Devoir Maison n° 11

Dans ce problème, on étudie quelques propriétés des parties convexes du plan, et on démontre le théorème de projection sur un convexe fermé; un théorème fondamental en analyse et en optimisation.

1 Préliminaires

Définition 1 : Ensemble convexe. Soit $C \subset \mathbb{R}^2$. On dit que C est *convexe* si :

$$\forall (x,y) \in C^2, \ \forall t \in [0,1], \ (1-t)x + ty \in C.$$

- 1. Montrer que $[0,1] \times [0,1]$ est un convexe de \mathbb{R}^2 .
- 2. Le cercle unité $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ est-il convexe?
- 3. Soient A et B deux ensembles convexes de \mathbb{R}^2 et $A+B=\{x+y\mid x\in A,\ y\in B\}$. Démontrer que A+B est un convexe de \mathbb{R}^2 .
- 4. Donner un exemple de deux convexes de \mathbb{R}^2 dont l'union n'est pas convexe.
- 5. Soit I un ensemble non vide et $(C_i)_{i\in I}$ une famille de convexes de \mathbb{R}^2 . Montrer que $\bigcap_{i\in I} C_i$ est un convexe de \mathbb{R}^2 .

Dans la suite, \mathbb{R}^2 serait muni de sont produit scalaire usuel :

$$\forall ((x_1, y_1), (x_2, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2, \langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + y_1 y_2.$$

nous noterons $\|\cdot\|$ la norme associée à ce produit scalaire, i.e. Pour tout $x \in \mathbb{R}^2$, $\|x\| = \sqrt{\langle x, x \rangle}$.

2 Sur les suites

Soient $((x_n, y_n))_{n \in \mathbb{N}}$ une suite d'éléments de \mathbb{R}^2 et $(x, y) \in \mathbb{R}^2$.

- 6. Montrer que les assertions suivantes sont équivalentes :
 - (a) $\lim_{n \to +\infty} x_n = x$ et $\lim_{n \to +\infty} y_n = y$;
 - (b) $\lim_{n \to +\infty} ||(x_n, y_n) (x, y)|| = 0.$

Définition 2 : Convergence d'une suite de \mathbb{R}^2 , suite de Cauchy. Soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite d'éléments de \mathbb{R}^2 et soit $(x, y) \in \mathbb{R}^2$.

— On dit que la suite $((x_n, y_n))_{n \in \mathbb{N}}$ converge dans \mathbb{R}^2 vers (x, y) si l'une des deux conditions équivalentes précédentes est satisfaite. On note alors

$$\lim_{n \to +\infty} (x_n, y_n) = (x, y).$$

— On dit que la suite $((x_n, y_n))_{n \in \mathbb{N}}$ est une suite de Cauchy si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall (n, p) \in \mathbb{N}^2, \quad (n, p \ge N) \implies \|(x_n, y_n) - (x_p, y_p)\| \le \varepsilon.$$

On admet le résultat suivant :

 \mathbb{R}^2 est complet: Soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite de Cauchy de \mathbb{R}^2 . Alors, $((x_n, y_n))_{n \in \mathbb{N}}$ converge dans \mathbb{R}^2 .

3 Projection sur un convexe fermé

3.1 Théorème de projection sur un convexe fermé

Définition 3 : Partie fermée.

Soit A une partie de \mathbb{R}^2 . On dit que A est fermée si :

$$\forall (z_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}, \ \forall z\in\mathbb{R}^2, \quad ((z_n)_{n\in\mathbb{N}} \text{ converge vers } z) \implies (z\in A).$$

Définition 4 : Distance d'un point à une partie

Date: 18/05/2025

Soient A une partie non vide de \mathbb{R}^2 et x un réel quelconque. On appelle distance de x à A et on note dist(x,A) la quantité définie par :

$$\operatorname{dist}(x,A) = \inf_{w \in A} \|w - x\|$$

On souhaite montrer le résultat suivant :

Soit $C \subset \mathbb{R}^2$ un ensemble convexe fermé non vide. Pour tout $z \in \mathbb{R}^2$, il existe un unique $z' \in C$ tel que

$$||z - z'|| = \operatorname{dist}(z, C).$$

Cet unique élément est appelé la **projection** de z sur C.

Soient $z \in \mathbb{R}^2$ et $d = \operatorname{dist}(z, C)$. On souhaite prouver en premier lieu l'existence de la projection de z sur C.

- 7. Justifier déjà l'existence de d.
- 8. Montrer que

$$\forall n \in \mathbb{N}^*, \exists z_n \in C, \qquad ||z - z_n||^2 \le d^2 + \frac{1}{n}.$$

On a ainsi une suite $(z_n)_{n\in\mathbb{N}^*}$ d'éléments de C telle que $\forall n\in\mathbb{N}^*, \|z-z_n\|^2 \leq d^2+\frac{1}{n}$

9. Montrer l'identité du parallélogramme :

$$\forall (u, v) \in \mathbb{R}^2 \times \mathbb{R}^2, \quad \|u - v\|^2 + \|u + v\|^2 = 2(\|u\|^2 + \|v\|^2).$$

En donner une interprétation géométrique à l'aide d'une figure et une petite explication.

10. En déduire que

$$\forall (n,p) \in (\mathbb{N}^*)^2, \quad ||z_n - z_p||^2 \le \frac{2}{n} + \frac{2}{p}.$$

- 11. Conclure.
- 12. Prouver l'unicité de la projection de z sur C.

Pour ceci, on peut supposer qu'il existe z_1 et z_2 dans C tels que $||z - z_1|| = ||z - z_2|| = d$, et prouver que $z_1 = z_2$ à l'aide de l'identité du parallélogramme.

13. Donner un exemple d'une partie C de \mathbb{R}^2 , non vide et non convexe, ainsi qu'un point z de \mathbb{R}^2 , tels que le projection de z sur C ne soit pas unique, ou autrement dit, l'ensemble des points minimisant la distance entre z et C ne soit pas réduit à un singleton.

(Une figure accompagnée d'une petite explication est largement suffisante.)

Dans la suite, nous noterons $p_C(z)$ la projection de z sur le convexe C.

3.2 Une caractérisation

Nous souhaitons prouver le résultat suivant :

Soit C un ensemble convexe fermé non vide de \mathbb{R}^2 . Pour tout $z \in \mathbb{R}^2$ et $z^* \in C$, on a :

$$z^* = p_C(z) \iff (\forall y \in C, \langle z^* - z, z^* - y \rangle \le 0). \tag{3.2}$$

Soit $z \in \mathbb{R}^2$.

- 14. Sens direct. Soit $p_C(z)$ la projection de z sur C.
 - (a) Montrer que : pour tout $y \in C$ et pour tout $t \in [0,1]$,

$$||z - (ty + (1-t)p_C(z))||^2 \ge ||z - p_C(z)||^2$$
.

(b) En déduire que

$$\forall y \in C, \quad \langle p_C(z) - z, p_C(z) - y \rangle \le 0.$$

15. Sens indirect. Soit z^* vérifiant l'inégalité de droite de la ligne (3.2).

Date: 18/05/2025

(a) Montrer que : pour tout $y \in C$,

$$||y - z||^2 = ||y - z^*||^2 + ||z^* - z||^2 - 2\langle z^* - z, z^* - y \rangle.$$

- (b) En déduire que $z^* = p_C(z)$.
- 16. Montrer que l'application p_C est 1-lipschitzienne sur \mathbb{R}^2 , i.e. montrer que p_C vérifie

$$\forall (x,y) \in (\mathbb{R}^2)^2, \quad ||p_C(x) - p_C(y)|| \le ||x - y||.$$

Fin de l'énoncé

Date: 18/05/20253