u}||$.

Théorème 1 (Propriétés du module).

Soient $z, z' \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

 $0 \quad |z| = 0 \Longleftrightarrow z = 0.$

 $|z|^2 = z\overline{z}.$

- **6** |zz'| = |z| |z'| et $|z^n| = |z|^n$.
- **3** |-z| = |z| et $|\overline{z}| = |z|$.
- $\bullet \text{ Si } z \neq 0, \left| \frac{1}{z} \right| = \frac{1}{|z|} \text{ et } \left| \frac{z'}{z} \right| = \frac{\left| z' \right|}{|z|}.$

Démonstration

Exemple 4.

Pour $z \in \mathbb{C} \setminus \{-\mathbf{i}\}\$, on pose $Z = \frac{1 + \mathbf{i}z}{1 - \mathbf{i}z}$.

- 1. Pour quels complexes z le complexe Z est-il un réel?
- 2. Pour quels complexes z le complexe Z est-il un imaginaire pur?

Exemple 5.

Pour $z \in \mathbb{C}$, montrer que Re z = |z| si, et seulement si, $z \in \mathbb{R}_+$.

Proposition 4 (Inégalités triangulaires).

Soient $z, z' \in \mathbb{C}$.

- (i) **Première inégalités triangulaire :** $|z+z'| \le |z| + |z'|$. De plus, |z+z'| = |z| + |z'| **ssi** il existe $\lambda \in \mathbb{R}_+$ tel que $z' = \lambda z$ ou $z = \lambda z'$.
- (ii) Deuxième inégalité triangulaire : $|z| |z'| \le |z z'|$.

Démonstration

Corollaire 2 (Cercles et disques en complexe).

Soient *A* un point d'affixe a et $r \in \mathbb{R}_+$.

- (i) L'ensemble des points d'affixes z vérifiant |z-a|=r est le cercle de centre A et de rayon r.
- (ii) L'ensemble des points d'affixes z vérifiant $|z-a| \le r$ est le disque fermé (circonférence incluse) de centre A et de rayon r.
- (iii) L'ensemble des points d'affixes z vérifiant |z-a| < r est le disque ouvert (circonférence exclue) de centre A et de rayon r.

Exemple 6.

Déterminer l'ensemble des $z\in\mathbb{C}$ tels que :

- 1. |z+2i|=2i
- 2. |z+2i|=2
- 3. |(1+i)z-2i|=2.
- 4. |z+1-5i| < 2

2. Forme trigonométrique

2.1 Nombres complexes de module 1

Définition 5.

On note $\mathbb U$ l'ensemble des nombres complexes de module 1.

Autrement dit : $\mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$.

Remarque 2.

Géométriquement, les images des complexes de $\mathbb U$ sont sur le cercle trigonométrique, c'est-à-dire le cercle de centre O et de rayon 1, et les affixes des points du cercle trigonométrique sont les éléments de $\mathbb U$.

Exercice 1.

Soit $z \in \mathbb{C}$. Montrer que : $z \in \mathbb{U} \iff \bar{z} \in \mathbb{U} \iff \bar{z} = \frac{1}{z}$.

Solution:

Exercice 2.

Soit $z \in \mathbb{C} \setminus \{1\}$. Montrer que $\frac{z+1}{z-1}$ est imaginaire pur si et seulement si $z \in \mathbb{U}$.

Solution:

2.2 Exponentielle imaginaire

Définition 6.

Soit $\theta \in \mathbb{R}$. On note : $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. On l'appelle *l'exponentielle imaginaire de* θ .

Exemple 7.

1.
$$e^{i\pi} = -1$$
.

2.
$$e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

3.
$$e^{i\frac{\pi}{2}} = i$$

ig(Proposition 5 .

Pour tout nombre complexe $z: z \in \mathbb{U} \iff \exists \theta \in \mathbb{R}, z = e^{i\theta}$.

Il en résulte que :

$$U = \{z \in \mathbb{C} \mid \exists \theta \in \mathbb{R}, \ z = e^{i\theta}\}$$

Théorème 2.

Soient $\theta, \theta' \in \mathbb{R}$ et $n \in \mathbb{N}$.

- (i) Transformation des sommes en produits : $e^{i(\theta+\theta')}=e^{i\theta}\,e^{i\theta'}$
- (ii) **Conjugaison:** $\overline{e^{i\theta}} = \frac{1}{e^{i\theta}} = e^{-i\theta}$
- (iii) $e^{i\theta} = e^{i\theta'} \iff \theta = \theta' \mod 2\pi$
- (iv) **Formules d'Euler:** $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}$
- (v) Formule de Moivre:

$$(\cos\theta + \sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$
 ou encore $(e^{i\theta})^n = e^{in\theta}$

Démonstration

La formule « $e^{i(\theta+\theta')}=e^{i\theta}\,e^{i\theta'}$ » permet de retrouver les formules trigonométriques.

À retenir

Pour tous réels x et y:

- ► On en déduit :
 - $\cos(2x) = \cos^2(x) \sin^2(x) = 2\cos^2(x) 1 = 1 2\sin^2(x)$,
 - $\sin(2x) = \sin(x)\cos(x) + \sin(x)\cos(x) = 2\sin(x)\cos(x)$.

En posant $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$ on obtient :

- cos(x) + cos(y) = cos(a+b) + cos(a-b) = 2cos(a)cos(b), donc $cos(x) + cos(y) = 2cos(\frac{x+y}{2})cos(\frac{x-y}{2}).$
- $\sin(x) + \sin(y) = \sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b), \text{ donc}$ $\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right).$

Technique de l'angle moitié -

Il s'agit de factoriser une somme ou une différence de deux complexes de module 1. Pour $(a, b) \in \mathbb{R}^2$,

$$e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right) = 2\cos\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}}$$

$$e^{ia} - e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} - e^{-i\frac{a-b}{2}} \right) = 2i \sin\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}}.$$

En particulier, pour tout $\theta \in \mathbb{R}$:

$$e^{i\theta} + 1 = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$$
 et $e^{i\theta} - 1 = 2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$.

2.3 Argument d'un complexe non nul

Proposition et Définition 1.

Tout nombre complexe z **non nul** peut s'écrire sous la forme suivante, appelée forme trigonométrique :

$$z = |z| e^{i\theta} = |z| (\cos \theta + i \sin \theta), \text{ avec } \theta \in \mathbb{R}.$$

Le réel θ est appelé argument de z. Un tel nombre n'est pas unique : si θ est un argument de z, l'ensemble de tous les arguments de z est donné par $\{\theta + 2k\pi \mid k \in \mathbb{Z}\}$. On notera $\arg(z) \equiv \theta \ [2\pi]$. Enfin, il existe un unique argument de z appartenant à l'intervalle $]-\pi,\pi]$. On l'appellera l'*argument principal* de z.

Démonstration

Exemple 8.

- $arg(i) \equiv \frac{\pi}{2} [2\pi] car$
- $arg(-1) \equiv \pi[2\pi] car$
- $arg(-i) \equiv -\frac{\pi}{2}[2\pi] car$

Exemple 9.

Déterminer un argument de z = 1 + i.

Solution

Exemple 10.

Déterminer un argument de $z = 1 + i\sqrt{3}$.

Solution

Remarque 3.

Si $z = r e^{i\theta}$ avec $r, \theta \in \mathbb{R}$, alors c'est la forme trigonométrique lorsque r > 0. Mais, lorsque r < 0, alors la forme trigonométrique de z est $z = -r e^{i(\theta + \pi)}$, car $e^{i\pi} = -1$.

Proposition 6.

Soient $z, z' \in \mathbb{C}$ non nuls et $n \in \mathbb{N}^*$.

(i) $\arg(\bar{z}) \equiv -\arg(z)[2\pi]$.

(iv) Si $z \neq 0$, $\arg\left(\frac{z'}{z}\right) \equiv \arg(z') - \arg(z)[2\pi]$.

(ii) $\arg(zz') \equiv \arg(z) + \arg(z')[2\pi]$. (iii) Si $z \neq 0$, $\arg\left(\frac{1}{z}\right) \equiv -\arg(z)[2\pi]$.

(v) $\arg(z^n) \equiv n \arg(z)[2\pi]$.

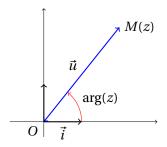
Démonstration

Exemple 11

Déterminer un argument de $\frac{1+i}{1+i\sqrt{3}}$.

Interprétation géométrique l'argument

- ► Si z est un nombre complexe non nul d'image le point M, alors arg(z) est une mesure de l'angle orienté $(\vec{i}, \overrightarrow{OM})$.
- ► Si \vec{u} est un vecteur non nul d'affixe z, alors arg(z) est une mesure de l'angle orienté (\vec{i}, \vec{u}) .



Amplitude et phase -

Soient a, b deux réels non tous deux nuls et soit $x \in \mathbb{R}$.

En posant $z = a + ib = |z|e^{i\theta}$ on obtient :

 $a\cos(x) + b\sin(x) =$

3. Équations algébriques, racines de l'unité

3.1 Racines n-ièmes d'un nombre complexe

Définition 7.

- Soient $a \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On appelle racine $n^{\text{ème}}$ de a tout nombre complexe z tel que $z^n = a$.
- Les racines $n^{\rm èmes}$ de 1 sont généralement appelées les racines $n^{\rm \`emes}$ de l'unité. Leur ensemble est noté \mathbb{U}_n .

Exemple 12.

Déterminer les racines 2^{èmes} et 4^{èmes} de l'unité.

Solution

Théorème 3 .

Soit $n \in \mathbb{N}^*$.

(i) Il existe exactement n racines $n^{\text{\`e}mes}$ de l'unité qui sont les complexes :

$$e^{i\frac{2k\pi}{n}}$$
 avec $k \in [0, n-1]$.

(ii) En général, si $z \in \mathbb{C}$ non nul, donné sous forme trigonométrique $z = r e^{i\theta}$, alors z possède exactement n racines $n^{\text{èmes}}$ qui sont :

$$\sqrt[n]{r} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$$
 avec $k \in [0, n-1]$.

Démonstration

Exemple 13.

On pose $j = e^{\frac{2i\pi}{3}}$.

Déterminer les racines cubiques (ou troisième) de l'unité.

Solution

Exemple 14.

Déterminer les racines cubiques de z = 1 + i.

Solution

Exemple 15.

Pour tout $n \ge 2$: $\sum_{\omega \in \mathbb{U}_n} \omega = 0$ et $\prod_{\omega \in \mathbb{U}_n} \omega = (-1)^{n-1}$.

🕲 🕲 🐿 Solution

Racines carrées
Soit $z = a + ib = re^{i\theta}$. On veut trouver les racines carrées de z , ce qui revient
à résoudre l'équation $u^2 = z$ d'inconnue $u = x + iy \in \mathbb{C}$.
Méthode trigonométrique
Méthode algébrique
Exemple 16.
Déterminer les racines carrées de $z = 8 - 6i$.
Solution

3.2 Équations du second degré

Théorème 4.

Soient $a,b,c\in\mathbb{C}$ avec $a\neq 0$, l'équation $az^2+bz+c=0$ admet deux solutions complexes qui sont

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$

avec δ est une racine carrée de $\Delta = b^2 - 4ac$ (discriminant) c'est-à-dire $\delta^2 = \Delta$.

De plus, lorsque les coefficients a,b,c sont réels et que le discriminant Δ est strictement négatif, ces deux solutions sont complexes non réelles et conjuguées :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$.

Démonstration

Exemple 17.

Résoudre dans \mathbb{C} l'équation $iz^2 + (4i - 3)z + i - 5 = 0$.

🕲 🕲 🐿 Solution

Corollaire 3.

• Si z_1 et z_2 sont racines de l'équation $az^2 + bz + c = 0$, alors on a les relations :

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

• De plus on a la factorisation:

$$\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2).$$

3.3 Factorisation d'un polynôme

Proposition 7.

Soient P une fonction polynomiale à coefficients complexes et $a \in \mathbb{C}$. Si a est une racine de P, alors P se factorise par z-a, c-à-d il existe une faction polynomiale Q tel que

$$\forall z \in \mathbb{C}, \ P(z) = (z - a)Q(z)$$
 avec $\deg(Q) = \deg(P) - 1$.

Exemple 18.

Soit P la fonction polynomiale défini dans $\mathbb C$ par :

$$\forall z \in \mathbb{C}, \quad P(z) = z^3 - z^2 + i - 1.$$

Justifier que P se factorise sous la forme $\forall z \in \mathbb{C}$, P(z) = (z - i)Q(z) où Q est un polynôme de degré 2 à coefficients complexes à déterminer.

Solution

4. Exponentielle complexe

Définition 8.

Soit $z = x + iy \in \mathbb{C}$. On définit l'exponentielle de z par :

$$e^z = e^{Re(z)} e^{i Im(z)} = e^x e^{iy} = e^x (\cos(y) + i \sin(y)).$$

Remarque 4.

- $\exp(0) = 1$.
- $\operatorname{Re}(e^z) = e^{\operatorname{Re}(z)} \cos(\operatorname{Im}(z))$ et $\operatorname{Im}(e^z) = e^{\operatorname{Re}(z)} \sin(\operatorname{Im}(z))$.
- $|e^z| = e^{\operatorname{Re}(z)}$ et $\operatorname{arg}(e^z) \equiv \operatorname{Im}(z)[2\pi]$.

Théorème 5.

- (i) Pour tous $z, z' \in \mathbb{C}$: $\exp(z + z') = \exp(z) \times \exp(z')$.
- (ii) Pour tous $z, z' \in \mathbb{C}$: $(e^z)^{-1} = e^{-z}$.
- (iii) Pour tous $z, z' \in \mathbb{C}$:

$$\exp(z) = \exp(z') \iff \exists k \in \mathbb{Z}, \ z - z' = 2k\pi i.$$

Démonstration

Exercice 3.

Résoudre l'équation $\exp(z) = 1 + i$ d'inconnue $z \in \mathbb{C}$.

🔍 🕲 🐿 Solution

5. Interprétation géométrique des nombres complexes

5.1 Angles et rapports de distance

Proposition 8.

Soient $a,b,z\in\mathbb{C}$ tels que $z\neq a$ et $z\neq b$. On note A l'image de a,B celle de b et M celle de z.

$$\left| \frac{b-z}{a-z} \right| = \frac{MB}{MA}$$
 et $\arg\left(\frac{b-z}{a-z} \right) \equiv (\overrightarrow{MA}, \overrightarrow{MB})[2\pi].$

Démonstration

Corollaire 4.

- (i) A, B et M sont alignés $\iff \frac{b-z}{a-z} \in \mathbb{R}$.
- (ii) (AM) et (BM) sont orthogonales $\iff \frac{b-z}{a-z} \in i\mathbb{R}$.
- (iii) Soit $(z_i)_{1 \le i \le 4}$ quatre points distincts de \mathbb{C} . Ces quatre points sont cocycliques ou alignés si et seulement si $\frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)} \in \mathbb{R}$,

Démonstration

5.2 Transformations usuelles

Proposition 9

Soient M un point d'affixe z. Soient en outre \vec{u} un vecteur d'affixe u, Ω un point d'affixe ω et $\lambda, \theta \in \mathbb{R}$.

- (i) L'image de M par la translation de vecteur \vec{u} a pour affixe le nombre complexe z + u.
- (ii) L'image de M par l'homothétie de centre Ω et de rapport λ a pour affixe le nombre complexe $\omega + \lambda(z \omega)$.

(iii) L'image de M par la rotation de centre Ω et d'angle de mesure θ a pour affixe le nombre complexe $\omega + e^{i\theta}(z - \omega)$.

Démonstration

5.3 Similitudes directes

Définition 9.

Une similitude directe est une transformation du plan admettant comme représentation dans le plan complexe l'application :

$$\begin{array}{ccc}
\mathbb{C} & \longrightarrow & \mathbb{C} \\
z & \longmapsto & az+b
\end{array}$$
où $(a,b) \in \mathbb{C}^* \times \mathbb{C}$.

Exemple 19.

Théorème 6.

Soient $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ et $f : z \mapsto az + b$ une similitude du plan.

- Si a = 1, f est la translation de vecteur d'affixe b.
- Si $a \neq 1$, f admet un unique point fixe Ω ($f(\Omega) = \Omega$) appelé centre de la similitude. De plus, dans ce cas, si
 - \triangleright α est un argument de a,
 - ightharpoonup r est la rotation de centre Ω et d'angle α ,
 - ightharpoonup h est l'homothétie de centre Ω et de rapport |a|,

alors f s'écrit comme la composée de h et r: $f = r \circ h = h \circ r$.