Devoir Maison n° 11

Dans ce problème, on étudie quelques propriétés des parties convexes du plan, et on démontre le théorème de projection sur un convexe fermé; un théorème fondamental en analyse et en optimisation.

1 Préliminaires

Définition 1 : Ensemble convexe. Soit $C \subset \mathbb{R}^2$. On dit que C est *convexe* si :

$$\forall (x,y) \in C^2, \forall t \in [0,1], (1-t)x + ty \in C.$$

- 1. Montrer que $[0,1] \times [0,1]$ est un convexe de \mathbb{R}^2 .
- 2. Le cercle unité $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ est-il convexe?
- 3. Soient A et B deux ensembles convexes de \mathbb{R}^2 et $A+B=\{x+y\mid x\in A,\ y\in B\}$. Démontrer que A+B est un convexe de \mathbb{R}^2 .
- 4. Donner un exemple de deux convexes de \mathbb{R}^2 dont l'union n'est pas convexe.
- 5. Soit I un ensemble non vide et $(C_i)_{i\in I}$ une famille de convexes de \mathbb{R}^2 . Montrer que $\bigcap_{i\in I} C_i$ est un convexe de \mathbb{R}^2 .

Dans la suite, \mathbb{R}^2 serait muni de sont produit scalaire usuel :

$$\forall ((x_1, y_1), (x_2, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2, \langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + y_1 y_2.$$

nous noterons $\|\cdot\|$ la norme associée à ce produit scalaire, i.e. Pour tout $x \in \mathbb{R}^2$, $\|x\| = \sqrt{\langle x, x \rangle}$

2 Sur les suites

Soient $((x_n, y_n))_{n \in \mathbb{N}}$ une suite d'éléments de \mathbb{R}^2 et $(x, y) \in \mathbb{R}^2$.

- 6. Montrer que les assertions suivantes sont équivalentes :
 - (a) $\lim_{n \to +\infty} x_n = x$ et $\lim_{n \to +\infty} y_n = y$;
 - (b) $\lim_{n \to +\infty} ||(x_n, y_n) (x, y)|| = 0.$

Définition 2 : Convergence d'une suite de \mathbb{R}^2 , suite de Cauchy. Soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite d'éléments de \mathbb{R}^2 et soit $(x, y) \in \mathbb{R}^2$.

— On dit que la suite $((x_n, y_n))_{n \in \mathbb{N}}$ converge dans \mathbb{R}^2 vers (x, y) si l'une des deux conditions équivalentes précédentes est satisfaite. On note alors

$$\lim_{n \to +\infty} (x_n, y_n) = (x, y).$$

— On dit que la suite $((x_n, y_n))_{n \in \mathbb{N}}$ est une suite de Cauchy si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall (n, p) \in \mathbb{N}^2, \quad (n, p \ge N) \implies \|(x_n, y_n) - (x_p, y_p)\| \le \varepsilon.$$

On admet le résultat suivant :

 \mathbb{R}^2 est complet: Soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite de Cauchy de \mathbb{R}^2 . Alors, $((x_n, y_n))_{n \in \mathbb{N}}$ converge dans \mathbb{R}^2 .

3 Projection sur un convexe fermé

3.1 Théorème de projection sur un convexe fermé

Définition 3 : Partie fermée.

Soit A une partie de \mathbb{R}^2 . On dit que A est fermée si :

$$\forall (z_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}, \, \forall z\in\mathbb{R}^2, \quad ((z_n)_{n\in\mathbb{N}} \text{ converge vers } z) \implies (z\in A).$$

1

Définition 4 : Distance d'un point à une partie

Soient A une partie non vide de \mathbb{R}^2 et x un réel quelconque. On appelle distance de x à A et on note dist(x,A) la quantité définie par :

$$\operatorname{dist}(x,A) = \inf_{w \in A} \|w - x\|$$

On souhaite montrer le résultat suivant :

Soit $C \subset \mathbb{R}^2$ un ensemble convexe fermé non vide. Pour tout $z \in \mathbb{R}^2$, il existe un unique $z' \in C$ tel que

$$||z - z'|| = \operatorname{dist}(z, C).$$

Cet unique élément est appelé la **projection** de z sur C.

Soient $z \in \mathbb{R}^2$ et $d = \operatorname{dist}(z, C)$. On souhaite prouver en premier lieu l'existence de la projection de z sur C.

- 7. Justifier déjà l'existence de d.
- 8. Montrer que

$$\forall n \in \mathbb{N}^*, \exists z_n \in C, \qquad ||z - z_n||^2 \le d^2 + \frac{1}{n}.$$

On a ainsi une suite $(z_n)_{n\in\mathbb{N}^*}$ d'éléments de C telle que $\forall n\in\mathbb{N}^*, \|z-z_n\|^2 \leq d^2+\frac{1}{n}$

9. Montrer l'identité du parallélogramme :

$$\forall (u, v) \in \mathbb{R}^2 \times \mathbb{R}^2, \quad \|u - v\|^2 + \|u + v\|^2 = 2(\|u\|^2 + \|v\|^2).$$

En donner une interprétation géométrique à l'aide d'une figure et une petite explication.

10. En déduire que

$$\forall (n,p) \in (\mathbb{N}^*)^2, \quad ||z_n - z_p||^2 \le \frac{2}{n} + \frac{2}{p}.$$

- 11. Conclure.
- 12. Prouver l'unicité de la projection de z sur C.

Pour ceci, on peut supposer qu'il existe z_1 et z_2 dans C tels que $||z - z_1|| = ||z - z_2|| = d$, et prouver que $z_1 = z_2$ à l'aide de l'identité du parallélogramme.

13. Donner un exemple d'une partie C de \mathbb{R}^2 , non vide et non convexe, ainsi qu'un point z de \mathbb{R}^2 , tels que le projection de z sur C ne soit pas unique, ou autrement dit, l'ensemble des points minimisant la distance entre z et C ne soit pas réduit à un singleton.

(Une figure accompagnée d'une petite explication est largement suffisante.)

Dans la suite, nous noterons $p_C(z)$ la projection de z sur le convexe C.

3.2 Une caractérisation

Nous souhaitons prouver le résultat suivant :

Soit C un ensemble convexe fermé non vide de \mathbb{R}^2 . Pour tout $z \in \mathbb{R}^2$ et $z^* \in C$, on a :

$$z^* = p_C(z) \iff (\forall y \in C, \langle z^* - z, z^* - y \rangle \le 0). \tag{3.2}$$

Soit $z \in \mathbb{R}^2$.

- 14. Sens direct. Soit $p_C(z)$ la projection de z sur C.
 - (a) Montrer que : pour tout $y \in C$ et pour tout $t \in [0,1]$,

$$||z - (ty + (1-t)p_C(z))||^2 \ge ||z - p_C(z)||^2.$$

(b) En déduire que

$$\forall y \in C, \quad \langle p_C(z) - z, p_C(z) - y \rangle \le 0.$$

15. Sens indirect. Soit z^* vérifiant l'inégalité de droite de la ligne (3.2).

(a) Montrer que : pour tout $y \in C$,

$$||y - z||^2 = ||y - z^*||^2 + ||z^* - z||^2 - 2\langle z^* - z, z^* - y \rangle.$$

- (b) En déduire que $z^* = p_C(z)$.
- 16. Montrer que l'application p_C est 1-lipschitzienne sur \mathbb{R}^2 , i.e. montrer que p_C vérifie

$$\forall (x,y) \in (\mathbb{R}^2)^2, \quad ||p_C(x) - p_C(y)|| \le ||x - y||.$$

Fin de l'énoncé

4 Corrigé

- 1. Simple application de la définition.
- 2. Non. En effet, prenons (1,0) et (0,1) qui sont dans C. Pourtant, pour $\lambda = \frac{1}{2} : \frac{1}{2}(1,0) + \frac{1}{2}(0,1) = (\frac{1}{2},\frac{1}{2})$ et $(\frac{1}{2})^2 + (\frac{1}{2})^2 = \frac{1}{2} \neq 1$, donc $(\frac{1}{2},\frac{1}{2}) \notin C$.
- 3. Soient $z_1, z_2 \in A + B$ et $\lambda \in [0, 1]$. Il existe $a_1, a_2 \in A, b_1, b_2 \in B$ tels que :

$$z_1 = a_1 + b_1, \quad z_2 = a_2 + b_2$$

Alors:

$$\lambda z_1 + (1 - \lambda)z_2 = \underbrace{\lambda a_1 + (1 - \lambda)a_2}_{\in A} + \underbrace{\lambda b_1 + (1 - \lambda)b_2}_{\in B} \in A + B$$

car A et B sont convexes. On conclut que A+B est convexe.

- 4. Considérons les deux singletons du plan \mathbb{R}^2 : $A = \{(0,0)\}$ et $B = \{(1,1)\}$. Alors, A et B sont deux convexes du plan, alors que $(\frac{1}{2},\frac{1}{2}) = \frac{1}{2}(0,0) + \frac{1}{2}(1,1) \notin A \cup B$. Ainsi, $A \cup B$ n'est pas convexe.
- 5. Soit $(x,y) \in \left(\bigcap_{i \in I} C_i\right)^2$.

Comme pour tout $i \in I$, C_i est convexe, pour tout $t \in [0,1]$, $(1-t)x + ty \in C_i$.

Ainsi, pour tout $t \in [0,1]$, $(1-t)x + ty \in \bigcap_{i \in I} C_i$.

Par conséquent, $\bigcap_{i \in I} C_i$ est convexe.

6. (i) \implies (ii) : Pour tout $n \in \mathbb{N}$, on a

$$||(x_n, y_n) - (x, y)|| = \sqrt{(x_n - x)^2 + (y_n - y)^2}.$$

Comme $\lim_{n \to +\infty} (x_n - x)^2 = \lim_{n \to +\infty} (y_n - y)^2 = 0$, on en déduit

$$\lim_{n \to +\infty} \|(x_n, y_n) - (x, y)\| = 0.$$

(ii) \implies (i) : Pour tout $n \in \mathbb{N}$, on a

$$||(x_n, y_n) - (x, y)|| = \sqrt{(x_n - x)^2 + (y_n - y)^2} \ge |x_n - x|$$

Comme $\lim_{n\to +\infty} \|(x_n,y_n)-(x,y)\|=0$, par encadrement, on en déduit

$$\lim_{n \to +\infty} x_n = x.$$

Un même argument montre que $\lim_{n\to+\infty} y_n = y$.

On déduit que les assertions (i) et (ii) sont équivalentes.

- 7. L'ensemble $\{\|w-z\| \mid w \in C\}$ est une partie de \mathbb{R} non vide, puisque C ne l'est pas, et minoré par 0 (car une norme est toujours positive), donc admet une borne inférieure $d \geq 0$.
- 8. On utilise la caractérisation de la borne inférieure : pour tout $\varepsilon > 0$, il existe $w \in C$ tel que $d^2 \le ||w-z||^2 < d^2 + \varepsilon$.

 (*)

En particulier, pour tout $n \in \mathbb{N}^*$, en prenant $\varepsilon = \frac{1}{n}$, on déduit qu'il existe $z_n \in C$ tel que

$$d^2 \le ||z_n - z||^2 \le d^2 + \frac{1}{n}.$$

Dans (*), on a utilisé le résultat suivant : Si A et B sont des parties non vides de \mathbb{R}^+ , alors $\inf(AB) = \inf(A)\inf(B)$.

9. Soit $(u,v) \in \mathbf{R}^2 \times \mathbf{R}^2$. En développant le carré des normes, on a

$$\|u-v\|^2 + \|u+v\|^2 = \|u\|^2 - 2\langle u,v\rangle + \|v\|^2 + \|u\|^2 + 2\langle u,v\rangle + \|v\|^2 = \boxed{2\left(\|u\|^2 + \|v\|^2\right)}$$

Ce résultat signifie que la somme des carrés des longueurs des diagonales d'un parallélogramme est égale à la somme des carrés des longueurs de ses quatre côtés.

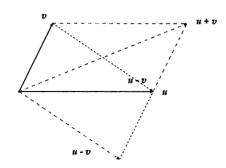


FIGURE 1 – Illustration de l'identité du parallélogramme dans \mathbb{R}^2

10. Soient $n,p \geq 1$. Appliquons l'identité du parallélogramme à $u=z-z_n$ et $v=z-z_p$; on obtient :

$$4 \left\| z - \frac{z_n + z_p}{2} \right\|^2 + \|z_n - z_p\|^2 = 2 \left(\|z - z_n\|^2 + \|z - z_p\|^2 \right).$$

Mais, C étant convexe, on a $\frac{z_n+z_p}{2} \in C$; donc :

$$\left\|z - \frac{z_n + z_p}{2}\right\| \ge d,$$

de sorte que l'on obtient :

$$||z_n - z_p||^2 \le 2\left(d^2 + \frac{1}{n} + d^2 + \frac{1}{p}\right) - 4d^2 = 2\left(\frac{1}{n} + \frac{1}{p}\right).$$

- 11. De la question 10, on déduit que la suite (z_n) est une suite de Cauchy. Comme \mathbb{R}^2 est complet, elle converge donc vers un élément $y \in \mathbb{R}^2$. Mais comme C est fermé, on a en fait, puisque les z_n sont dans $C, y \in C$. De plus, le fait que pour tout $n \in \mathbb{N}^*$, $d^2 \leq \|z_n z\|^2 \leq d^2 + \frac{1}{n}$ entraı̂ne, en passant à la limite, que $d \leq \|x y\| \leq d$. On a donc $\|z y\| = d$, d'où l'existence de "la" projection de z sur C.
- 12. Soient $y_1, y_2 \in C$ tels que $||z-y_1|| = ||z-y_2|| = d$. Comme ci-dessus, en appliquant l'identité du parallélogramme :

$$4d^{2} + \|y_{1} - y_{2}\|^{2} \le 4 \left\|z - \frac{y_{1} + y_{2}}{2}\right\|^{2} + \|y_{1} - y_{2}\|^{2}$$

$$= 2 \left(\|z - y_{1}\|^{2} + \|z - y_{2}\|^{2}\right)$$

$$= 2(d^{2} + d^{2})$$

$$= 4d^{2}$$

Par conséquent :

$$||y_1 - y_2||^2 \le 0$$

ce qui implique que $y_1 = y_2$.

- 13. Il suffit de considérer C le cercle unité et son centre O. Alors la distance entre O et C est atteinte en tout point de C.
- 14. (a) Soient $y \in C$ et $t \in [0,1]$. Comme $p_C(z) \in C$ et par convexité de C, on a

$$ty + (1-t)p_C(z) \in C$$
.

Par définition de $p_C(z)$, on a

$$||z - (ty + (1-t)p_C(z))||^2 \ge ||z - p_C(z)||^2.$$

(b) Soit $y \in C$. Pour tout $t \in [0, 1]$, on a

$$||z - (ty + (1-t)p_C(z))||^2 = ||z - p_C(z) + t(p_C(z) - y)||^2$$
$$= ||z - p_C(z)||^2 + t^2||p_C(z) - y||^2 + 2t\langle z - p_C(z), p_C(z) - y\rangle.$$

Ainsi, l'inégalité établie à la question 14 (a) est équivalente à : pour tout $t \in [0, 1]$,

$$2t\langle z - p_C(z), p_C(z) - y \rangle + t^2 ||p_C(z) - y||^2 \ge 0.$$

En supposant t > 0, on divise par t et on le tend vers 0, ainsi on obtient

$$\langle p_C(z) - z, p_C(z) - y \rangle \le 0.$$

15. (a) Soit $y \in C$. On remarque que

$$||y - z||^2 = ||(y - z^*) + (z^* - z)||^2.$$

En développant le carré de la norme, on obtient

$$||y - z||^2 = ||y - z^*||^2 + 2\langle y - z^*, z^* - z \rangle + ||z^* - z||^2$$
$$= ||y - z^*||^2 - 2\langle z^* - y, z^* - z \rangle + ||z^* - z||^2.$$

(b) Par hypothèse sur z^* , on a

$$-\langle z^* - y, z^* - z \rangle \ge 0$$
 et $||y - z^*||^2 \ge 0$.

Il s'ensuit que

$$\forall y \in C, \quad \|y - z\| \ge \|z - z^*\|.$$

On a montré que z^* vérifie

$$||z - z^*|| = \inf_{y \in C} ||y - z||,$$

donc

$$z^* = p_C(z).$$

16. Soient $x, y \in \mathbb{R}^2$. Remarquons d'abord que l'inégalité est triviale si $p_C(x) = p_C(y)$. Supposons alors que ce n'est pas le cas. Comme $p_C(x) \in C$ et $p_C(y) \in C$, en utilisant l'inégalité établie à la question 14 on obtient

$$\langle p_C(x) - x, p_C(x) - p_C(y) \rangle \le 0 \quad (*)$$

et

$$\langle p_C(y) - y, p_C(y) - p_C(x) \rangle \le 0$$
 Soit $\langle -p_C(y) + y, p_C(x) - p_C(y) \rangle \le 0$ (**).

En sommant (*) et (**), on a

$$\langle p_C(x) - p_C(y) + y - x, p_C(x) - p_C(y) \rangle \le 0,$$

soit

$$||p_C(x) - p_C(y)||^2 \le \langle p_C(x) - p_C(y), x - y \rangle.$$

En utilisant l'inégalité de Cauchy-Schwarz, on obtient finalement

$$||p_C(x) - p_C(y)||^2 \le ||p_C(x) - p_C(y)|| ||x - y||.$$

En simplifiant par $||p_C(x) - p_C(y)||$ (qui est non nul par hypothèse), on a bien

$$||p_C(x) - p_C(y)|| \le ||x - y||.$$

Fin du corrigé