TD: Nombres complexes

1 Propriétés algébriques des nombres complexes

Exercice 1

Soient $z_1 = 1 + i$, $z_2 = \sqrt{3} + i$ et $z_3 = \frac{z_1}{z_2}$.

- 1. Donner la forme algébrique de z_3 .
- 2. Calculer le module et un argument de z_1 et de z_2 .
- 3. En déduire le module et un argument de z_3 puis la valeur de $\cos\left(\frac{\pi}{12}\right)$.

Exercice 2

Déterminer la forme algébrique de $z_n = (1 + e^{i\theta})^n$, $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$

Exercice 3

Trouver les modules et arguments de

1.
$$z_1 = 1 + i \tan \theta$$
 où $\theta \in \left[\frac{-\pi}{2}; \frac{\pi}{2} \right]$

2.
$$z_2 = 1 - e^{i\theta}$$
 où $\theta \in]-\pi; \pi[$

3.
$$z_3 = \frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta}$$
 où $\theta \in]-\pi;\pi[$

4.
$$z_4 = (1+i)^n$$
 où $n \in \mathbb{N}^*$.

Exercice 4

Soit $j = e^{i2\pi/3}$.

- 1. Préciser j^3 et, plus généralement, j^n en fonction de $n \in \mathbb{Z}$.
- 2. Calculer $1+j+j^2$ et, plus généralement, $1+j^n+j^{2n}$ en fonction de $n\in\mathbb{Z}$.
- 3. Que vaut \bar{j} en fonction de j?

Exercice 5

Inégalité triangulaire généralisée. Soit $n \in \mathbb{N}^*$.

1. Montrer que

$$\forall (z_1, \dots, z_n) \in \mathbb{C}^n, \left| \sum_{k=1}^n z_k \right| \le \sum_{k=1}^n |z_k|.$$

2. Montrer que l'inégalité précédente est une égalité si, et seulement si :

$$\forall k \in [1, n], \exists \lambda_k \in \mathbb{R}^+, z_k = \lambda_k z_1$$

Exercice 6

Soit $z \in \mathbb{U} \setminus \{1\}$. Montrer que $\frac{z+1}{z-1} \in i\mathbb{R}$.

Exercice 7

Soit
$$a \in \mathbb{C}$$
, $|a| < 1$ et $f: \begin{cases} \mathbb{U} & \longrightarrow \mathbb{C} \\ z & \longmapsto \frac{z-a}{1-\overline{a}z} \end{cases}$.

- 1. Montrer que f est bien définie.
- 2. Montrer que $f(\mathbb{U}) \subset \mathbb{U}$.
- 3. Montrer que $f|_{\mathbb{U}}$ est bijective et donner l'expression de sa réciproque.

2 Trigonométrie

Exercice 8

Soit x un réel.

- 1. Linéariser $\sin^3(x)$ et $\cos^4(x)$.
- 2. Exprimer $\cos(5x)$ sous forme d'une expression polynomiale en $\cos(x)$. De même, exprimer $\sin(5x)$ en fonction de $\sin(x)$ et $\cos(x)$.

Exercice 9

Calculer pour $\theta \in [0; 2\pi[$ et $n \in \mathbb{N},$

$$C_n = \sum_{k=0}^n \cos(k\theta)$$
 et $S_n = \sum_{k=0}^n \sin(k\theta)$

Exercice 10

Calculer pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$C_n = \sum_{k=0}^n \binom{n}{k} \cos(k\theta) \text{ et } S_n = \sum_{k=0}^n \binom{n}{k} \sin(k\theta)$$

3 Équations algébriques, racines n-ièmes

Exercice 11

Déterminer les racines carrées des nombres complexes suivants :

- 1. $Z_1 = 3 + 4i$.
- 2. $Z_2 = 8 6i$.

Exercice 12

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.

- 1. $z^2 + z + 1 = 0$.
- 2. $z^2 (1+2i)z + i 1 = 0$.
- 3. $z^2 + (3i 4)z + 1 7i = 0$.

Exercice 13

Résoudre l'équation suivante d'inconnue $z \in \mathbb{C}$: $(z+1)^n - (z-1)^n = 0$, où $n \in \mathbb{N}^*$

Exercice 14

Déterminer :

- 1. Les racines troisièmes de 1 + i.
- 2. Les racines quatrièmes de $-1 + i\sqrt{3}$.

Exercice 15

Résoudre l'équation $z^3 - z^2 + z - 1 = 0$ d'inconnue $z \in \mathbb{C}$.

Exercice 16

On désigne par ω le complexe $e^{i2\pi/5}$ et on pose :

$$\alpha = \omega + \omega^4$$
 et $\beta = \omega^2 + \omega^3$.

- 1. Calculer les valeurs de $\alpha + \beta$ et de $\alpha\beta$.
- 2. En déduire que α et β sont les racines d'un trinôme du second degré que l'on précisera.
- 3. En déduire $\cos(2\pi/5)$.

Exercice 17

Soient $n \in \mathbb{N}$, $n \geq 2$ et $\omega = \exp(2i\pi/n)$.

(a) Établir que pour tout $z \in \mathbb{C}$, $z \neq 1$,

$$\prod_{k=1}^{n-1} (z - \omega^k) = \sum_{\ell=0}^{n-1} z^{\ell}$$

- (b) Justifier que l'égalité reste valable pour z=1.
- (c) En déduire l'égalité

$$\prod_{k=1}^{n-1} \sin \frac{k\pi}{n} = \frac{n}{2^{n-1}}$$

Exercice 18

A-t-on
$$\mathbb{U} = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$$
?

4 Un peu de géométrie

Exercice 19

Identité du parallélogramme

Montrer que:

$$\forall (a,b) \in \mathbb{C}^2, |a|^2 + |b|^2 = \frac{1}{2} (|a-b|^2 + |a+b|^2).$$

Exercice 20

Déterminer de deux manières l'ensemble $A = \{ z \in \mathbb{C}, \quad |z-1| = |z-i| \}$ et $B = \{ z \in \mathbb{C}, \quad |z-1| = |z+1| \}$

Exercice 21

Déterminer l'ensemble des $z \in \mathbb{C}$ tel que $\frac{z-i}{z-1} \in \mathbb{R}$.

Exercice 22

Déterminer tous les complexes z tels que 1, z et $z^2 + 1$ soient alignés.

Exercice 23

Déterminer l'ensemble des $z \in \mathbb{C}$ tels que |2iz - 1 + i| = 1.

Exercice 24

Soient A(1+i) et B(4+3i).

- 1. Trouver l'affixe du point C pour que le triangle ABC soit équilatéral direct.
- 2. Trouver l'affixe des points D et E pour que le quadrilatère ABDE soit un carré direct.

Exercice 25

Identifier les transformations complexes suivantes :

- 1. $f_1: z \mapsto z + 1 + i$.
- 2. $f_2: z \mapsto e^{i\pi/6}z$.
- 3. $f_3: z \mapsto e^{i\pi/3}z + 1$.
- 4. $f_4: z \mapsto 2z + 1 i$.
- 5. $f_7: z \mapsto (1+i)z + i$.
- 6. $f_8: z \mapsto (1+i\sqrt{3})z+1$.

Exercice 26

Donner l'écriture complexe des transformations suivantes :

- 1. La translation de vecteur d'affixe -2 + i.
- 2. La symétrie de centre i.
- 3. La rotation d'angle $\pi/6$ et de centre 1.
- 4. L'homothétie de rapport 3 et de centre 1 + 2i.
- 5. La similitude de rapport 2, d'angle $\pi/3$ et de centre 1+i.

Exercice 27

Étudier la similitude s qui envoie le point A d'affixe i sur le point A' d'affixe $1 + \sqrt{3}/2 + i/2$ et le point B d'affixe 1 + i sur le point B' d'affixe $1 + 3\sqrt{3} + 2i$.