Exemples d'applications linéaires

Exercice 1 (* YT). Les applications suivantes sont-elles linéaires?

1.
$$f: \begin{cases} \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ P(X) \longmapsto P(X) + 1 \end{cases}$$
 2. $g: \begin{cases} \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}) \\ M \longmapsto M^2 \end{cases}$ 3. $h: \begin{cases} \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \\ (x,y) \longmapsto (x,xy) \end{cases}$

Exercice 2 (\star Cou, Cal \odot). On considère dans \mathbb{R}^2 les trois vecteurs u = (1,1), v = (2,-1) et w = (1,4).

- 1. Démontrer que (u, v) est une base de \mathbb{R}^2 .
- 2. Pour quelle(s) valeur(s) du réel a existe-t-il une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(u) = (2,1), f(v) = (1,-1) et f(w) = (5,a)?

Exercice 3 (* Cal ©). Soit
$$f: \begin{cases} \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \\ (x,y) \longmapsto (x+2y,x-y) \end{cases}$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^2 .
- 2. Soit (e_1, e_2) la base canonique de \mathbb{R}^2 . Montrer que $(f(e_1), f(e_2))$ est libre.
- 3. Montrer que $(f(e_1), f(e_2))$ est une base de Im(f).

5. Montrer que
$$(f(e_1), f(e_2))$$
 est une base de $\operatorname{Im}(f)$.

Exercice 4 (* Cal ©). Soient $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}), \quad \Psi \colon \begin{cases} E \longrightarrow E \\ (u_n)_{n \in \mathbb{N}} \longmapsto (u_{n+1})_{n \in \mathbb{N}} \end{cases}$ et $\Phi \colon \begin{cases} E \longrightarrow E \\ (u_n)_{n \in \mathbb{N}} \longmapsto (0, u_0, u_1, u_2, \ldots) \end{cases}$

$$f_d \colon \begin{cases} \mathscr{M}_2(\mathbb{R}) \longrightarrow \mathscr{M}_2(\mathbb{R}) \\ M \longmapsto AM \end{cases} \quad \text{et } f_g \colon \begin{cases} \mathscr{M}_2(\mathbb{R}) \longrightarrow \mathscr{M}_2(\mathbb{R}) \\ M \longmapsto MA \end{cases}$$
1. Montrer que Φ et Ψ sont des endomorphismes de E suivants (appelé les tapis roulants).

- 1. Montrer que f_d et f_a sont des endomorphismes de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer $Ker(f_d)$ et $Ker(f_a)$.
- 3. Déterminer $\operatorname{Im}(f_d)$ et $\operatorname{Im}(f_a)$.

Exercice 5 (* Rai ©). Soit
$$\Phi$$
:
$$\begin{cases} \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \longrightarrow \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\ f \longmapsto f'' - 2f' + f \end{cases}$$

- 1. Montrer que Φ est un endomorphisme de $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$.
- 2. Déterminer son novau.

Exercice 6 (* Cou, YT). Montrer qu'il existe une unique application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ telle que f(1,0,0) = (0,1), f(1,1,0) = (1,0) et f(1,1,1) = (1,1). Déterminer f(x,y,z), Ker(f) et Im(f).

Exercice 7 (
$$f \star \star \operatorname{Rai} \odot$$
). Soit $\Delta : \begin{cases} \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X] \\ P \longmapsto P(X+1) - P(X) \end{cases}$.

- 1. Montrer que Δ est un endomorphisme.
- 2. Trouver $Ker(\Delta)$
- 3. Trouver $\operatorname{Im}(\Delta)$
- 4. Est-ce que $\operatorname{Ker}(\Delta)$ et $\operatorname{Im}(\Delta)$ sont supplémentaires dans $\mathbb{R}_n[X]$?

Exercice 8 (\star Cal). Soit $f:(x,y)\mapsto(x+y,x-y)$, montrer que f est un automorphisme de \mathbb{R}^2 et déterminer f^{-1} .

Exercice 9 (* Cou, Cal, Rai ©). Soit p l'application de \mathbb{R}^3 dans \mathbb{R}^3 qui a tout vecteur u = (x, y, z) associe le vecteur p(u) = (2x + y + 2z, y, -x - z)(y-z). Soit (e_1,e_2,e_3) la base canonique de \mathbb{R}^3 .

- 1. Montrer que p est un endomorphisme de \mathbb{R}^3 .
- 2. Calculer $p(e_1)$, $p(e_2)$ et $p(e_3)$.
- 3. Calculer $p^2(e_1)$, $p^2(e_2)$ et $p^3(e_3)$, que peut-on en déduire sur p?
- 4. Que vaut rg(p)?

Exercice 10 (** Rai). Soit $E = \mathbb{R}^{\mathbb{N}}$, posons

$$\Psi \colon \begin{cases} E \longrightarrow E \\ (u_n)_{n \in \mathbb{N}} \longmapsto (u_{n+1})_{n \in \mathbb{N}} \end{cases} \text{ et } \Phi \colon \begin{cases} E \longrightarrow E \\ (u_n)_{n \in \mathbb{N}} \longmapsto (0, u_0, u_1, u_2, \dots) \end{cases}$$

- 1. Montrer que Φ et Ψ sont des endomorphismes de E suivants (appelés
- 2. Vérifier que $\Psi \circ \Phi = \mathrm{Id}_E$, alors que $\Phi \circ \Psi \neq \mathrm{Id}_E$.
- 3. Ψ est-elle injective? surjective? même question pour Φ .

Exercice 11 (* Cal ©). Soit F = vect((1,1,2),(1,1,3)) et G = (1,1,2,1,3) $\operatorname{vect}((1,0,0))$, montrer que $\mathbb{R}^3 = F \oplus G$ puis donner la projection de F parallèlement à G puis la symétrie de F parallèlement à G.

Exercice 12 (* Rai, YT). Soit (a_0, a_1, \ldots, a_n) des réels deux à deux distincts. Montrer que Φ : $\begin{cases} \mathbb{R}_n[X] \longrightarrow \mathbb{R}^{n+1} \\ P \longmapsto (P(a_0), P(a_1), \dots, P(a_n)) \end{cases}$ est un isomorphisme.

** Retrouver l'isomorphisme réciproque.

Exercice 13 (* Rai). Soit $(a_1, a_2, ..., a_n)$ des réels deux à deux distincts. Montrer qu $\Phi : \begin{cases} \mathbb{R}_{2n-1}[X] \longrightarrow \mathbb{R}^{2n} \\ P \longmapsto (P(a_1), P'(a_1), P(a_2), P'(a_2), ..., P(a_n), P'(a_n)) \end{cases}$ est un isomorphisme.

Exercice 14 (* Rai YT). Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E par u(P) = P + (1 - X)P'.

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer une base de Im(u).
- 3. Que vaut rg(u)?
- 4. Déterminer une base de Ker(u).
- 5. Montrer que Ker(u) et Im(u) sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 15 (* * * Mod, Rec, Rai). Soit $n \in \mathbb{N}^*$, montrer que pour tout $P \in \mathbb{R}_n[X]$ il existe un unique $Q \in \mathbb{R}_n[X]$ tel que $P = \sum_{k=0}^n Q^{(k)}$.

Résultats théoriques

Exercice 16 (* Rai ©). Soient E,F et G trois \mathbb{K} -espaces vectoriels, et soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Démontrer que $g \circ f = 0 \iff \operatorname{Im}(f) \subset \operatorname{Ker}(g)$.

Exercice 17 (* Rai ©). Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$, montrer que $\operatorname{Ker}(f)$ et $\operatorname{Ker}(f - \operatorname{Id}_E)$ sont en somme directe.

Exercice 18 ($f \star \star$ Rai ©). Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que, pour tout $x \in E$, la famille (x, f(x)) est liée.

- 1. Démontrer que pour tout $x \in E$ non nul, il existe un unique scalaire λ_x tel que $f(x) = \lambda_x x$
- 2. Comparer λ_x et λ_y lorsque (x,y) est liée.
- 3. Comparer λ_x et λ_y lorsque (x, y) est libre (on pourra considérer x+y).
- 4. En déduire que f est une homothétie.
- 5. La réciproque est-elle vraie?

 $(a_1, a_2, ..., a_n)$ **Exercice 19** ($f \star \star \star$). Soit E un espace vectoriel de dimension finie, on prend f dans le centre de $\mathcal{L}(E)$, c'est-à-dire que $f \in \mathcal{L}(E)$ commute avec tous les endomorphismes de E. On suppose que f n'est pas une homothétie, à l'aide de l'exercice 18, trouver une contradiction. Conclure

Endomorphismes particuliers

Exercice 20 (** Rai ©). Soit E un \mathbb{K} -espace vectoriel, p et q deux projecteurs qui commutent. Montrer que $p \circ q$ est un projecteur. Trouver F et G sous-espaces vectoriels de E tel que $p \circ q$ est la projection sur F parallèlement à G.

Exercice 21 (f * * Rai ©). Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $f \in \mathcal{L}(E)$. On suppose que $f^r = 0_{\mathcal{L}(E)}$ et que $f^{r-1} \neq 0_{\mathcal{L}(E)}$ (on dit que f est nilpotente d'indice f : il existe f est que $f^{r-1}(f) \neq 0$.

- 1. Montrer que $(x, f(x), \dots, f^{r-1}(x))$ est une famille libre de E.
- 2. Comparer r et n.
- 3. Calculer f^n

Exercice 22 (** Rai, YT). Soit $B \in \mathbb{R}[X] \setminus \{0\}$, pour $P \in \mathbb{R}[X]$, on note f(P) le reste de la division euclidienne de P par B. Montrer que f est un projecteur. Sur quel SEV f projette et parallèlement à quel autre SEV?

Exercice 23 (* Rai, Cou). On note $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$, pour $f \in E$, on note $g: x \mapsto f(-x)$, puis on note $s: f \mapsto g$

- 1. Montrer que s est une symétrie.
- 2. s est donc une symétrie par rapport à F parallèlement à G, pour F et G deux SEV qui sont supplémentaires. Déterminer F et G.
- 3. Quel est la projection de exp sur F?

Exercice 24 (* * * Mod, Rec). Soient $a_1 < a_2 < \ldots < a_n$ des réels. On note F l'ensemble f des fonctions continues sur $[a_1; a_n]$ telles que f soit affine sur $[a_i; a_{i+1}]$ pour tout $i \in [1; n-1]$. Montrer que F est de dimension finie et que $\dim(F) = n$.

Noyau, image, rang

Exercice 25 (* Cou). Soit $f \in \mathcal{L}(E)$, montrer que $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$ et que $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$.

Exercice 26 (** Rai ©). Soit E un K-espace vectoriel de dimension finie. Dans les exercices qui suivent, on pourra utiliser librement les notations Soit $(f,g) \in \mathcal{L}(E)^2$, montrer que $\operatorname{rg}(f+g) \leqslant \operatorname{rg}(f) + \operatorname{rg}(g)$ puis que et les résultats de l'exercice 33. $|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f - g).$

Exercice 27 (** Cou, Rai, Rec \odot). Soient E un espace vectoriel et F et G deux sous-espaces vectoriels de E de dimensions finies, appliquer le théorème du rang à $\begin{cases} F\times G\longrightarrow F+G\\ (f,g)\longmapsto f+g \end{cases}.$ Quel résultat du cours venezvous de démontrer ?

Exercice 28 ($f \star \star$ Rai ©). Soit $u \in \mathcal{L}(E)$, E étant un espace vectoriel de dimension 2n. Montrer que les deux assertions suivantes sont équivalentes :

- 1. $u^2 = 0$ et n = rg(u)
- 2. $\operatorname{Im}(u) = \operatorname{Ker}(u)$.

Exercice 29 (** Rai, Cou). Soit $u \in \mathcal{L}(E)$ où E est un EV de dimension finie et F un SEV de E. Montrer que $\dim(u(F)) = \dim(F)$ $\dim(F \cap \operatorname{Ker}(u)).$

Exercice 30 (** Rai, Rec ©). Soit E un \mathbb{K} -EV, $f \in \mathcal{L}(E)$. On suppose que $f^2 - 5f + 6 \text{Id}_E = 0_{\mathcal{L}(E)}$.

- 1. Montrer que $E = \text{Ker}(f 2\text{Id}_E) \oplus \text{Ker}(f 3\text{Id}_E)$.
- 2. Écrire f comme une combinaison linéaire de deux projecteurs.
- 3. En déduire que f est un isomorphisme et trouver son isomorphisme réciproque.

Exercice 31 (* Cou). Si
$$f:$$

$$\begin{cases} \mathbb{R}^4 & \longrightarrow \mathbb{R}^3 \\ (x,y,z,t) & \longmapsto (x-y+z,t-y,x+z-t) \end{cases}$$
, déterminer $\operatorname{rg}(f)$.

Exercice 32 (** Rec, Rai). Trouver un isomorphisme entre $S_n(\mathbb{R})$ (ensemble des matrices symétriques carrées de tailles n) et \mathbb{R}^N pour un certain entier N, en déduire $\dim(S_n(\mathbb{R}))$

Formes linéaires, hyperplan, et trace d'une matrice

Exercice 33 (* Cal). Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$, on définit la trace de la matrice A par $tr(A) = \sum_{k=1}^{n} a_{k,k}$, montrer que tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ et que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

Exercice 34 (\star Cal). Soit F = vect((1,1,1),(1,2,0)), écrire F comme le novau d'une forme linéaire non nul.

Exercice 35 (* Cou \mathbb{O}). Montrer que l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ de trace nulle est un hyperplan en trouver un supplémentaire.

Exercice 36 (* Cal). Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$ montrer que tr(AB) = tr(BA).

Exercice 37 ($\mathscr{S}_{\star\star}$ Rai, Rec). Soit $E = \mathscr{M}_n(\mathbb{K})$, pour $A \in E$, on définit $\varphi_A \colon M \in E \mapsto \operatorname{tr}(AM)$.

- 1. Montrer que $\varphi_A \in \mathcal{L}(E, \mathbb{K})$.
- 2. Montrer que $A \in E \mapsto \varphi_A \in \mathcal{L}(E, \mathbb{K})$ est linéaire et injective.
- 3. Soit $\psi \colon \mathscr{M}_n(\mathbb{K}) \to \mathbb{K}$ une application linéaire, qu'en déduit-on?

Exercice 38 (*** Rec \mathbb{O}). Soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$ telle que pour tous A, $B \in \mathcal{M}_n(\mathbb{K}), \varphi(AB) = \varphi(BA)$. Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que $\varphi = \alpha \operatorname{tr}$.

Exercice 39 ($\star\star$ Rai, Rec). Soit E un espace vectoriel de dimension finie et H un hyperplan, ψ et φ deux formes linéaires telles que $H = \text{Ker}(\psi) =$ $Ker(\varphi)$. Montrer que ψ et φ sont proportionnelles.

Sujet type concours

Exercice 40 (** Rai, Rec). On note

$$F = \left\{ \begin{pmatrix} a+c & b & c \\ b & a+2c & b \\ c & b & a+c \end{pmatrix}, (a,b,c) \in \mathbb{R}^3 \right\}$$

1. Montrer que F est un espace vectoriel de dimension finie.

- 2. On note $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, calculer A^2 et A^3
- 3. Trouver une base de F ainsi que $\dim(F)$.
- 4. On note f l'application qui à $M \in F$ associe AM. Montrer que f est un endomorphisme de F.
- 5. Calculer f^3 .
- 6. Déterminer une base de Ker(f).
- 7. f est-elle bijective? injective? surjective?
- 8. Déterminer une base de Im(f).
- 9. Résoudre l'équation $f(M) = I_3 + A^2$ d'inconnue $M \in F$.
- 10. Résoudre l'équation $f(M) = A + A^2$ d'inconnue $M \in F$.
- 11. Ker(f) et Im(f) sont-ils supplémentaires dans F?
- 12. Si oui donner la projection sur Im(f) parallèlement à Ker(f).

Soit $M \in \mathcal{M}_3(\mathbb{R})$, on définit $\operatorname{Ker}(M) = \{X \in \mathcal{M}_{3,1}(\mathbb{R}), MX = 0_{\mathcal{M}_{3,1}(\mathbb{R})}\}$, comme le noyau $X \mapsto MX \in \mathcal{L}(\mathcal{M}_{3,1}(\mathbb{R}))$

- 13. Trouver une base de Ker(A), de Ker($A \sqrt{2}I_3$) et sde Ker($A + \sqrt{2}I_3$)
- 14. En posant P la matrice dont les colonnes sont exactement constitués des vecteurs appartenant aux bases de $\operatorname{Ker}(A)$, $\operatorname{Ker}(A-\sqrt{2}I_3)$ et $\operatorname{Ker}(A+\sqrt{2}I_3)$. Montrer que P est inversible et calculer $P^{-1}AP$.