Ensembles

Exercice 1 (\star Rai). Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire :

1.
$$a \in E$$

$$3. \{a\} \subset E$$

5.
$$\varnothing \subset I$$

3.
$$\{a\} \subset E$$
 5. $\emptyset \subset E$ 7. $a \in \mathscr{P}(E)$

$$2. \ a \subset E$$

$$4. \varnothing \in E$$

$$4. \varnothing \in E$$
 $6. \{\varnothing\} \subset E$

8.
$$\{a\} \in \mathscr{P}(E)$$

Exercice 2 (* Rai, Mod ©). 1. Définir les ensembles $\{1, 2, 4, 8, 16, 32, 64\}$ et $B = \{1, 2, 7, 14\}$ par compréhension.

2. Définir les ensembles suivants par extension :

$$C = \{x \in \mathbb{R} \mid x(x+5) = 14\} \text{ et } D = \{x \in \mathbb{N} \mid x(2x+3) = 14\}$$

Exercice 3 (* Rai, Cal). Posons $A = \{(t+2, 3t+5) \mid t \in \mathbb{R}\}$ et B = $\{(x,y)\in\mathbb{R}^2\mid 3x=y+1\}$. Démontrer que A=B.

Exercice 4 (* Rai). Déterminer les ensembles suivants :

1.
$$\bigcup_{n \in \mathbb{N}^*} [0; n]$$

3.
$$\bigcup_{n \in \mathbb{N}^*} [0; 1 - 1/n]$$

2.
$$\bigcup_{n\in\mathbb{N}^*} [0; 1/n]$$

1.
$$\bigcup_{n \in \mathbb{N}^*} [0; n]$$
2.
$$\bigcup_{n \in \mathbb{N}^*} [0; 1/n]$$
3.
$$\bigcup_{n \in \mathbb{N}^*} [0; 1 - 1/n]$$
4.
$$\bigcap_{n \in \mathbb{N}^*}]0; 1 + 1/n[$$

Exercice 5 (* Rai ©). Soient E un ensemble et $(A, B) \in \mathcal{P}(E)^2$. Montrer $A \cup B = A \cap B \iff A = B$

Exercice 6 (* Rai, Rec ©). Soit $(A, B) \in \mathcal{P}(E)^2$. Démontrer que

$$\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$$

Est-ce que $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$?

Exercice 7 (** Rep, Rec ©). Notons $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$

- 1. Représenter C graphiquement.
- 2. Montrer qu'il n'est pas possible d'écrire $C = A \times B$ avec A et B deux parties de \mathbb{R} .

Exercice 8 ($\star \star \star$ Rai, Rec, Mod). Soit E un ensemble, on suppose que pour tout $n \in \mathbb{N}$, on dispose d'un ensemble E_n tel que $E = \bigcup E_n$ et que $E_n \subset E_{n+1}$. Construire alors, pour tout $n \in \mathbb{N}$, un ensemble F_n tel que $E = \bigcup F_n$ avec les F_n deux à deux disjoints.

Applications

Exercice 9 (* Rai). On pose $f = \cos$ et $g \colon x \mapsto 1/|x|$. Dans chacun des cas suivants, déterminer les ensembles proposés :

1.
$$f(\mathbb{R})$$

4.
$$f^{-1}(\{1\})$$
 7. $g(]0;1[)$

7.
$$q(]0;1[$$

2.
$$f^{-1}(\mathbb{R})$$

5.
$$f^{-1}(]-1;2[)$$
 8. $g^{-1}(]-1;1[)$

8.
$$g^{-1}(]-1;1|$$

3.
$$f(]0; 2\pi[),$$

3.
$$f(]0; 2\pi[),$$
 6. $f^{-1}(f([0; 2\pi])),$ 9. $g^{-1}(]-\infty; 0[)$

$$g^{-1}(]-\infty;0[)$$

Exercice 10 (* Rai, Cal). Pour les fonctions suivantes, étudier l'injectivité/surjectivité/bijectivité, déterminer alors la bijection réciproque :

1.
$$f: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x^2 + 1} \end{cases}$$

5.
$$v: \begin{cases} \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \\ (x,y) \longmapsto (2x+3y-1,x-y) \end{cases}$$

$$2. g: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto x^3 \end{cases}$$

6.
$$w: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R}_+^* \\ x \longmapsto e^{2x} + 2e^x \end{cases}$$

3.
$$h: \begin{cases} \mathbb{C} \longrightarrow \mathbb{C} \\ z \longmapsto z^3 \end{cases}$$

7.
$$z: \begin{cases} [0;2] \longrightarrow [0;2] \\ x \longmapsto \begin{cases} x & \text{si } x < 1 \\ 3 - x & \text{si } x > 1 \end{cases} \end{cases}$$

4.
$$u: \begin{cases} \mathbb{C}^* \longrightarrow \mathbb{C} \\ z \longmapsto z + \frac{1}{z} \end{cases}$$

Exercice 11 (* Rai ©). On pose pour tout $n \in \mathbb{N}$, f(n) = 2n et g(n) = n/2si n est pair et q(n) = (n+1)/2 si n est impair.

- 1. $f: \mathbb{N} \to \mathbb{N}$ et $g: \mathbb{N} \to \mathbb{N}$ sont-elles injectives? surjectives?
- 2. Déterminer $g \circ f$ et $f \circ g$.

Exercice 12 (\star Rai \odot). Soit $f: E \to F$ et $A \subset E$. Vrai ou faux?

- 1. Si f est injective alors $f_{|A}$ est injective.
- 2. Si f est surjective alors $f_{|A}$ est surjective.
- 3. Si $f_{|A}$ est injective, alors f est injective.
- 4. Si $f_{|A}$ est surjective alors f est surjective.

Exercice 13 (* Rai). Montrer que les applications suivantes sont bi-

jectives :
$$f: \begin{cases} \mathbb{N} \longrightarrow \mathbb{N}^* \\ n \longmapsto n+1 \end{cases}$$
, $g: \begin{cases} \mathbb{N} \longrightarrow \mathbb{Z} \\ n \longmapsto \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ \frac{-1-n}{2} & \text{si } n \text{ est impair} \end{cases}$

$$h: \begin{cases} \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \\ (n,p) \longmapsto 2^n (2p+1) - 1 \end{cases}$$

Exercice 14 (** Rai ©). On note $E = \mathbb{R}^{\mathbb{R}}$ et $\Phi \colon \begin{cases} E \longrightarrow E \\ f \longmapsto (x \mapsto f(2x)) \end{cases}$ est bijective et trouver sa bijection réciproque.

Exercice 15 (\star Rai \odot). Soit $f: E \to E$ une application telle que $f \circ f \circ f = \mathrm{Id}_E$. Montrer que f est bijective et déterminer sa bijection réciproque.

Exercice 16 (** Rai \mathbb{O}). Soient E et F deux ensembles et $f: E \to F$.

- 1. Soit $A \in \mathcal{P}(E)$, montrer que $A \subset f^{-1}(f(A))$ mais que l'inclusion réciproque peut être fausse.
- 2. Soit $B \in \mathcal{P}(F)$, montrer que $f(f^{-1}(B)) \subset B$, mais que l'inclusion réciproque peut être fausse.
- 3. Montrer que f est injective ssi pour tout $A \in \mathcal{P}(E)$, $A = f^{-1}(f(A))$.
- 4. Monter que f est surjective ssi pour tout $B \in \mathcal{P}(F)$, $B = f(f^{-1}(B))$.

Exercice 17 (* Rai). Soient E et F deux ensembles et $f: E \to F$.

- 1. Si $(B, B') \in \mathcal{P}(F)^2$, montrer que $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$ et $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$.
- 2. Est-ce que $f(A \cap A') = f(A) \cap f(A')$ et $f(A \cup A') = f(A) \cup f(A')$ pour tout A et A' deux parties de E?

Exercice 18 (* Rai). Soient $f \in \mathcal{F}(E,F)$ et $g \in \mathcal{F}(F,G)$. Montrer que :

- 1. Si $g \circ f$ est injective de E dans G alors f est injective de E dans F.
- 2. Si $g \circ f$ est surjective de E dans G alors g est surjective de F dans G.

Exercice 19 (* Rai). Soit E un ensemble. Pour tout $(A, B) \in \mathscr{P}(E)^2$, on pose $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

- 1. Montrer que $A\Delta B = (A \cup B) \setminus (A \cap B)$
- 2. Montrer que $\mathbb{1}_{A\Delta B} = \mathbb{1}_A + \mathbb{1}_B 2\mathbb{1}_A \times \mathbb{1}_B$.

Exercice 20 (** Rai, Rec). On pose $f(x) = \frac{x}{x+1}$, on pose $f_1 = f$ et pour tout $n \in \mathbb{N}$, $f_{n+1} = f \circ f_n$. Déterminer l'ensemble de définition de f_n ainsi que l'expression de cette fonction.

Exercice 21 (** Rai, Cal ©). Pour $z \neq i$, on pose $f(z) = \frac{z+i}{z-i}$ et $D = \{z \in \mathbb{C} \mid |z| < 1\}$ et $P = \{z \in \mathbb{C} \mid \text{Re}(z) < 0\}$.

1. Montrer que $f(D) \subset P$.

2. Montrer que f est une bijection de D dans P.

Exercice 22 (** Rec ©). Soit $f: E \to E$ telle que $f \circ f = f$. Montrer que si f est injective ou surjective alors $f = \mathrm{Id}_E$.

Exercice 23 (** Rai, Rec ©). Soit $f: E \to E$ et $p \in \mathbb{N}^*$, on note $f^p = f \circ f \circ \ldots \circ f$ (f composée avec elle-même p fois). On suppose que f^p admet un unique point fixe (c'est-à-dire qu'il existe un unique $x \in E$ tel que $f^p(x) = x$). Montrer que f admet un unique point fixe.

Exercice 24 (*** Rec, Rai). Soit E un ensemble et $(A, B) \in \mathcal{P}(E)^2$. On pose $f: \begin{cases} \mathscr{P}(E) \longrightarrow \mathscr{P}(A) \times \mathscr{P}(B) \\ X \longmapsto (X \cap A, X \cap B) \end{cases}$. Déterminer une CNS sur A et B pour que f soit injective et une autre CNS pour que f soit surjective.

Exercice 25 (** Rec \mathbb{O}). Soit $f: E \to F$.

- 1. Montrer que f est injective ssi il existe $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E$.
- 2. Montrer que f est surjective ssi il existe $g: F \to E$ telle que $f \circ g = \mathrm{Id}_F$.

Exercice 26 (*** Rec, Rai). Soit E un ensemble et $f: E \to \mathscr{P}(E)$.

- 1. Notons $Y = \{x \in E \mid x \notin f(x)\}$. Montrer que $Y \notin f(E)$.
- 2. Une application $f: E \to \mathcal{P}(E)$ peut-elle être surjective/bijective?
- 3. Donner un exemple de fonction $f: E \to \mathscr{P}(E)$ injective.

Exercice 27 (* * ** Rec, Rai). Soient E et F deux ensembles, et deux injections $i: E \to F$, $j: E \to F$. Le but est de montrer qu'il existe $\varphi: E \to F$ bijective (théorème de Cantor-Bernstein). On pose $A_0 = E \setminus j(F)$ et pour tout $n \in \mathbb{N}$, $A_{n+1} = (j \circ i)(A_n)$, $B = \bigcup_{n \in \mathbb{N}} A_n$ et $C = E \setminus B$.

1. Montrer que, pour tout $x \in C$, il existe un unique $z \in F$ tel que x = j(z).

On pose alors $\varphi(x)=z$ pour $x\in C$, sinon on pose $\varphi(x)=i(x)$. Ainsi, $\varphi\colon E\to F$.

- 2. Montrer que $\varphi_{|B}$ et $\varphi_{|C}$ sont injectives.
- 3. Soit $x \in C$ et $y \in B$ tels que $\varphi(x) = \varphi(y)$. Démontrer que $x = (j \circ i)(y)$.
- 4. Montrer que φ est bijective.