INTÉGRALES ET PRIMITIVES

Le but de ce chapitre est purement calculatoire; on verra plus loin que le calcul de primitives est très présent dans la résolution des équations différentielles. Une construction rigoureuse de l'intégrale sera donnée en fin d'année. Dans la suite,

- $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .
- I désigne un intervalle de $\mathbb R$ non réduit à un point.

1. Primitives d'une fonction continue

1.1 Définition et propriétés

Définition 1.

Soit $f: I \to \mathbb{K}$ une fonction. On appelle primitive de la fonction f sur I toute fonction $F: I \to \mathbb{K}$ dérivable sur I et vérifiant F' = f.

Remarque 1.

Une primitive est dérivable par définition.

Exemple 1.

- $x \mapsto \frac{x^2}{2}$ est une primitive sur \mathbb{R} de $x \mapsto x$.
- In est une primitive sur \mathbb{R}_+^* de $x \mapsto \frac{1}{x}$.

Proposition 1.

Soit $f:I \to \mathbb{K}$ une fonction possédant une primitive F sur I. Alors les primitives de f sur I sont exactement les fonctions de la forme F+C où $C \in \mathbb{K}$. Autrement, si G est une primitive de f sur I alors il existe une constante $C \in \mathbb{K}$ telle que : G=F+C.

Démonstration

Corollaire 1

Soit $f: I \to \mathbb{K}$ une fonction possédant une primitive sur I. On se donne aussi $x_0 \in I$ et $y_0 \in \mathbb{K}$. Alors il existe une unique primitive F de f sur I vérifiant la condition initiale $y_0 = F(x_0)$.

Exemple 2.

In est l'unique primitive de la fonction $x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R}_+^*$ s'annulant en 1.

- Notation

Étant donnée une fonction continue f, on désigne par $\int f(x) dx$, ou parfois plus simplement par $\int f$, une primitive de f. On se permet d'écrire $\int f(x) dx = g(x)$ pour simplement dire que la fonction g est une primitive de f.

Exemple 3.

Pour $f: I \to \mathbb{R}$ dérivable, on a $\int f'(x) dx = f(x)$.

Proposition 2.

Soient $f, g: I \to \mathbb{K}$ deux fonctions et $\lambda \in \mathbb{K}$.

- Si F et G sont primitives de f et g sur I, alors F + G est une primitive de f + g sur I.
- Si F est primitive de f, alors λF est une primitive de λf .

Proposition 3.

Soit $f: I \to \mathbb{C}$ une fonction.

Si F est primitive de f, alors Re(F) est une primitive de Re(f) et Im(F) est une primitive de Im(f).

Démonstration

1.2 Primitives usuelles

Fonction	Primitive	Intervalle
x^n avec $n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + C$	R
$\frac{1}{x^n} \text{ avec } n \in \mathbb{N} \setminus \{0, 1\}$	$-\frac{1}{(1-n)x^{n-1}} + C$	\mathbb{R}_{-}^{*} ou \mathbb{R}_{+}^{*}
x^{α} avec $\alpha \in \mathbb{R} \setminus \{-1\}$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	\mathbb{R}_+^*
$\frac{1}{x}$	$\ln x + C$	\mathbb{R}_{-}^{*} ou \mathbb{R}_{+}^{*}
e^x	$e^x + C$	\mathbb{R}
$\sin x$	$-\cos x + C$	R
$\cos x$	$\sin x + C$	R
sh x	$\operatorname{ch} x + C$	R
ch x	$\operatorname{sh} x + C$	R
$\frac{1}{x^2+1}$	$\arctan x + C$	R
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$]-1,1[

1.3 Techniques usuelles de primitivation

Proposition 4.

Soit u une fonction dérivable sur I à valeurs dans un intervalle J et φ une fonction dérivable sur J. Alors la fonction $x \mapsto u'(x)\varphi'(u(x))$ admet la fonction $x \mapsto \varphi(u(x))$ comme primitive sur I.

Démonstration

Il suffit de remarquer que la fonction $x \mapsto \varphi(u(x))$ est dérivable sur I et de dérivée $x \mapsto u'(x)\varphi'(u(x))$.

En particulier, on a:

- $\int u'(x).u(x)^{\alpha} dx = \frac{1}{\alpha+1}u^{\alpha+1}(x)$ ($\alpha \neq -1$ et u est à valeurs dans \mathbb{R}_+^*)
- $\int \frac{u'(x)}{u(x)} dx = \ln(|u(x)|)$. (u étant à valeurs dans \mathbb{R}^*)
- $\int u'(x) \cdot e^{u(x)} dx = e^{u(x)}.$
- $\int \frac{u'(x)}{1 + u^2(x)} dx = \arctan(u(x)).$
- $\int u'(x) \cdot \cos(u(x)) \, \mathrm{d}x = \sin(u(x)).$
- $\int u'(x) \cdot \sin(u(x)) \, \mathrm{d}x = -\cos(u(x)).$

Déterminer une primitive de la fonction $x \mapsto \exp(e^x + x)$.

Solution

Exemple 5.

Déterminer une primitive de la fonction $x \mapsto th(x)$.

Solution

Exemple 6.

Déterminer une primitive de la fonction $x \mapsto \frac{1}{x \ln^4(x)}$.

Solution

Exemple 7.

Soit $(a, b) \in \mathbb{R}^2$ tel que $(a, b) \neq (0, 0)$.

Déterminer une primitive de la fonction $x \mapsto e^{ax} \cos(bx)$.

Solution Solution

Exemple 8 (Cas de Δ < 0).

Déterminer une primitive de la fonction $x \mapsto \frac{1}{x^2 + x + 1}$.

🕲 🕲 🐿 Solution

Exemple 9 (Cas de $\Delta > 0$).

Déterminer une primitive de la fonction $x \mapsto \frac{1}{x^2 - 5x + 6}$.

🐿 🐿 🐿 Solution

Exemple 10 (Cas de $\Delta=0$).

Déterminer une primitive de la fonction $x \mapsto \frac{1}{3x^2 + 6x + 3}$.

🕲 🕲 🐿 Solution

Théorème fondamental de l'analyse

Théorème 1 (Théorème fondamental de l'analyse).

Toute fonction f continue sur I admet des primitives sur I.

Exemple 11.

La fonction $x \mapsto e^{-x^2}$ admet une primitive sur \mathbb{R} , mais on a montré qu'il est impossible de l'exprimer à l'aide des fonctions usuelles.

Intégrale d'une fonction continue

Définition 2.1

Proposition et Définition 1.

Soient $f: I \to \mathbb{K}$ une fonction continue, F une primitive (quelconque) de f et $a, b \in I$. Alors le nombre F(b) - F(a) ne dépend pas du choix de la primitive F. Ce nombre est appelé l'intégrale de f de a à b et est noté $\int_a^b f(t) dt$ ou $\int_a^b f$.

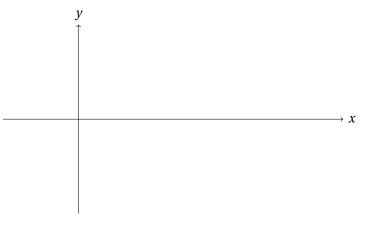
Démonstration

Remarque 2

- La différence F(b) F(a) est notée $[F(t)]_{t=a}^{t=b}$ ou $[F]_a^b$.
- La variable *t* est muette : on peut la remplacer par n'importe quelle autre lettre non utilisée :

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx = \int_{a}^{b} f(u)du = \cdots$$

• Interprétation géométrique : l'intégrale de f sur [a,b] représente l'aire algébrique de la région du plan délimitée par l'axe des abscisses, la courbe représentative de f et les droites verticales d'équations x=a et x=b.



Exemple 12.

- Soit $n \in \mathbb{N}$. $\int_0^1 t^n dt =$
- $\int_0^1 \frac{1}{1+t^2} dt =$

Proposition 5.

Soient $f:I\to \mathbb{K}$ une fonction continue et $a\in I.$ Alors $F:I\to \mathbb{K}$ définie par

$$F(x) = \int_{a}^{x} f(t) dt$$

est l'unique primitive de f qui s'annule en a.

Exercice 1 (Une fonction définie par une intégrale).

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction continue. Montrer que les fonctions $g:\mathbb{R}\to\mathbb{R}$ et $h:\mathbb{R}\to\mathbb{R}$ définies par

$$\forall x \in \mathbb{R}, \ g(x) = \int_0^{e^x} f(t) dt \quad \text{et} \quad h(x) = \int_{x^3}^{e^x} f(t) dt$$

sont dérivables sur \mathbb{R} et calculer g' et h'.

🐿 🐿 🐿 Solution

2.2 Propriétés

Proposition 6.

Soient $f, g: I \to \mathbb{K}$ deux fonctions continues et $a, b, c \in I$.

- $\bullet \int_a^a f(t) dt = 0.$
- $\int_{a}^{b} f(t) dt = -\int_{b}^{a} f(t) dt.$
- $\int_a^b f(t) + g(t) dt = \int_a^b f(t) dt + \int_a^b g(t) dt.$
- $\int_{a}^{b} \lambda f(t) dt = \lambda \int_{a}^{b} f(t) dt$.
- Relation de Chasles: $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$.

Exemple 13.

Calculer l'intégrale $\int_{-2}^{2} |x-1| dx$.

🔊 🕲 🕲 Solution

Proposition 7

Soient $a, b \in \mathbb{R}$ tels que a < b et $f, g : [a, b] \to \mathbb{R}$ deux fonctions continues sur le segment [a, b].

- Positivité de l'intégrale : si $\forall t \in [a, b], f(t) \ge 0$, alors $\int_a^b f(t) dt \ge 0$.
- Croissance de l'intégrale :

si
$$\forall t \in [a, b], f(t) \leq g(t), \text{ alors } \int_a^b f(t) dt \leq \int_a^b g(t) dt.$$

• Inégalité triangulaire : $\left| \int_{a}^{b} f(t) dt \right| \le \int_{a}^{b} \left| f(t) \right| dt$.

Exemple 14.

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{1+t} dt$.

- 1. Montrer que : $\forall n \in \mathbb{N}, I_n \ge 0$.
- **2.** Montrer que : $\forall n \in \mathbb{N}, I_n \leq \frac{1}{n+1}$.
- **3.** En déduire $\lim_{n\to+\infty}I_n$.
- Solution

Proposition 8.

Soient $a, b \in \mathbb{R}$ tels que a < b et $f : [a, b] \to \mathbb{R}$ une fonction continue et positive sur le segment [a, b].

• Si $\int_a^b f(t)dt = 0$, alors la fonction est f est nulle sur le segment [a,b]:

$$\forall\,t\in[a,b],\quad f(t)=0.$$

• Si f n'est pas la fonction nulle sur le segment [a, b], alors

$$\int_{a}^{b} f(t)dt > 0.$$

2.3 Intégration par parties

Définition 2.

On dit qu'une fonction $f: I \to \mathbb{K}$ est de classe \mathscr{C}^1 sur I si elle est dérivable sur I et f' est continue sur I.

Théorème 2 (Intégration par parties).

Soient $u, v: I \to \mathbb{K}$ deux fonctions de classe \mathscr{C}^1 sur I et $a, b \in I$.

• Version intégrale :

$$\int_a^b u'(t)v(t)\mathrm{d}t = [u(t)v(t)]_a^b - \int_a^b u(t)v'(t)\mathrm{d}t.$$

• Version primitive : sur l'intervalle *I*, on a

$$\int u'(x) v(x) dx = u(x) v(x) - \int u(x) v'(x) dx.$$

Démonstration

Exemple 15.

Calculer l'intégrale $\int_0^1 (t+1) e^t dt$.

🕲 🕲 🐿 Solution

Exemple 16.

En utilisant une double IPP calculer l'intégrale $\int_0^{\pi} e^t \cos(t) dt$.

Solution

Déterminer une primitive de la fonction $\ln \operatorname{sur} \mathbb{R}_+^*$.

Solution

Exemple 18.

Déterminer une primitive de la fonction arctan sur \mathbb{R} .

🐿 🐿 🐿 Solution

2.4 Changement de variable

Théorème 3 (Changement de variable).

Soient $f: I \to \mathbb{K}$ une fonction continue, $\varphi: J \to I$ une fonction de classe \mathscr{C}^1 et $a, b \in J$. Alors:

$$\int_{a}^{b} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

On dit qu'on a fait le changement de variable $x = \varphi(t)$.

Démonstration

Méthode du changement de variable -

Pour calculer $\int_{\varphi(a)}^{\varphi(b)} f(x) \mathrm{d}x$ en utilisant le changement de variable :

- ► On pose $x = \varphi(t)$.
- ► On a alors $\frac{dx}{dt} = \varphi'(t)$, puis $dx = \varphi'(t)dt$.
- ► On détermine les bornes de la nouvelle intégrale : Lorsque t varie entre a et b, $x = \varphi(t)$ varie entre $\varphi(a)$ et $\varphi(b)$.
- ▶ On vérifie que ϕ est de classe \mathscr{C}^1 sur [a,b].

Exemple 19.

Calculer l'intégrale
$$\int_0^1 \frac{e^t}{1 + e^{2t}} dt$$
 en posant $x = e^t$.

Exemple 20.

Calculer l'intégrale
$$\int_0^1 \sqrt{1-x^2} \, dx$$
 en posant $x = \sin(t)$.

2.5 Cas particuliers : Périodicité, parité et imparité

Proposition 9.

Soient a > 0 et f une fonction continue sur [-a, a].

(i) Si f est ${\bf paire}$, alors :

$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$$

(ii) Si f est **impaire**, alors :

$$\int_{-a}^{a} f(t) \mathrm{d}t = 0.$$

Proposition 10.

Soit $f: \mathbb{R} \to \mathbb{R}$ est une fonction **périodique** de période T > 0 alors :

$$\forall a \in \mathbb{R}, \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt$$

Démonstration

Exemple 21.

Calculer les intégrales $\int_{-1}^{1} x \sqrt{1-x^2} dx$ et $\int_{-2}^{2} x^2 dx$ Solution