Théorie des groupes et dénombrement

1 Problème

Soient (G, \star) un groupe et X un ensemble non vide. Une action du groupe G sur l'ensemble X est une application que l'on note en général par le symbole \cdot :

$$\begin{array}{ccc} G\times X & \longrightarrow & X \\ (g,x) & \longmapsto & g\cdot x \end{array}$$

vérifiant les deux conditions suivantes :

— pour tous g et h dans G et pour tout $x \in X$,

$$g \cdot (h \cdot x) = (g \star h) \cdot x$$

— pour tout $x \in X$, en notant e le neutre du groupe G, on a : $e \cdot x = x$.

On dira dans ce cas que le groupe G agit sur l'ensemble X.

Soit $x \in X$. Avec les notations précédentes, on appelle **orbite de** x **par** G, l'ensemble :

$$\mathcal{O}(x) = \{g \cdot x \, ; \, g \in G\}.$$

On appelle stabilisateur de x, l'ensemble :

$$Stab(x) = \{ g \in G \mid g \cdot x = x \}.$$

L'action de G sur X est dite :

- transitive si $\forall x, y \in X, \exists g \in G, y = g \cdot x$
- fidèle si le morphisme de groupes :

$$\varphi: \begin{cases} G \to S(X) \\ g \mapsto (\varphi(g) : x \mapsto g \cdot x) \end{cases}$$

est injectif, ce qui signifie que :

$$(g \in G \text{ et } \forall x \in X, g \cdot x = x) \Leftrightarrow (g = 1_G)$$

Quelques exemples

1. Action du groupe symétrique

(a) Soit $n \in \mathbb{N}^*$ un entier naturel. Montrer que le groupe (S_n, \circ) agit sur l'ensemble X = [1, n] par l'action :

$$(\sigma, k) \mapsto \sigma(k)$$
.

- (b) Soit $k \in [1, n]$. Déterminer l'orbite $\mathcal{O}(k)$ par S_n .
- (c) Soit $k \in [1, n]$. Déterminer le cardinal du stabilisateur de k.

2. Action du groupe sur lui-même par translation

(a) Soit (G,\star) un groupe. Montrer que le groupe G agit sur l'ensemble X=G selon :

$$(g,x)\mapsto g\star x.$$

(b) Soit $x \in G$. Déterminer l'orbite $\mathcal{O}(x)$.

3. Action du groupe sur lui-même par conjugaison

Soit (G,\star) un groupe. Montrer que le groupe G agit sur l'ensemble X=G selon :

$$(g,x)\mapsto g\star x\star g^{-1}.$$

Quelques proriétés

On considère ici un groupe (G, \star) agissant sur un ensemble non vide X, avec l'action $(g, x) \mapsto g \cdot x$. Si A est un ensemble fini, on désignera par |A| son cardinal.

- 4. Soit $x \in X$. Montrer que le stabilisateur de x est un sous-groupe de G.
- 5. Montrer que si $x, y \in X$ sont dans la même orbite, alors $\mathrm{Stab}(x)$ et $\mathrm{Stab}(y)$ sont conjugués.
- 6. On définit la relation \mathcal{R} sur l'ensemble X par :

$$\forall (x,y) \in X^2, x\mathcal{R}y \iff \exists g \in G, x = g \cdot y.$$

- (a) Montrer que la relation \mathcal{R} est une relation d'équivalence.
- (b) En déduire que l'ensemble des orbites :

$$\{\mathcal{O}(x); x \in X\}$$

forme une partition de l'ensemble X.

(c) Montrer que si le groupe G est fini, alors pour tout $x \in X$:

$$|G| = |\mathcal{O}(x)| \times |\operatorname{Stab}(x)|.$$

Formule de Burnside

7. Soit (G, \cdot) un groupe fini opérant sur un ensemble fini E. Pour tout $g \in G$, on note $Fix(g) = \{x \in E \mid g \cdot x = x\}$.

Montrer que le nombre d'orbites est :

$$r = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|.$$

Indication : Calculer le cardinal de l'ensemble : $F = \{(q, x) \in G \times E \mid q \cdot x = x\}$ de deux manières.

Théorème de Cayley

8. Soit G un groupe. En considérant l'action de G sur lui-même par translation, prouver que G est isomorphe à un sous-groupe de S(G).

Application aux drapeaux

Soit n un entier naturel supérieur ou égal à 2 et p un nombre premier. Soit E l'espace \mathbb{F}_p^n , où \mathbb{F}_p désigne le corps $\mathbb{Z}/p\mathbb{Z}$. Un drapeau complet de E désigne une suite

$$F_{\bullet} := (F_1 \subset F_2 \subset \cdots \subset F_n)$$

de sous-espaces emboîtés de E tels que dim $F_k = k$ pour tout k de 1 à n.

9. Montrer que GL(E) agit transitivement sur \mathcal{F}_n , l'ensemble des drapeaux complets de E par

$$g \cdot (F_1 \subset F_2 \subset \cdots \subset F_n) := (g(F_1) \subset g(F_2) \subset \cdots \subset g(F_n)).$$

- 10. Montrer que le stabilisateur d'un drapeau complet est isomorphe au sous-groupe des matrices triangulaires supérieures de $GL_n(\mathbb{F}_p)$.
- 11. En déduire le cardinal de \mathcal{F}_n .

Fin de l'énoncé