Fonctions Usuelles

M. ECH-CHAMMAKHY Mohammed

28 septembre 2025

Introduction

Ce chapitre s'inscrit dans la continuité de ce qui a été vu en terminale, ou même avant, partant des fonctions trigonométriques jusqu'aux fonctions racine $n^{\text{ième}}$, logarithme et exponentielle.

Propriétés de la fonction sinus (Rappels)

Propriétés

La fonction sinus, notée sin, est :

- à valeurs dans [-1,1],
- 2π-périodique,
- impaire,
- dérivable sur \mathbb{R} (et donc continue),
- pour tout $x \in \mathbb{R}$, $\sin'(x) = \cos(x)$.

Exercice : Inégalités sur le sinus

- **1** Montrer que pour tout x dans \mathbb{R} , $|\sin(x)| \leq |x|$.
- ② Montrer que pour tout x dans $[0, \pi/2]$, $\sin(x) \ge \frac{2x}{\pi}$.

Propriétés de la fonction cosinus(Rappels)

Propriétés

La fonction cosinus, notée cos, est :

- à valeurs dans [-1,1],
- 2π-périodique,
- paire,
- dérivable sur \mathbb{R} (et donc continue),
- pour tout $x \in \mathbb{R}$, $\cos'(x) = -\sin(x)$.

Formules d'addition :

Proposition

Pour tous $x, y \in \mathbb{R}$:

- $\sin(x y) = \sin x \cos y \cos x \sin y$

Formules du produit

Proposition

- $\bullet \sin x \sin y = \frac{1}{2} \left(\cos(x y) \cos(x + y) \right)$
- $\sin x \cos y = \frac{1}{2} (\sin(x+y) + \sin(x-y))$
- $\cos x \cos y = \frac{1}{2} \left(\cos(x+y) + \cos(x-y) \right)$

Formules de duplication :

Proposition

Pour tous $x, y \in \mathbb{R}$:

•
$$\sin^2(x) = \frac{1-\cos(2x)}{2}$$
,

•
$$cos(2x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x)$$
.

Exercice: Une équation

Résoudre dans \mathbb{R} , puis dans $[0,2\pi]$, l'équation suivante :

$$3\cos(x) - \sqrt{3}\sin(x) = \sqrt{6}$$

Propriétés de la fonction tangente

Propriétés

La fonction tangente, notée tan, est :

- définie par $tan = \frac{\sin}{\cos}$,
- définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\,|\,k\in\mathbb{Z}\right\}$,
- impaire,
- π-périodique,
- dérivable sur les intervalles $]\frac{\pi}{2} + k\pi, \frac{\pi}{2} + (k+1)\pi[$ pour tout $k \in \mathbb{Z}$ (et donc continue),
- pour tout $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \, | \, k \in \mathbb{Z} \right\}$, $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.

Exercice : Inégalité sur la tangente

Montrer que pour tout x dans $]-\frac{\pi}{2},\frac{\pi}{2}[$, $|\tan(x)| \ge |x|$.

La fonction Arcsinus

Theorem

La restriction de la fonction sinus sur $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ est une bijection de ce segment vers [-1,1]. La bijection réciproque est appelée fonction arcsinus et est notée arcsin, ainsi :

$$\arcsin: \left\{ \begin{array}{ccc} [-1,1] & \longrightarrow & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ y & \longrightarrow & \arcsin y \end{array} \right.$$

La fonction Arcsinus

Soit:

$$\forall y \in [-1, 1], \sin(\arcsin y) = y$$

 $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \arcsin(\sin x) = x$

ATTENTION!!!

$$arscin(sin(2\pi)) = arcsin(0) = 0 \# 2\pi!!!!!!!!$$

Propriétés de la fonction Arcsinus

Propriétés

La fonction arcsin est :

- impaire.
- strictement croissante sur [-1, 1].
- continue sur [-1,1].
- dérivable sur] 1, 1[et

$$\forall y \in]-1,1[, \ \ \operatorname{arcsin}' y = \frac{1}{\sqrt{1-y^2}}.$$

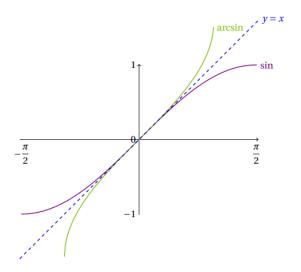


Figure – Graphe de la fonction sinus et arcsinus.

La fonction Arccosinus

La restriction de la fonction cosinus est une bijection de $[0,\pi]$ sur [-1,1]. Sa bijection réciproque est appelée fonction arccosinus et est notée arccos :

$$\arccos: \left\{ \begin{array}{cc} [-1,1] & \longrightarrow & [0,\pi] \\ y & \longrightarrow & \arccos y \end{array} \right.$$

$$Soit \ \forall y \in [-1,1], \quad \cos(\arccos y) = y$$

$$et \ \forall x \in [0,\pi], \quad \arccos(\cos x) = x$$

ATTENTION!!!

$$arccos(cos(2\pi)) = arccos(1) = 0 \# 2\pi!!!!!!!!$$

Propriétés de la fonction Arccosinus

Propriétés

La fonction arccos est :

- strictement décroissante sur [-1, 1].
- continue sur [-1,1].
- ullet dérivable sur] -1,1[et

$$\forall y \in]-1,1[, \quad \operatorname{arccos}'(y) = \frac{-1}{\sqrt{1-y^2}}.$$

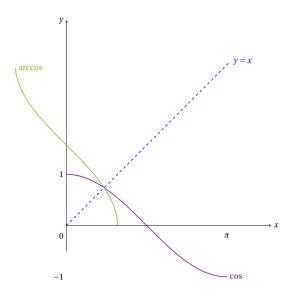


Figure – Graphe de la fonction cosinus et arccosinus.

Quelques valeurs remarquables

x	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Arcsin x	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Arccos x	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

Exercice

- Montrer (par deux méthodes) que pour tout x dans [-1,1], $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$.
- Interpréter géométriquement ce résultat.

Corrigé

- **①** Dériver une fonction bien choisie ou considérer $\cos(\frac{\pi}{2} \arcsin(x))$.
- 2 Les graphes des deux fonctions arcsin et arccos sont symétriques par rapport à la droite $y=\frac{\pi}{4}$.

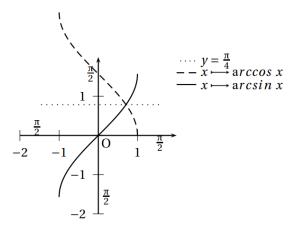


Figure – Illustration de la symétrie évoquée dans la question 3.

La fonction Arctangente

La restriction de la fonction tangente sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ est une bijection de cet intervalle vers $\mathbb R$. Sa bijection réciproque est appelée fonction arctangente et est notée arctan :

$$\arctan: \left\{ \begin{array}{l} \mathbb{R} & \longrightarrow &]-\frac{\pi}{2}, \frac{\pi}{2}[\\ y & \longrightarrow & \arctan y \end{array} \right.$$

$$\forall y \in \mathbb{R}, \quad \tan(\arctan y) = y$$

$$\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \quad \arctan(\tan x) = x]$$

Propriétés de la fonction Arctangente

Propriétés

La fonction arctan est :

- strictement croissante sur \mathbb{R} .
- impaire.
- continue sur \mathbb{R} .
- dérivable sur ℝ et

$$\forall y \in \mathbb{R}, \quad \mathsf{arctan'}(y) = \frac{1}{1+y^2}.$$

- $\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$.
- $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$.

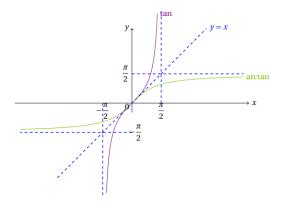


Figure – Graphe de la fonction tangente et arctangente.

Exercice

- **1** Montrer que pour tout x dans \mathbb{R} , $|\arctan(x)| \leq |x|$.
- Montrer que pour tout x dans \mathbb{R}^* , $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}.$

Corrigé

- Utiliser l'inégalité des accroissements finis.
- ② Dériver puis conclure.

Définition du logarithme népérien

Definition

On appelle logarithme népérien et on note ln l'unique primitive s'annulant en 1 de la fonction définie sur $\mathbb{R}_+^*: x \mapsto \frac{1}{x}$, c'est-à-dire

$$\ln : \begin{cases}
\mathbb{R}_+^* & \longrightarrow \mathbb{R} \\
x & \longmapsto \int_1^x \frac{\mathrm{dt}}{t}
\end{cases}$$

Propriétés de la fonction logarithme

Propriétés

La fonction In est :

- continue sur \mathbb{R}_+^* ,
- dérivable sur \mathbb{R}_+^* et $\forall x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x}$,
- ullet concave sur \mathbb{R}_+^*
- $\ln(x) \xrightarrow[x \to 0^+]{} -\infty$ et $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$,
- $\frac{\ln(x)}{x} \xrightarrow[x \to +\infty]{} 0$,
- $x \ln(x) \xrightarrow[x \to 0^+]{} 0$,
- $\frac{\ln(x)}{x-1} \xrightarrow[x \to 1]{} 1$,
- $\frac{\ln(1+x)}{x} \xrightarrow[x\to 0]{} 1$.

Propriétés du logarithme

Propriétés

Pour tout $x, y \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$:

- ln(xy) = ln x + ln y
- $\ln\left(\frac{1}{x}\right) = -\ln x$
- $\ln\left(\frac{x}{y}\right) = \ln x \ln y$
- $\ln(x^n) = n \ln x$

Nombre de Néper

On appelle nombre de Néper l'unique réel e vérifiant $\ln e = 1$.

Exercice : Inégalité classique

- 2 En déduire que :

$$\forall n \geq 2, \quad \left(1 + \frac{1}{n}\right)^n \leq e \leq \left(1 - \frac{1}{n}\right)^{-n}$$

Définition du logarithme de base a

Definition

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. On appelle logarithme de base a l'application \log_a définie par

$$\log_a x : \begin{cases} \mathbb{R}_+^* & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{\ln x}{\ln a} \end{cases}$$

Remarque

- Si a = 10, on obtient le logarithme décimal qu'on note $\log n$
- $Si \ a = e, \log_a = \ln a$

Propriétés du logarithme de base a

Propriétés

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. La fonction \log_a est :

• dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \quad \log_a'(x) = \frac{1}{x \ln a}$$

- Si a > 1, log_a est strictement croissante et concave.
- Si $a \in]0,1[$, \log_a est strictement décroissante et convexe.

Propriétés du logarithme de base a (suite)

Propriétés

Soient $a \in \mathbb{R}_+^* \setminus \{1\}$ et $x, y \in \mathbb{R}_+^*$, $n \in \mathbb{Z}$:

- $\log_a(xy) = \log_a(x) + \log_a(y)$
- $\log_a\left(\frac{1}{x}\right) = -\log_a(x)$
- $\log_a\left(\frac{x}{y}\right) = \log_a(x) \log_a(y)$
- $\log_a(x^n) = n \log_a(x)$

Exercice : Deux équations

Résoudre les équations suivantes en déterminant leur domaine de validité :

- $\log_a x = \log_x a$ où $a \in \mathbb{R}_+^* \setminus \{1\}$.

Définition de la fonction exponentielle

Definition

La fonction In définit une bijection de \mathbb{R}_+^* sur \mathbb{R} . L'application réciproque est appelée fonction exponentielle et notée exp.

$$\exp: egin{cases} \mathbb{R} & \longrightarrow \mathbb{R}_+^* \ y & \longmapsto \exp(y) \end{cases}$$

$$\forall x \in \mathbb{R}_+^*$$
, $\exp(\ln(x)) = x$ et $\forall y \in \mathbb{R}$, $\ln(\exp(y)) = y$

Propriétés de la fonction exponentielle

Propriétés

La fonction exp est :

- strictement croissante et strictement positive,
- continue sur \mathbb{R} ,
- dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\exp'(x) = \exp(x)$,
- $\lim_{x\to+\infty}\frac{\exp(x)}{x}=+\infty$,
- $\lim_{x\to-\infty} x \exp(x) = 0$,
- $\lim_{x\to 0} \frac{\exp(x)-1}{x} = 1.$

Propriétés de la fonction exponentielle (suite)

Propriétés

Pour tout $x, y \in \mathbb{R}$ et $n \in \mathbb{Z}$:

- $\exp(x + y) = \exp(x) \exp(y)$,
- $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$,
- $\exp(-x) = \frac{1}{\exp(x)}$,
- $\exp(nx) = \exp(x)^n$.

Exercice : Inégalité classique et inéquation

- Montrer que : $\forall x \in \mathbb{R}$, $\exp x \geqslant 1 + x$.
- Résoudre dans \mathbb{R} l'inéquation suivante : $\exp(x^2) > (\exp(x))^4 \times e$.

Fonctions puissances

Definition

Soit x > 0.

- **Puissances quelconques** : Pour tout $y \in \mathbb{R}$, on appelle x *puissance* y le réel $x^y = \exp(y \ln x)$.
- Racines $n^{\text{ièmes}}$: Pour tout entier $n \in \mathbb{N}^*$, on appelle racine $n^{\text{ième}}$ de x le réel $\sqrt[n]{x} = x^{\frac{1}{n}}$.

Fonctions puissances

Propriétés

Soient $\alpha, \beta \in \mathbb{R}$.

• La fonction $x \mapsto x^{\alpha}$ est dérivable sur \mathbb{R}_{+}^{*} de dérivée $x \mapsto \alpha x^{\alpha-1}$. Elle est concave si $\alpha \in [0,1]$ et convexe sinon.

•

$$\begin{cases} \textit{Pour tout } x \in]0,1] : & \alpha \leq \beta \implies x^{\beta} \leq x^{\alpha}. \\ \textit{Pour tout } x \in [1,+\infty[: \quad \alpha \leq \beta \implies x^{\alpha} \leq x^{\beta}. \end{cases}$$

• Prolongement par continuité en $\mathbf{0}$: Pour $\alpha > 0$, on pose $0^{\alpha} = 0$. La fonction $\mathbf{x} \mapsto \mathbf{x}^{\alpha}$ ainsi prolongée est continue sur \mathbb{R}_{+} .

Propriétés des puissances

Propriétés

Soient $(x,y) \in (\mathbb{R}_+^*)^2$, et $(a,b) \in \mathbb{R}^2$.

- $\exp(x) = e^x$
- $ln(x^a) = a ln x$
- $x^{a+b} = x^a x^b$
- $(x^a)^b = x^{ab}$
- $\bullet \ x^{-a} = \frac{1}{x^a}$
- $x^a y^a = (xy)^a$

Graphe des fonctions puissances

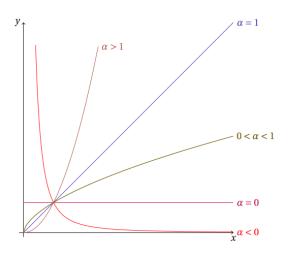


Figure – Graphe des fonctions puissances.

Exercice: Etude d'une fonction

Etudier la fonction définie par $f(x) = x^{x+1}$

Croissances comparées des fonctions logarithme, puissances et exponentielle

Theorem

Pour tous $\alpha > 0$ et $\beta \in \mathbb{R}$:

$$\frac{(\ln x)^{\beta}}{x^{\alpha}} \xrightarrow[x \to +\infty]{} 0, \quad \frac{x^{\beta}}{\mathrm{e}^{x}} \xrightarrow[x \to +\infty]{} 0, \quad x^{\alpha} |\ln x|^{\beta} \xrightarrow[x \to 0]{} 0.$$

Exercice: Quelques limites

Calculer les limites suivantes :

- $\lim_{x\to +\infty} x^{\frac{1}{x}}$
- $\lim_{x\to 0^+} x^{\sqrt{x}}$

Les fonctions sinus et cosinus hyperboliques

Definition

• La fonction sinus hyperbolique, notée sinh, est définie par :

$$\forall x \in \mathbb{R}, \quad \sinh(x) = \frac{\exp(x) - \exp(-x)}{2}.$$

La fonction cosinus hyperbolique, notée cosh, est définie par :

$$\forall x \in \mathbb{R}, \quad \cosh(x) = \frac{\exp(x) + \exp(-x)}{2}.$$

Propriétés des fonctions hyperboliques

Propriétés

La fonction sinh est :

- Impaire
- Continue sur \mathbb{R}
- Dérivable sur $\mathbb R$ et pour tout $x \in \mathbb R$: $\sinh'(x) = \cosh(x)$
- Strictement croissante sur R
- $\lim_{x\to -\infty} \sinh(x) = -\infty$
- $\lim_{x\to +\infty} \sinh(x) = +\infty$

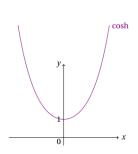
Propriétés des fonctions hyperboliques

Propriétés

La fonction cosh est :

- Paire
- Continue sur ℝ
- Dérivable sur $\mathbb R$ et pour tout x de $\mathbb R$: $\cosh'(x) = \sinh(x)$
- Strictement croissante sur $]0, +\infty[$ et strictement décroissante sur $]-\infty, 0[$.
- $\lim_{x\to -\infty} \cosh(x) = +\infty$
- $\lim_{x\to -\infty} \cosh(x) = +\infty$

Graphe des fonctions cosh et sinh



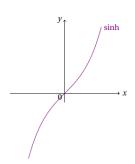


Figure – Graphes de la fonction cosh et sinh.

La fonction tangente hyperbolique

Definition

La fonction $tangente\ hyperbolique$, notée tanh, est définie sur $\mathbb R$ par :

$$tanh: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{\sinh(x)}{\cosh(x)} \end{cases}$$

Propriétés de la fonction tangente hyperbolique

Propriétés

La fonction tanh est :

- Impaire,
- Dérivable sur \mathbb{R} avec $\tanh'(x) = 1 \tanh^2(x) = \frac{1}{\cosh^2(x)}$
- Strictement croissante sur ℝ et s'annule en 0
- ullet Convexe sur \mathbb{R}^- et concave sur \mathbb{R}^+ avec un point d'inflexion en 0
- Admet deux asymptotes horizontales d'équation y=-1 en $-\infty$ et y=1 en $+\infty$

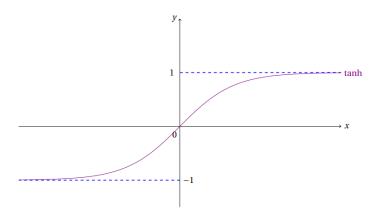


Figure – Graphe de la fonction tanh.

Relations de trigonométrie hyperbolique

Propriétés,

Pour tous $x, y \in \mathbb{R}$:

- $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y$
- $\operatorname{ch}(x y) = \operatorname{ch} x \operatorname{ch} y \operatorname{sh} x \operatorname{sh} y$
- $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y$
- $\operatorname{sh}(x y) = \operatorname{sh} x \operatorname{ch} y \operatorname{ch} x \operatorname{sh} y$
- $th(x + y) = \frac{th x + th y}{1 + th x th y}$
- $th(x y) = \frac{th x th y}{1 th x th y}$

Exercice: Un simple calcul

• Pour tout $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$, calculer :

$$C_n = \sum_{k=0}^n \cosh(a+kb)$$
 et $S_n = \sum_{k=0}^n \sinh(a+kb)$.

• Montrer que pour tout $x \in \mathbb{R}$,

$$2 \arctan(\tanh x) = \arctan(\sinh 2x).$$

Fonctions hyperboliques réciproques

Definition

La fonction sinus hyperbolique définit une bijection de $\mathbb R$ sur son image $\mathbb R$. L'application réciproque est appelée fonction argument sinus hyperbolique et notée arcsinh :

$$\operatorname{arcsinh}: \left\{ \begin{array}{l} \mathbb{R} & \longrightarrow & \mathbb{R} \\ y & \longrightarrow & \operatorname{arcsinh} y \end{array} \right.$$

$$\forall y \in \mathbb{R}, \quad \sinh(\operatorname{arcsinh} y) = y$$

$$\forall x \in \mathbb{R}, \quad \operatorname{arcsinh}(\sinh x) = x$$

Propriétés de la fonction arcsinh

Propriétés

La fonction arcsinh est :

- impaire.
- continue sur ℝ.
- dérivable sur ℝ, avec :

$$\forall y \in \mathbb{R}, \quad \operatorname{arcsinh}'(y) = \frac{1}{\sqrt{y^2 + 1}}$$

- strictement croissante sur \mathbb{R} .
- réalise une bijection de $\mathbb R$ dans $\mathbb R$.

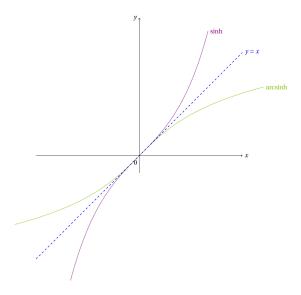


Figure – Graphe de la fonction arcsinh.

Fonction argument cosinus hyperbolique

Definition

La fonction cosinus hyperbolique, restreinte à \mathbb{R}_+ , définit une bijection de \mathbb{R}_+ sur son image $[1,+\infty[$. L'application réciproque est appelée argument cosinus hyperbolique et est notée arccosh.

$$\operatorname{arccosh}: \left\{ \begin{array}{ccc} [1,+\infty[& \longrightarrow & \mathbb{R} \\ y & \longmapsto & \operatorname{argch} y \end{array} \right.$$

$$\forall y \in [1,+\infty[, & \operatorname{ch}(\operatorname{arccosh} y) = y \\ \forall x \in \mathbb{R}_+, & \operatorname{arccosh}(\operatorname{cosh} x) = x \end{array} \right.$$

Fonction argument cosinus hyperbolique

Propriétés

La fonction arccosh est :

- continue sur $[1, +\infty[$.
- est dérivable sur $]1, +\infty[$ et :

$$\forall y \in]1, +\infty[, \quad \operatorname{arccosh}' y = \frac{1}{\sqrt{y^2 - 1}}.$$

- est strictement croissante sur $[1, +\infty[$.
- réalise une bijection de $]1, +\infty[$ dans \mathbb{R} .

Fonction argument cosinus hyperbolique

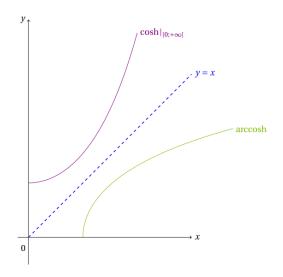


Figure – Graphe de la fonction arccosh.

Fonction argument tangente hyperbolique

Definition

La fonction tangente hyperbolique définie une bijection de $\mathbb R$ sur son image] -1,1[. L'application réciproque est appelée Argument tangente hyperbolique et est notée arctanh.

Fonction argument tangente hyperbolique

Propriétés

La fonction arctanh est :

- impaire.
- strictement croissante sur]-1,1[.
- *continue sur*] − 1,1[.
- ullet dérivable sur] -1,1[et

$$\forall y \in]-1,1[, \quad \mathsf{arctanh'}\, y = \frac{1}{1-y^2}.$$

ullet réalise une bijection de]-1,1[dans ${\mathbb R}$

Fonction argument tangente hyperbolique

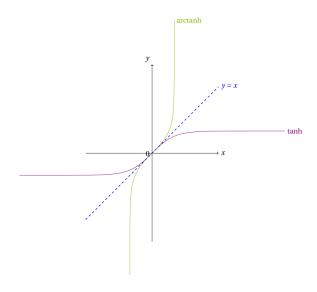


Figure – Graphe de la fonction arctanh.

Autres expressions des fonctions hyperboliques inverses

Theorem

- $\forall x \in \mathbb{R}$: $arcsinh(x) = \ln(x + \sqrt{x^2 + 1})$
- $\forall x \in [1, +\infty[: arccosh(x) = ln(x + \sqrt{x^2 1})]$
- $\forall x \in]-1,1[: arctanh(x)=\frac{1}{2}\ln\left(\frac{x+1}{1-x}\right)]$