Méthode alternative pour un résultat classique d'algèbre

Dans ce qui suit, on propose une deuxième méthode pour prouver le résultat suivant :

Lemme : Soit \mathbb{K} un sous-corps de \mathbb{R} et $\alpha \in \mathbb{R}$ un nombre algébrique sur \mathbb{K} . Alors l'anneau $\mathbb{K}[\alpha]$ est un corps.

Preuve:

Tout d'abord, nous allons admettre le résultat classique de la question 6 du sujet envoyé (soit la question I-4.a de l'annale du concours Mines-Ponts 1996), duquel on déduit que $\mathbb{K}[\alpha]$ est un \mathbb{K} -espace vectoriel de dimension finie égale au degré du polynôme minimal de α sur \mathbb{K} .

Puisque $\mathbb{K}[\alpha]$ est un anneau commutatif non nul, pour montrer que c'est un corps, il suffit de prouver que tout élément non nul de $\mathbb{K}[\alpha]$ est inversible dans $\mathbb{K}[\alpha]$.

Soit $y \in \mathbb{K}[\alpha] \setminus \{0\}$ et considérons l'application

$$f: \mathbb{K}[\alpha] \longrightarrow \mathbb{K}[\alpha]$$
$$x \longmapsto x \times y$$

Il est clair que l'application f est un endomorphisme du \mathbb{K} -espace vectoriel $\mathbb{K}[\alpha]$ (elle est bien définie vu la stabilité de $\mathbb{K}[\alpha]$ par produit et est évidemment \mathbb{K} -linéaire).

Par ailleurs, $\ker(f) = \{0\}$. Ainsi, f est injective. D'autre part, $\mathbb{K}[\alpha]$ est de dimension finie, donc f est surjective.

Or, $1 \in \mathbb{K}[\alpha]$ (car $1 = \alpha^0$), donc il admet un antécédent par f, i.e. il existe $x \in \mathbb{K}[\alpha]$ tel que $x \times y = 1$.

Conclusion : On a prouvé que tout élément non nul de $\mathbb{K}[\alpha]$ est inversible dans $\mathbb{K}[\alpha]$, donc $\mathbb{K}[\alpha]$ est un corps.

Remarque 1:

Vous constatez dans la preuve précédente qu'on peut bien généraliser le résultat à un corps quelconque, dans le sens suivant.

Soient K un corps et L une **extension** de K, c'est-à-dire L est un corps tel que K soit un souscorps de L. On dit que $\alpha \in L$ est **algébrique** sur K, s'il existe un polynôme non nul de K[X] tel que $P(\alpha) = 0$, il est **transcendant** sinon. Soit $\alpha \in L$ (pas forcément algébrique). On définit comme dans l'énoncé $K[\alpha] = \{P(\alpha), P \in K[X]\}$. Il est facile de voir que $K[\alpha]$ est une K-algèbre (C'est l'image de l'algèbre K[X] par le morphisme d'algèbres $P(X) \in K[X] \mapsto P(\alpha) \in L$).

On montre comme ci-dessus que pour tout $\alpha \in L$ algébrique sur K, l'anneau $K[\alpha]$ est un corps. Question philosophique : A-t-on la réciproque ? C'est-à-dire, Si $\alpha \in L$ tel que $K[\alpha]$ est un corps, α est-il algébrique sur K ?

La réponse est : Oui. En effet, Le cas où α est nul est trivial. Supposons que ce n'est pas le cas, alors $\alpha^{-1} \in K[\alpha]$, donc il existe $P \in K[X]$ tel que $\alpha^{-1} = P(\alpha)$. Considérons le polynôme Q(X) = XP(X) - 1; ce polynôme est non nul, à coefficients dans K et annule α . Ainsi, α est algébrique sur K.

Remarque 2:

La méthode utilisée est classique. Nous l'avons utilisée en colles (Salam Ali) pour montrer que l'inverse d'une matrice triangulaire supérieure de $\mathrm{GL}_n(\mathbb{R})$ est également triangulaire supérieure.

Notez bien qu'un tel résultat se généralise et faisait l'objet d'un oral de Centrale avec l'énoncé suivant :

Soient $n \in \mathbb{N}^*$ et \mathscr{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$. On suppose que $M \in \mathscr{A}$ est une matrice inversible. Montrer que $M^{-1} \in \mathscr{A}$.

La preuve étant la même que celle utilisée pour prouver le lemme.

Lahomma yassir.