TD : Séries numériques

1 Pour appliquer et approfondir le cours

Exercice 1

Déterminer la nature des séries dont les termes généraux sont les suivants :

(a)
$$u_n = \frac{n}{n^2 + 1}$$

(b)
$$u_n = \frac{\cosh(n)}{\cosh(2n)}$$

(c)
$$u_n = n^{\frac{1}{n}} - 1$$

(d)
$$u_n = 1 - \cos\left(\frac{1}{n}\right)$$

(e)
$$u_n = e^{-\sqrt{n}}$$

(f)
$$u_n = \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n^2 + 1}$$
.

(g)
$$u_n = \frac{n!}{n^n}$$

(h)
$$u_n = \frac{2^n}{n^2} (\sin \alpha)^{2n}$$
 avec $\alpha \in]0, \pi/2]$

Exercice 2 Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ des séries à termes strictement positifs vérifiant

$$\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$$

- 1. Montrer que si $\sum_{n\geq 0} v_n$ converge, alors $\sum_{n\geq 0} u_n$ converge également.
- 2. Montrer que si $\sum_{n>0} u_n$ diverge, alors $\sum_{n>0} v_n$ diverge également.

Exercice 3

Règle de Cauchy : Soit (u_n) une suite de réels positifs. On suppose que la suite de terme général $\sqrt[n]{u_n}$ admet une limite $\ell \in \mathbb{R}_+ \cup \{+\infty\}$.

- 1. Montrer que si $\ell < 1,$ la série $\sum u_n$ converge.
- 2. Montrer que si $\ell > 1$, la série $\sum u_n$ diverge.
- 3. Montrer à l'aide de deux exemples qu'on ne peut conclure dans le cas $\ell=1$.
- 4. En déduire la nature de la série de terme général $u_n = \left(\frac{4n+1}{3n+2}\right)^n$.

Quelques techniques

Exercice 4

On considère la suite $(u_n)_{n\geq 1}$ définie par : $\forall n\geq 1$, $u_n=\sum_{k=1}^{+\infty}\frac{(-1)^k}{k^2}$.

- 1. Montrer que cette suite est bien définie et que $u_n = O\left(\frac{1}{n^2}\right)$.
- 2. Montrer que $\forall N \in \mathbb{N}^*$, $\sum_{k=1}^{N} \left(\sum_{k=1}^{N} \frac{(-1)^k}{k^2}\right) = \sum_{k=1}^{N} \frac{(-1)^k}{k}$.
- 3. Exprimer, pour tout $N \in \mathbb{N}^*$, $\sum_{n=1}^N u_n$ en fonction de Nu_{N+1} et de $\sum_{n=1}^N \frac{(-1)^k}{k}$.
- 4. En déduire que la série $\sum_{n\geq 1} u_n$ est convergente et déterminer sa somme, en remarquant que $\frac{1}{k} = \int_0^1 t^{k-1} dt$, pour $k \in \mathbb{N}^*$.

Exercice 5

Étudier la nature des séries suivantes :

1.
$$\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

2.
$$\sum_{n>1} \sin\left(2\pi\sqrt{n^2+(-1)^n}\right)$$

Exercice 6

- 1. Déterminer un équivalent de la somme partielle de la série $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ lorsque $0\leq \alpha\leq 1$.
- 2. Déterminer un équivalent du reste de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ lorsque $\alpha>1$.

Exercice 7

On pose $H_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$ pour $n\geq 1$. Donner un développement asymptotique de H_n à trois termes.

On rappelle que si (u_n) et (v_n) sont deux suites à termes positifs et si on suppose que : $u_n \sim v_n$, alors les deux séries sont de même nature, et en cas :

— De convergence on a :

$$\left(\sum_{k=n+1}^{+\infty} u_k\right) \sim \left(\sum_{k=n+1}^{+\infty} v_k\right)$$

— De divergence on a :

$$\left(\sum_{k=0}^{n} u_k\right) \sim \left(\sum_{k=0}^{n} v_k\right)$$

Exercice 8

Soit (u_n) une suite à termes positifs et décroissante. Si la série $\sum u_n$ converge, montrer que $u_n = o(1/n)$.