LOGIQUE ET RAISONNEMENT

1. Propositions logiques

1.1 Assertion

Définition 1.

On appelle <u>assertion</u> toute phrase mathématique dont on peut dire si elle vraie (V) ou fausse (F).

Exemple 1.

- $P = \ll 3 > 2 \gg \text{ est une assertion vraie.}$
- $Q = \ll 2 + 2 = 5 \gg \text{ est une assertion fausse.}$
- R = « Salut! » n'est pas une assertion.

Définition 2.

Pour distinguer les différents résultats que nous démontrons, nous leur donnons les noms de :

- proposition pour la plupart des résultats,
- théorème pour les résultats les plus fondamentaux,
- corollaire pour les conséquences immédiates de résultats précédents,
- **lemme** pour certains résultats préliminaires, utiles pour la suite, mais dont l'intérêt intrinsèque est assez limité.

Remarque 1.

Lorsque la valeur de vérité d'une assertion P dépend des valeurs prises par un paramètre x on note souvent celle-ci P(x) pour le signaler.

Exemple 2.

- $P(x) = \langle x \rangle 0$ » est une assertion dépendant d'un paramètre x réel.
- P(2)
- P(−2)

1.2 Négation

Définition 3.

On appelle négation d'une assertion P l'assertion, notée non(P) ou \overline{P} , définie comme étant vraie lorsque P est fausse et inversement.

On peut aussi dire que l'assertion non(P) est définie par la table de vérité :

P	non(P)

Exemple 3.

- Si x est un réel, alors La négation de « $x \ge 0$ » est
- Si x et y sont deux réels, alors La négation de « x = y » est

1.3 Conjonction et disjonction

Définition 4.

Soient P et Q deux assertions.

- On appelle conjonction de P et Q l'assertion notée « P et Q » définie comme étant vraie lorsque P et Q le sont toutes les deux.
- On appelle disjonction de P et Q l'assertion notée « P ou Q » définie comme étant vraie lorsqu'au moins l'une des deux l'est.

On a donc:

P	Q	P et Q	P ou Q
V	V		
V	F		
F	V		
F	F		

Exemple 4.

Soit x un réel. « 0 < x < 1 » est la conjonction de

Remarque 2.

Si « P ou Q » est vraie et Q est fausse alors nécessairement P est vraie.

Remarque 3.

Si « P ou Q » est vraie et Q est fausse alors nécessairement P est vraie.

1.4 Implications

Définition 5.

Soient P et Q deux assertions.

On définit l'assertion $P \Longrightarrow Q$, qu'on lit « P implique Q » comme étant « (non P) ou Q » .On a donc :

P	Q	$P \Longrightarrow Q$
V	V	
V	F	
F	V	
F	F	

Remarque 4.

- ► Si P est fausse, alors « $P \Longrightarrow Q$ » est toujours vraie.
- ► Si P est vrai, alors« P⇒Q » n'est vraie que lorsque Q est vraie.
- ► Ainsi, pour montrer que « P⇒Q » est vraie il suffit de montrer que Q est vraie dans le cas où P est vraie, ce qui revient à supposer que P est vraie et de montrer sous cette hypothèse que Q est vraie.

Rédaction -

Quand on veut montrer que « P⇒Q » est vraie, on procède souvent ainsi :

ou bien on procède par des implications successives :

$$P \Longrightarrow P_1 \Longrightarrow \cdots \Longrightarrow P_n \Longrightarrow Q$$

Remarque 5.

L'implication $P \Longrightarrow Q$ peut s'exprimer par :

- ► Si P, alors Q.
- ► Pour que P il faut que Q.
- ▶ Q est une condition nécessaire (CN) pour P.
- ► Pour que Q il suffit que P.
- ▶ P est une condition suffisante (CS) pour Q.

Remarque 6.

► Ne jamais utiliser ⇒ comme abréviation d'un "Donc".

Exemple 5.

Soit $x \in \mathbb{R}$. Montrer que $x \ge 3 \Longrightarrow x^2 - 2x \ge 3$.

Solution

Exemple 6.

Compléter les phrases suivantes par « il suffit que » ou « il faut que », puis écrire ces phrases à l'aide d'implications.

- 1. On suppose que $a \le 1$. Pour que $b \le 1$ $b \le a$.
- 2. Pour que $|x| \le 1$ $x \le 1$.

- 3. Pour que $|x| \ge 1$ $x \le -2$.
- 4. Pour que x = 0.... $\sqrt{x+1} = 1$.

Solution Solution

1.5 Équivalence

Définition 6.

Soient P et Q deux assertions.

L'assertion $P \iff Q$, qu'on lit « P et Q sont équivalentes », est définie comme étant vraie si P et Q ont la même valeur de vérité et fausse sinon. On a donc :

P	Q	$P \longleftrightarrow Q$
V	V	
V	F	
F	V	
F	F	

Remarque 7.

L'équivalence P⇔Q, peut s'exprimer par :

- ► P si et seulement si Q.
- ▶ Pour que P il faut et il suffit que Q.
- ▶ P est une condition nécessaire et suffisante (CNS) pour Q.

Proposition 1.

- (a) $(P \Longrightarrow Q)$ et $(P \Longrightarrow Q)$ et $(P \Longrightarrow P)$ sont équivalentes.
- (b) $(P \iff Q)$ et $(non(P) \iff non(Q))$ sont équivalentes.

Démonstration

P	0	P⇔O	P⇒O	O⇒P	$P \Longrightarrow Q \text{ et } Q \Longrightarrow P$
V	V				
V	F				
F	V				
F	F				

P	Q	P⇔Q	(non(P)	(non(Q)	$(non(P) \iff non(Q))$
V	V				
V	F				
F	V				
F	F				

Remarque 8.

Pour montrer que l'équivalence $P \Longleftrightarrow Q$ est vraie, on a au moins deux méthodes :

► Procéder par des équivalences successives :

$$P \Longleftrightarrow P_1 \Longleftrightarrow \cdots \Longleftrightarrow P_n \Longleftrightarrow Q$$

▶ Montrer $P \Longrightarrow Q$, puis $Q \Longrightarrow P$.

Proposition 2

- (a) $non(non(P)) \iff P$.
- (b) $non(P \text{ et } Q) \iff (non(P) \text{ ou } non(Q)).$
- (c) $non(P ou Q) \iff (non(P) et non(Q))$.
- (d) $non((P \Longrightarrow Q) \iff (P \text{ et } non(Q)).$

Exemple 7.

Résoudre dans \mathbb{R} (de deux manières) l'équation $2x = \sqrt{x^2 + 1}$.

2. Quantificateurs

Soient E un ensemble et P(x) une assertion dépendante d'un élément $x \in E$.

2.1 Définitions

Définition 7.

On définit l'assertion « $\forall x \in E$, P(x) » comme étant vraie lorsque P(x) est vraie pour tout x dans E. Cette assertion se lit : « Quel que soit dans E on a P(x) ».

Exemple 8.

- $\qquad \qquad \forall \, x \in \mathbb{R}, \, x^2 \geq 0 \, > \! > \!$
- $\forall x \in [-1,1], x^2 \le 1$
- \blacktriangleright « $\forall x \in \mathbb{R}, x^2 \le 1$ »

Définition 8.

• On définit l'assertion $\ll \exists x \in E$, P(x) » comme étant vraie lorsque P(x) est vraie pour au moins un x dans E.

Cette assertion se lit : « Il existe x dans E tel que P(x) ».

• On définit l'assertion $\ll \exists ! x \in E$, $P(x) \gg$ comme étant vraie lorsque P(x) est vraie pour un et un seul x dans E.

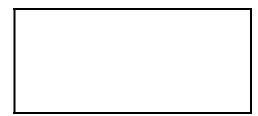
Cette assertion se lit : « Il existe un unique x dans E tel que P(x) ».

Exemple 9.

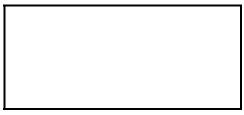
- \blacktriangleright « $\exists x \in \mathbb{R}$, $x^2 = 1$ »
- \rightarrow « $\exists x \in [2,3], x^2 = 1$ »

Remarque 9.

(i) Quand on veut montrer : $\forall x \in E$, P(x) », on écrit sans réfléchir :



(ii) Quand on veut montrer : $\ll \exists x \in E$, P(x) », on écrit sans réfléchir :



(iii) La lettre affectée par un quantificateur est muette; elle peut être remplacée par n'importe quelle lettre :

$$(\forall x \in E, P(x)) \iff (\forall y \in E, P(y))$$

$$(\exists x \in E, P(x)) \iff (\exists y \in E, P(y))$$

Exemple 10.

Montrer que : $\forall x \in \mathbb{R}, \frac{x}{x^2 + 1} \le \frac{1}{2}$.

Exemple 11.

Montrer que $\forall x \in \mathbb{R}, \exists z \in \mathbb{R}, z > x$.

Solution

Remarque 10.

Attention! Les symboles \forall et \exists ne sont pas des abréviations et ne doivent jamais être employés au coeur d'une phrase en français pour dire «pour tout» ou «il existe Par exemple, on n'écrit pas « \exists un réel x dont le carré est supérieur à 1».

2.2 Négation

Proposition 3

- $\operatorname{non}(\forall x \in E, P(x)) \iff (\exists x \in E, \operatorname{non}(P(x)))$
- $\operatorname{non}(\exists x \in E, P(x)) \iff (\forall x \in E, \operatorname{non}(P(x)))$

Exemple 12.

La négation de l'assertion

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists \alpha \in \mathbb{R}_+^*, \forall x \in \mathbb{R}, \left(|x| < \alpha \Longrightarrow \left| \frac{x}{1 + x^2} \right| < \varepsilon \right)$$

est

Exemple 13.

Soit f une fonction réelle définie sur \mathbb{R} . La négation de « la fonction f est croissante sur \mathbb{R} » est-elle « la fonction f est décroissante sur \mathbb{R} »?

2.3 Permutation des quantificateurs

On peut toujours permuter les quantificateurs universels \forall entre eux, et les quantificateurs existentiels \exists entre eux.

Exemple 14.

- $(\forall x \in \mathbb{R}_+, \ \forall y \in \mathbb{R}_-, \ x \ge y) \Longleftrightarrow (\ \forall y \in \mathbb{R}_-, \ \forall x \in \mathbb{R}_+, \ x \ge y).$
- $\blacktriangleright (\exists x \in \mathbb{R}_+, \exists y \in \mathbb{R}_-, x \ge y) \Longleftrightarrow (\exists y \in \mathbb{R}_-, \exists x \in \mathbb{R}_+, x \ge y).$

Remarque 11.

La permutation d'un \forall et d'un \exists n'est pas aussi facile. Par exemple l'assertion « $\forall x \in \mathbb{R}$, $\exists z \in \mathbb{R}$, z > x » est vraie, mais l'assertion « $\exists z \in \mathbb{R}$, $\forall x \in \mathbb{R}$, z > x » est fausse.

3. Raisonnements

3.1 Raisonnement par déduction

- Principe

- ♦ Si P est vraie et l'implication P⇒Q est vraie, alors Q est vraie.
- ♦ Ainsi, pour montrer que Q est vraie, il suffit de montrer que P est vraie et que l'implication $P \Longrightarrow Q$ est vraie : **c'est le raisonnement par déduction**.
- ♦ En pratique, un raisonnement par déduction contiendra des mots comme « donc », « ainsi » , etc.

Exemple 15.

Prouver que pour tout $x \in [0,1]$: $x - x^2 \in \mathbb{N} \Longrightarrow x \in \{0,1\}$.

Solution Solution

3.2 Raisonnement par contraposition

Définition 9.

- Q⇒P est appelée implication réciproque de P⇒Q.
- non(Q)⇒non(P) est appelée contraposée de l'implication P⇒Q.

Proposition 4.

Les implications $P \Longrightarrow Q$ et $(non Q) \Longrightarrow (non P)$ sont équivalentes. Autrement dit une implication et sa contraposée sont équivalentes.

– Principe -

Si on souhaite prouver que $P\Longrightarrow Q$, il suffit qu'on prouve que $(non\ Q)\Longrightarrow (non\ P)$: **c'est le raisonnement par contraposition**.

Exemple 16.

Montrer que : $\forall n \in \mathbb{N}$, n^2 pair $\Longrightarrow n$ pair.

Solution

Exemple 17.

Soit *x* un réel. Montrer l'implication $\ll x \notin \mathbb{Q} \Rightarrow 1 + x \notin \mathbb{Q} \gg 1 + x \notin \mathbb{Q} \otimes 1 + x \oplus \mathbb{Q$

3.3 Raisonnement par disjonction des cas

– Principe –

Le principe du raisonnement par disjonction des cas repose sur l'équivalence suivante :

$$Q \Longleftrightarrow ((P \Longrightarrow Q) \text{ et } (\text{non}(P) \Longrightarrow Q)).$$

Ainsi, pour montrer Q, on peut distinguer deux cas : on montre d'abord que $(P\Longrightarrow Q)$, puis on montre que $(\operatorname{non}(P)\Longrightarrow Q)$.

Exemple 18.

Soit $n \in \mathbb{N}$. Montrer que $\frac{n(n+1)}{2} \in \mathbb{N}$. $\otimes \otimes$ **Solution**

Exemple 19.

Montrer que, pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 - x + 1$.

Solution Solution

3.4 Raisonnement par l'absurde

- Principe

Pour montrer qu'une assertion P est vraie, on suppose qu'elle est fausse et on cherche d'en tirer une contradiction.

Exemple 20.

Montrer que $\sqrt{2}$ est irrationnel.

Solution Solution

3.5 Raisonnement par récurrence

– Le but du principe de récurrence -

Soient $n_0 \in \mathbb{N}$ et P(n) une assertion dépendante d'un entier $n \ge n_0$. Le but du principe de récurrence est de montrer : $\forall n \ge n_0$, P(n) est vraie. Pour arriver à ce but on utilise la récurrence simple ou la récurrence double.

Théorème 1 (Récurrence simple).

Soient $n_0 \in \mathbb{N}$ et P(n) une assertion dépendante d'un entier $n \ge n_0$. Si

- $ightharpoonup P(n_0)$ est vraie (initialisation),
- ▶ $\forall n \ge n_0$, (P(n) \Longrightarrow P(n+1)) est vraie (hérédité),

alors : $\forall n \ge n_0$, P(n) est vraie.

┌ Rédaction —			
Itouuotioii			

Exemple 21.

Montrer que : $\forall n \in \mathbb{N}, 2^n \ge n$.

Solution Solution

Exemple 22.

Montrer que pour tout réel x supérieur ou égal à -1 et pour tout entier naturel n, on a $(1+x)^n \ge 1 + nx$.

Solution Solution

Théorème 2 (Récurrence double).

Soient $n_0 \in \mathbb{N}$ et P(n) une assertion dépendante d'un entier $n \ge n_0$. Si

- ▶ $P(n_0)$ et $P(n_0 + 1)$ sont vraies (initialisation),
- ▶ $\forall n \ge n_0$, ((P(n) et P(n+1)) \Longrightarrow P(n+2) est vraie (hérédité),

alors : $\forall n \ge n_0$, P(n) est vraie.

Exemple 23.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par

$$u_0 = 4$$
, $u_1 = 5$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$.

Montrer que : $\forall n \in \mathbb{N}, u_n = 2^n + 3.$

Solution Solution

3.6 Raisonnement par analyse-synthèse

- Principe

On raisonne par analyse-synthèse lorsque l'on cherche la ou les solutions à un problème. Le principe est le suivant :

- ► On suppose que l'on a une solution du problème et on cherche à en déduire toutes les propriétés possibles de cette solution afin de l'identifier au mieux : c'est l'étape d'analyse.
- ► On détermine parmi tous les objets obtenus lors de l'analyse, ceux qui sont effectivement solutions du problème : c'est l'étape de synthèse.

De plus, si la phase d'analyse fournit une expression explicite de l'objet recherché, ne laissant pas le choix pour cet objet, cela fournit même l'unicité.

Exemple 24.
Montrer que toute fonction $f : \mathbb{R} \to \mathbb{R}$ est la somme d'une fonction paire et d'une fonction impaire.
© © Solution