Chapitre 19

Probabilités

Table des matières

1	Espaces probabilisés								
	1.1 Univers, évènements								
	1.2 Probabilité	2							
	1.3 Probabilité conditionnelle								
	1.4 Indépendance de deux évènements								
	1.5 Indépendance de n évènements								
2	Loi d'une variable aléatoire	4							
	2.1 Définition et propriétés	4							
	2.2 Lois usuelles	6							
	2.3 Couple de variables aléatoires	7							
	2.4 Généralisation à un <i>n</i> -uplet de variables aléatoires	8							
	2.5 Indépendance de deux variables aléatoires								
	2.6 Indépendance de n variables aléatoires								
3	Espérance et Variance	10							
	3.1 Espérance	10							
	3.2 Variance								
4	Tableau récapitulatif des lois usuelles	16							

1 Espaces probabilisés

1.1 Univers, évènements

Définition: vocabulaire probabiliste

Soit Ω un ensemble fini que l'on appelle **univers**.

- 1. Un sous-ensemble de Ω est appelé évènement.
- 3. Si $\omega \in \Omega$, $\{\omega\}$ est appelé évènement élémentaire.
- 5. L'évènement \emptyset est appelé **évènement impossible**.
- 7. Si $A \cap B = \emptyset$, les évènements A et B sont dits incompatibles.
- 2. L'ensemble de tous les évènements est donc $\mathscr{P}(\Omega)$.
- 4. L'évènement Ω est appelé évènement certain.
- 6. Si A et B sont deux évènements, $A \cup B$ (resp. $A \cap B$) est appelé évènement «A ou B», (resp. «A et B»).
- 8. L'évènement \overline{A} est appelé évènement contraire de A».

Exemples 1. On lance un dé à six faces, qui est Ω? Quelles sont les évènements élémentaires? Quel est l'évènement «le résultat est pair»?

• On lance n fois un dé et on note S_k l'évènement «le dé a fait un six lors du k-ième lancer». Donner Ω , écrire explicitement S_k . Écrire, en fonction de S_k les évènements «on a obtenu un six lors des deux premiers lancers», «on a obtenu un six à chaque lancer», «on n'a jamais obtenu un six», «on a obtenu au moins une fois un six», «on a obtenu au moins deux six d'affilée».

Définition d'un système complet d'événements

Un système complet d'évènements est formé d'évènements $(A_i)_{1 \le i \le p}$ deux à deux incompatibles tels que $\Omega =$

• Si $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$, alors $\{\omega_1\}, \{\omega_2\}, \dots, \{\omega_n\}$ forment un système complet d'évènements.

• Les évènements «la face du dé est pair» et «la face du dé est impair» forment un système complet d'évènements.

1.2Probabilité

Définition d'une probabilité sur un univers fini

Une application $\mathbb{P}: \mathscr{P}(\Omega) \to [0;1]$, telle que $\mathbb{P}(\Omega) = 1$ et pour tout $(A,B) \in \mathscr{P}(\Omega)^2$, si $A \cap B = \emptyset$, alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ est appelée **probabilité** sur Ω . Le couple (Ω, \mathbb{P}) est appelé **espace probabilisé**.

Exemple 3. L'application $\mathbb{P}: A \mapsto |A|/|\Omega|$ est une probabilité sur Ω , appelée probabilité uniforme sur Ω .

Remarque 1. Il faut bien comprendre que ce qui compte, ce n'est pas tant l'ensemble Ω , mais bien la probabilité qu'on attribue aux évènements. Par exemple, si on lance un dé, $\Omega = [1; 6]$, si le dé est équilibré alors \mathbb{P} sera la probabilité uniforme, mais sinon ce sera une autre probabilité.

À partir de maintenant, (Ω, \mathbb{P}) désigne un espace probabilisé.

Proposition nº 1 : propriétés des probabilités

Soit $A, B, A_1, ..., A_n$ des évènements.

$$1. \mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A) \qquad \qquad 2. \mathbb{P}(\emptyset) = 0 \qquad \qquad 3. \mathbb{P}(A \backslash B) = \mathbb{P}(A) - P(A \cap B)$$

$$A \cdot \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
5. Si $B \subset A$ alors $\mathbb{P}(A \setminus B) = \mathbb{P}(A) - \mathbb{P}(B)$ et $\mathbb{P}(B) \leq \mathbb{P}(A)$

Soit
$$A, B, A_1, \ldots, A_n$$
 des evenements.
1. $\mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$ 2. $\mathbb{P}(\emptyset) = 0$ 3. $\mathbb{P}(A \backslash B) = \mathbb{P}(A) - P(A \cap B)$
4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ 5. Si $B \subset A$ alors $\mathbb{P}(A \backslash B) = \mathbb{P}(A) - \mathbb{P}(B)$ et $\mathbb{P}(B) \leq \mathbb{P}(A)$
6. $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mathbb{P}(A_i)$ 7. Si A_1, \ldots, A_n sont 2 à 2 incompatibles, alors $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i)$

Définition d'une distribution de probabilités

Une distribution de probabilité sur $\Omega = \{\omega_1, \dots, \omega_n\}$ est une famille de réels positifs (p_1, \dots, p_n) de somme 1.

Proposition n° 2: une probabilité est entièrement caractérisée par sa distribution de probabilité

Soit une distribution de probabilité (p_1,\ldots,p_n) sur Ω . Il existe une unique probabilité \mathbb{P} telle que $\mathbb{P}(\{\omega_i\})=p_i$ pour tout $i \in [1; n]$

Exemple 4. Considérons un dé et donc $\Omega = [1;6]$, $p_1 = p_2 = p_3 = p_4 = p_5 = 1/12$ et $p_6 = 7/12$, alors il existe une probabilité tel que la probabilité de tirer six soit 7/12 contre 1/12 pour les autres faces.

Probabilité conditionnelle 1.3

Définition d'une probabilité conditionnelle

Soit B un évènement tel que $\mathbb{P}(B) > 0$, on définit la **probabilité conditionnelle** de A sachant B par $\mathbb{P}(A|B) =$ $\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$

Exemple 5. On lance un dé à six faces équilibré, quelle est la probabilité de tirer un nombre pair sachant que l'on a tiré un nombre premier?

Proposition nº 3 : la probabilité conditionnelle est une probabilité

Si $\mathbb{P}(B) > 0$, alors \mathbb{P}_B est une probabilité.

Remarque 2. Si $\mathbb{P}(B) > 0$, alors on a toujours $\mathbb{P}(B)\mathbb{P}(A|B) = \mathbb{P}(A \cap B)$. Si $\mathbb{P}(B) = 0$, on pose, par convention, $\mathbb{P}(A|B) = 0$, ainsi la relation $\mathbb{P}(B)\mathbb{P}(A|B) = \mathbb{P}(A \cap B)$ reste vraie.

Théorème nº 1 : formule des probabilités totales

Soit (Ω, \mathbb{P}) un espace probabilisé, (A_1, A_2, \dots, A_n) un système complet d'évènements. Pour tout $B \in \mathscr{P}(\Omega)$:

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Exemple 6. On tire deux boules successivement et sans remise d'une urne contenant x boules rouges et y boules bleues avec $x \ge 1$ et $y \ge 1$. Quelle est la probabilité que la deuxième boule soit bleue?

Théorème n° 2 : formules des probabilités composées

Soient (Ω, \mathbb{P}) un espace probabilisé et une famille d'évènements (A_1, A_2, \dots, A_n) alors :

$$\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}_{A_1}(A_2)\mathbb{P}_{A_1 \cap A_2}(A_3)\dots\mathbb{P}_{A_1 \cap A_2 \cap \ldots \cap A_{n-1}}(A_n) = \mathbb{P}(A_1)\prod_{k=1}^{n-1}\mathbb{P}_{\bigcap_{i=1}^{k}A_i}(A_{k+1})$$

Exemple 7. On tire successivement et sans remise trois billes d'une urne contenant $x \ge 2$ billes rouges et $y \ge 1$ bleues. Quelle est la probabilité que les deux premières soient rouges mais pas la dernière?

Théorème n° 3 : formule de Bayes

Soit B un évènement tel que $\mathbb{P}(B) > 0$, alors

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A)\mathbb{P}_A(B)}{\mathbb{P}(B)}$$

Exemple 8. Considérons une maladie telle que la probabilité qu'une personne soit atteinte soit de 1/1000 et que l'on ait un test pour savoir si un patient est infecté :

- Si le patient est malade, le résultat sera positif avec une probabilité de 99/100.
- Si un patient est sain, le résultat sera négatif avec une probabilité de 95/100 .

Supposons que le test d'un patient soit positif, quelle est la probabilité qu'il soit vraiment malade?

1.4 Indépendance de deux évènements

Définition de l'indépendance de deux évènements

On dit que deux évènements A et B sont **indépendants** si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Remarque 3. Lorsque $\mathbb{P}(B) > 0$, alors A et B sont indépendants ssi $\mathbb{P}(A|B) = \mathbb{P}(A)$. Ainsi, la probabilité d'obtenir A est la même si on sait que B est réalisé.

Proposition n° 4 : indépendance des évènements complémentaires

Si A et B sont indépendants, alors A et \overline{B} le sont aussi, de même pour \overline{A} et B, de même \overline{A} et \overline{B} .

1.5 Indépendance de n évènements

Définition de l'indépendance de n évènements

On dit que les évènements A_1, A_2, \dots, A_n sont **indépendants** si

$$\forall J \subset \llbracket 1 \, ; n
bracket \qquad \mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}(A_j)$$

Exemple 9. Si n=2 ou n=3 quelle(s) vérification(s) faut-il faire pour démontrer que les évènements sont indépendants? **Remarque 4.** Si les événements A_1, A_2, \ldots, A_n sont indépendants, alors toute sous-famille l'est aussi.

Péril imminent l'indépendance de n évènements n'est pas l'indépendance deux à deux

Il est possible que A_1 et A_2 soient indépendants, de même entre A_2 et A_3 de même qu'entre A_1 et A_3 sans que A_1 , A_2 et A_3 soient indépendants.

Exemple 10. Soit $\Omega = [0;3]$ muni de sa probabilité uniforme, on note $A_1 = \{0,1\}$, $A_2 = \{1,2\}$ et $A_3 = \{0,2\}$, montrer que A_1 et A_2 sont indépendants, de même A_1 et A_3 puis A_2 et A_3 mais que A_1 , A_2 et A_3 ne sont pas indépendants.

Proposition nº 5 : indépendance des évènements complémentaires

Si A_1, A_2, \ldots, A_n sont des évènements indépendants et $B_i \in \{A_i, \overline{A_i}\}$, alors B_1, B_2, \ldots, B_n sont indépendants.

Exemple 11. Soit un entier $n \ge 7$. On lance n fois une pièce dont la probabilité de faire pile est $p \in]0;1[$. On note A_k l'évènement «on a obtenu un pile lors du k-ième lancer» et on suppose que les A_1, \ldots, A_n sont indépendants. Quelle est la probabilité d'obtenir un pile lors des trois premiers lancers puis quatre faces lors des quatre lancers suivants?

2 Loi d'une variable aléatoire

2.1 Définition et propriétés

Définition d'une variable aléatoire

Une application $X : \begin{cases} \Omega \longrightarrow E \\ \omega \longmapsto X(\omega) \end{cases}$ où E est un ensemble est appelée **variable aléatoire** sur Ω à valeurs dans E

Remarque 5. On remarque malicieusement qu'une variable aléatoire n'a rien d'aléatoire et n'a rien d'une variable...

1. On lance deux dés et on note X_1 : somme des résultats obtenus.

- 2. On lance n dés et on note X_2 : nombre de 6 obtenus.
- 3. On tire au hasard simultanément 3 boules d'une urne qui contient 3 boules blanches et 3 rouges et on note X_3 : nombre de boules rouges.

À partir de maintenant $X: \Omega \to E$ est une variable aléatoire.

🔁 Définition vocabulaire

- 1. $X(\Omega) = \{X(\omega) \mid \omega \in \Omega\}$ est appelé univers image.
- 2. Soit $B \subset E$, on note l'évènement $(X \in B) = \{X \in B\} = X^{-1}(B) = \{\omega \in \Omega, \ X(\omega) \in B\}.$
- 3. Pour $x \in E$, on note l'évènement $(X = x) = X^{-1}(\{x\}) = \{\omega \in \Omega, \ X(\omega) = x\}.$
- 4. Si $E = \mathbb{R}$, on note l'évènement $(X < x) = X^{-1}(] \infty; x[) = \{\omega \in \Omega, X(\omega) < x\}$, idem pour $(X \ge x)$ etc.

Exemple 13. Déterminer l'univers image des VA de l'exemple 12 puis déterminer les évènements $(X_1 = 7)$ et $(X_2 = 0)$.

Proposition n° 6 : système complet d'événements associé à une variable aléatoire

Soit une VA $X: \Omega \to E = \{e_1, \dots, e_n\}$, alors $(X = e_1), \dots, (X = e_n)$ forment un SCE appelé **SCE des valeurs possibles** de X. En particulier, $\sum_{i=1}^n \mathbb{P}(X = e_i) = 1 \qquad \text{pour } A \subset E, \mathbb{P}(X \in A) = \sum_{a \in A} \mathbb{P}(X = a)$ $\mathbb{P}_X: A \mapsto \mathbb{P}(X \in A)$ est une probabilité sur E et est déterminée par $(\mathbb{P}(X = e))_{e \in E}$.

Démonstration de la proposition n° 6 : Notons $E = \{x_1, \ldots, x_p\}$ et posons $A_i = (X = x_i)$, pour $i \in [[1; p]]$. Fixons Consideration of the proposed of the following formula of the followin

on a bien $\Omega = \bigcup_{i=1}^{r} A_i$. Comme les intersections deux à deux sont disjointes, on a bien un SCE.

Ainsi, $\sum_{i=1}^{p} \mathbb{P}((X=x_i)) = \sum_{i=1}^{p} \mathbb{P}(A_i) = 1$. Et d'après la formule des probabilités totales,

$$\mathbb{P}(X \in B) = \sum_{i=1}^{p} \mathbb{P}((X \in B) \cap (X = x_i))$$

Calculons $(X \in B) \cap (X = x_i)$.

- Si $x_i \notin B$, alors prenons $\omega \in (X \in B) \cap (X = x_i)$, ainsi $X(\omega) \in B$ et $X(\omega) = x_i \notin B$, ce qui est impossible, donc $(X \in B) \cap (X = x_i) = \emptyset$, ainsi $\mathbb{P}((X \in B) \cap (X = x_i)) = 0$.
- Si $x_i \in B$, alors $(X = x_i) \subset (X \in B)$, dès lors, $(X \in B) \cap (X = x_i) = (X = x_i)$. Ainsi, $\mathbb{P}((X \in B) \cap (X = x_i)) = \mathbb{P}((X = x_i))$.

Ainsi
$$\mathbb{P}(X \in B) = \sum_{i=1}^{p} \mathbb{P}((X \in B) \cap (X = x_i)) = \sum_{x_i \in B} \mathbb{P}(X = x_i).$$

Définition de la loi de probabilité

Soit X une variable aléatoire de (Ω, \mathbb{P}) à valeurs dans E. La loi de X est la famille $(\mathbb{P}(X=x)))_{x \in E}$.

Remarque 6. Trouver la loi de probabilité de X revient à déterminer $X(\Omega)$ puis la valeur de $\mathbb{P}(X=x)$ pour tout $x \in X(\Omega)$.

Exemple 14. Déterminer la loi de probabilité de la variable aléatoire X_1 de l'exemple 12.

Remarque 7. Soit (p_1, \ldots, p_n) une distribution de probabilités sur $E = \{e_1, \ldots, e_n\}$, il existe une variable aléatoire X définie sur un certain espace probabilisé (Ω, \mathbb{P}) et à valeurs dans E telle que, pour tout $i \in [1, n]$, $\mathbb{P}(X = e_i) = p_i$.

Exemple 15. Ainsi, il existe une variable aléatoire réelle X sur Ω tel que $\mathbb{P}(X=0)=1/2, \mathbb{P}(X=1)=1/4$ et $\mathbb{P}(X=2)=1/4$ sans avoir à définir X ou Ω . D'ailleurs, souvent, cela ne nous importera peu.

Définition de deux variables aléatoires de même loi

Si $X(\Omega) = Y(\Omega)$ et que pour tout $x \in X(\Omega)$, $\mathbb{P}(X = x) = \mathbb{P}(Y = y)$, alors on dit que X et Y ont la **même loi** et on note $X \sim Y$

Exemple 16. Soit X une variable aléatoire telle que $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1/2$ (on dit que X est une VA de Rademacher), quelle est la loi de Y = -X?

Attention : avoir la même loi ne veut pas dire être égales

Si $X \sim Y$, cela ne signifie pas que X = Y

Définition de l'image d'une variable aléatoire

Soit $f: E \to F$. Alors $f \circ X$, est une nouvelle VA, notée f(X) et appelée variable aléatoire image.

Proposition n° 7 : probabilité de l'image d'une variable aléatoire

Soient X une variable sur (Ω, \mathbb{P}) à valeurs dans E et $f: E \to F$ et $Y = f \circ X = f(X)$ alors : $Y(\Omega) = f(X(\Omega))$ et

$$\forall y \in Y(\Omega)$$
 $\mathbb{P}(Y = y) = \sum_{x \in f^{-1}(\{y\})} \mathbb{P}(X = x)$

Démonstration de la proposition n° 7 : Notons $X(\Omega) = \{x_1, \dots, x_p\}$. Soit $y \in \mathbb{R}$. Alors,

$$y \in Y(\Omega) \iff \exists \omega \in \Omega \qquad y = Y(\omega) = f(X(\omega))$$

$$\iff \exists \omega \in \Omega \quad \exists i \in [1; p] \quad X(\omega) = x_i \quad y = f(x_i)$$

$$\iff \exists i \in [1; p] \quad y = f(x_i) \iff y \in \{f(x_1), \dots, f(x_p)\}$$

Dès lors, $Y(\Omega) = \{f(x_1), \dots, f(x_p)\}$. Soit $y \in \Omega$, d'après la formule des probabilités totales :

$$\mathbb{P}(Y = y) = \sum_{i=1}^{p} \mathbb{P}((Y = y) \cap (X = x_i)) = \sum_{i=1}^{p} \mathbb{P}((f(X) = y) \cap (X = x_i))$$

Calculons $\mathbb{P}(f(X) = y) \cap (X = x_i)$

- Si $f(x_i) \neq y$. Soit $\omega \in (f(X) = y) \cap (X = x_i)$, alors $X(\omega) = x_i$, et $y = f(X(\omega)) = f(x_i) \neq y$ ce qui est impossible, donc $(f(X) = y) \cap (X = x_i) = \emptyset$. Par conséquent, $\mathbb{P}((f(X) = y) \cap (X = x_i)) = 0$.
- Si $f(x_i) = y$. Remarquons que $(f(X) = y) \cap (X = x_i)$. Réciproquement, soit $\omega \in (X = x_i)$, alors $X(\omega) = x_i$, et $f(X(\omega)) = f(x_i) = y$, donc $\omega \in (f(X) = y)$. Ainsi, $\omega \in (X = x_i) \cap (f(X) = y)$, on a ainsi montré l'inclusion $(X=x_i)\subset (f(X)=y)\cap (X=x_i)$. Par double inclusion, il vient $(f(X)=y)\cap (X=x_i)=(X=x_i)$, ainsi $\mathbb{P}((f(X)=x_i))\cap (X=x_i)$

$$y) \cap (X = x_i)) = \mathbb{P}(X = x_i).$$
Ainsi, $\mathbb{P}(Y = y) = \sum_{i=1}^{n} \mathbb{P}(X = x_i).$
si $f(x_i) = y$

Exemple 17. On reprend la variable X_3 de l'exemple 12. On associe un gain algébrique à ce tirage nommé G: on gagne 2 euros par boule rouge obtenue et on perd 1 euro par boule non rouge. Définir G en fonction de X_3 et déterminer $G(\Omega)$ ainsi que sa loi. Idem si on considère que le gain estle carré de la différence entre un et nombre de boules rouges.

Remarque 8. Si $X \sim X'$, alors $f(X) \sim f(X')$.

2.2Lois usuelles

Définition de la loi uniforme (modélise le tirage au hasard de façon équitable)

Soit X une VA à valeurs dans un ensemble fini E. On dit que X suit une loi **uniforme** sur E si pour tout $e \in E$, $\mathbb{P}(X=e)=\frac{1}{|E|}$. On note $X \sim \mathcal{U}(E)$.

Exemple 18. Si $X \sim \mathcal{U}(\llbracket 1; n \rrbracket)$, alors $k \in \llbracket 1; n \rrbracket$, $\mathbb{P}(X = k) = \frac{1}{n}$

Définition de la loi de Bernoulli (modélise une expérience à 2 issues)

On dit que X suit la loi de **Bernoulli** de paramètre $p \in [0;1]$ si $\begin{cases} \mathbb{P}(X=1) &= p \\ \mathbb{P}(X=0) &= 1-p \end{cases}$. On note $X \sim \mathcal{B}(p)$.

Définition d'une loi binomiale (compte les succès dans n VA de Bernoulli indépendantes)

Si pour tout $k \in [0; n]$, $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$, on dit que X suit une loi **binomiale** de paramètres $n \in \mathbb{N}^*$ et $p \in [0; 1]$. On note $X \sim \mathcal{B}(n, p)$.

Remarque 9. Si une variable X compte le nombre de succès de n VA de Bernoulli indépendantes et de paramètre p, alors $X \sim \mathcal{B}(n,p)$ où p est la probabilité de succès à chaque expérience (sera démontré plus tard).

Exemple 19. Soit une urne qui contient 10 billes blanches, 3 rouges et 12 noires. On tire au hasard, successivement et avec remise, 7 boules. On note X la VA qui compte le nombre de boules rouges obtenues. Quelle est la loi de X?

2.3 Couple de variables aléatoires

Soient X (resp. Y) une VA définie sur (Ω, \mathbb{P}) à valeurs dans E (resp. F).

Définition de la loi conjointe

Le couple (X,Y) est une variable à aléatoire sur (Ω,\mathbb{P}) à valeurs dans $E\times F$. La **loi conjointe** de X et Y est la loi du couple (X,Y): $\begin{cases} X(\Omega)\times Y(\Omega) \longrightarrow [0\,;1\,]\\ (x,y) \longmapsto \mathbb{P}((X=x)\cap (Y=y)) \end{cases}.$

Remarques 10. • On note $\mathbb{P}(X = x, Y = y) = \mathbb{P}((X = x) \cap (Y = y)).$

• Si p = |E| et q = |F| sont petits, alors on consigne la loi conjointe dans un tableau à p lignes et q colonnes.

Exemple 20. On lance deux dés équilibrés et de façon indépendante et on note X le plus grand nombre obtenu et Y le plus petit, donner la loi conjointe de (X,Y).

Attention à l'univers image

Ce n'est pas parce que x est une issue de X et que y est une issue de Y que (x,y) est une issue de (X,Y): $(X,Y)(\Omega) \subset X(\Omega) \times Y(\Omega)$ mais il n'y a pas forcément égalité.

Définition de la loi marginale

On appelle première loi marginale de (X,Y) la loi de X, seconde loi marginale de (X,Y) la loi de Y.

Proposition nº 8 : calcul des lois marginales en fonction de la loi conjointe

Soit (X,Y) un couple de VA, alors la loi marginale de X est donnée par (idem pour Y):

$$\forall x \in X(\Omega) \quad \mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}((X = x) \cap (Y = y))$$

Remarque 11. Étant donnée la loi conjointe, on peut calculer les lois marginales, par contre, les lois marginales seules ne suffisent pas à retrouver la loi conjointe.

Exemples 21. • Calculer la loi marginale de X dans l'exemple 20.

• Donner deux exemples de variables aléatoires (X, Y) tels que les lois marginales soient des lois uniformes sur $\{0; 1\}$ tels que les deux couples n'aient pas la même loi.

\mathbb{C} Définition loi conditionnelle de X sachant un évènement A

Soit X une variable aléatoire sur (Ω, \mathbb{P}) à valeurs dans E et A un évènement de Ω tel que $\mathbb{P}(A) > 0$. On appelle **loi conditionnelle** de X sachant que A l'application $x \mapsto \mathbb{P}(X = x | A) = \frac{\mathbb{P}((X = x) \cap A)}{\mathbb{P}(A)}$ définie sur E et à valeurs dans [0:1].

Exemple 22. En conservant l'exemple 20, calculer la loi de X sachant l'évènement (Y = 3).

2.4 Généralisation à un *n*-uplet de variables aléatoires

Définition de la loi d'un n-uplet

Soit $X=(X_1,X_2,\ldots,X_n)$ un n-uplet de VA, on appelle **loi conjointe** de (X_1,X_2,\ldots,X_n) la loi de X:

$$(x_1, x_2, \dots, x_n) \mapsto \mathbb{P}(X = (x_1, x_2, \dots, x_n)) = \mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

La loi de X_i est appelé *i*-ième loi marginale.

Remarque 12. Si $X = (X_1, X_2, \dots, X_n)$ est un n-uplet de VA, alors la i-ième marginale de X est :

$$\mathbb{P}(X_i = x_i) = \sum_{(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)} \mathbb{P}((X_1, \dots, X_n) = (x_1, \dots, x_n))$$

2.5 Indépendance de deux variables aléatoires

Définition de l'indépendance de 2 variables aléatoires

On dit que deux VA, définies sur Ω , X et Y sont **indépendantes** (noté $X \perp\!\!\!\perp Y$) si :

$$\forall A \subset X(\Omega) \quad \forall B \subset Y(\Omega) \qquad \mathbb{P}((X \in A) \cap (Y \in B)) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Proposition n° 9 : équivalence de l'indépendance

$$X \perp\!\!\!\perp Y \qquad \Longleftrightarrow \qquad \forall (x,y) \in X(\Omega) \times Y(\Omega) \quad \mathbb{P}((X=x) \cap (Y=y)) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$$

Démonstration de la proposition n° 9 : Supposons que pour tout $(A, B) \in X(\Omega) \times Y(\Omega)$, $(X \in A)$ et $(Y \in B)$ sont indépendants. Alors, pour $(x, y) \in X(\omega) \times Y(\Omega)$, on pose $A = \{x\}$ et $B = \{y\}$, on a alors $(X \in A)$ et $(Y \in B)$ sont indépendants, soit $\mathbb{P}((X \in A) \cap (Y \in B)) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$. D'où

$$\mathbb{P}((X=x) \cap (Y=y)) = \mathbb{P}(X=x)\mathbb{P}(Y=y)$$

Réciproquement, que pour tout $x \in X(\Omega)$ et $y \in Y(\Omega)$, $\mathbb{P}((X \in A) \cap (Y \in B)) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$. Soit $A \subset X(\Omega)$ et $B \subset Y(\Omega)$, alors

$$\mathbb{P}((X \in A) \cap (Y \in B)) = \sum_{(x,y) \in A \times B} \mathbb{P}((X = x) \cap (Y = y))$$

$$= \sum_{x \in A} \sum_{y \in B} \mathbb{P}(X = x) \times \mathbb{P}(Y = y) = \sum_{x \in A} \mathbb{P}(X = x) \sum_{y \in A} \mathbb{P}(Y = y) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

🔷 Proposition nº 10 : indépendance de variables aléatoires images

Si
$$f: X(\Omega) \to E$$
 et $g: Y(\Omega) \to E$, et $X \perp \!\!\!\perp Y$ alors

 $f(X) \perp \!\!\! \perp g(Y)$

Démonstration de la proposition n° 10 : Soit $x \in E$ et $y \in Y$. Alors

$$\mathbb{P}((f(X) = x) \cap (g(Y) = y)) = \mathbb{P}((X \in f^{-1}(\{x\})) \cap (Y \in g^{-1}(\{y\}))) = \mathbb{P}(X \in f^{-1}(\{x\})) \times \mathbb{P}(Y \in g^{-1}(\{y\})) = \mathbb{P}(f(X) = x) \times \mathbb{P}(g(Y) = y)) = \mathbb{P}(f(X) = x) \times \mathbb{P}(g(Y) = y) = \mathbb{P}(f(X) = x) \times \mathbb{P}(g(Y) = y) = \mathbb{P}(f(X) = x) \times \mathbb{P}(g(Y) = y) = \mathbb{P}(g(Y) = y$$

Ainsi, f(X) et g(Y) sont indépendantes.

Exemple 23. Ainsi, si X et Y sont des VA réelles indépendantes, alors $X^2 \perp \!\!\! \perp Y \times \sin(Y^3)$.

2.6 Indépendance de n variables aléatoires

Définition de l'indépendance de n variables aléatoires

On dit que n variables aléatoires X_1, \ldots, X_n sont **indépendantes** si :

$$\forall (A_1, A_2, \dots, A_n) \in \mathscr{P}(X_1(\Omega)) \times \dots \times \mathscr{P}(X_n(\Omega)) \qquad \mathbb{P}\left(\bigcap_{i=1}^n (X_i \in A_i)\right) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$$

Remarque 13. L'indépendance de n variables aléatoires sert à modéliser la répétition d'expériences où les résultats précédents n'ont pas de conséquences sur les expériences à venir. Par exemple, si X_k représente la valeur du dé lors du k-ième lancer, alors il paraît raisonnable de supposer que X_1, X_2, \ldots, X_n sont indépendantes.

Proposition no 11: indépendance de n variables aléatoires.

 X_1, \ldots, X_n sont des variables aléatoires indépendantes si et seulement si :

$$\forall (x_1, x_2, \dots, x_n) \in X_1(\Omega) \times \dots \times X_n(\Omega) \qquad \mathbb{P}\left(\bigcap_{i=1}^n (X_i = x_i)\right) = \prod_{i=1}^n \mathbb{P}(X_i = x_i)$$

Remarque 14. Si X_1, \ldots, X_n sont indépendantes et $i \neq j$ alors X_i et X_j sont indépendantes (indépendance deux à deux). Plus généralement si X_1, \ldots, X_n sont indépendantes, alors toute sous-famille est indépendante.

Péril imminent la réciproque est fausse

Si X, Y et Z sont telles que X et Y sont indépendantes, X et Z aussi et Y et Z également, cela n'implique pas que X, Y et Z sont indépendantes. De même, avec plus de trois variables aléatoires.

Exemple 24. Soit X tel que $\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}$, Y indépendante de X de même loi, on pose Z=XY, alors $X \perp \!\!\!\perp Y, X \perp \!\!\!\!\perp Z$ et $Y \perp \!\!\!\!\perp Z$. Mais, X, Y et Z ne sont pas indépendantes.

Solution de l'exemple 24 : En effet, $Z(\Omega) = \{-1, 1\},\$

$$\mathbb{P}(Z=1) = \mathbb{P}((X=Y=1) \cup (X=Y=-1)) = \mathbb{P}(X=Y=1) + \mathbb{P}(X=Y=-1)$$

$$= \mathbb{P}(X=1)\mathbb{P}(Y=1) + \mathbb{P}(X=-1)\mathbb{P}(Y=-1) = \frac{1}{2}$$

On a également $\mathbb{P}(Z=-1)=1-\mathbb{P}(Z=1)=\frac{1}{2}$. De plus, pour tout $(a,b)\in\{-1,1\}^2$,

$$\mathbb{P}((Z=a)\cap(X=b)) = \mathbb{P}(Y=a/b\cap X=b) = \frac{1}{4} = \mathbb{P}(Z=a)\times\mathbb{P}(X=b)$$

Ainsi, X et Z sont indépendants. De même, Y et Z sont indépendants. Cependant

$$\mathbb{P}((X=1) \cap (Y=1) \cap (Z=-1)) = 0 \neq \mathbb{P}(X=1)\mathbb{P}(Y=1)\mathbb{P}(Z=1) = \frac{1}{8}$$

lacktriangle Exemple fondamental : somme de n variables aléatoires de Bernoulli

Soit X_1, \ldots, X_n n VA indépendantes, de même loi : $X_i \sim \mathcal{B}(p)$,

alors $X = X_1 + \ldots + X_n \sim \mathcal{B}(n, p)$

Démonstration de l'exemple fondamental : Tout d'abord, comme $X_i(\Omega) = \{0, 1\}$, on a $X(\Omega) \subset \llbracket 0; n \rrbracket$. Soit $k \in \llbracket 0; n \rrbracket$. Notons $A_k = \{(x_1, x_2, \dots, x_n) \in \{0, 1\}^n, \sum_{i=1}^n x_i = k\}$. Ainsi par union disjointe puis par indépendance puis en utilisant le fait que $\operatorname{Card}(A_k) = \binom{n}{k}$, on a

$$\mathbb{P}(X = k) = \mathbb{P}\left(\bigcup_{(x_1, x_2, \dots, x_n) \in A_k} (X_1 = x_1) \cap (X_2 = x_2) \cap \dots \cap (X_n = x_n)\right) \\
= \sum_{(x_1, x_2, \dots, x_n) \in A_k} \mathbb{P}((X_1 = x_1) \cap (X_2 = x_2) \cap \dots \cap (X_n = x_n)) \\
= \sum_{(x_1, x_2, \dots, x_n) \in A_k} \mathbb{P}(X_1 = x_1) \times \mathbb{P}(X_2 = x_2) \times \dots \times \mathbb{P}(X_n = x_n) \\
= \sum_{(x_1, x_2, \dots, x_n) \in A_k} p^k (1 - p)^{n - k} = \binom{n}{k} p^k (1 - p)^{n - k}$$

Théorème nº 4 : lemme des coalitions

(admis)

Soit $(X_1, X_2, ..., X_n)$ une famille de variables aléatoires indépendantes à valeurs dans E, soit $f: E^m \to F$ et $g: E^{n-m} \to F$, alors les variables aléatoires $f(X_1, X_2, ..., X_m)$ et $g(X_{m+1}, X_{m+2}, ..., X_n)$ sont indépendantes.

Remarque 15. On peut faire plus de deux coalitions : les variables aléatoires $f(X_1, ..., X_4)$, $g(X_5, ..., X_8)$, $h(X_9, X_{10})$, ..., $m(X_{20}, ..., X_{25})$ sont indépendantes.

Exemple 25. Si X_1, X_2, \ldots, X_7 sont indépendantes, alors $X_1X_2, \exp(X_3) + X_4\sin(X_5), X_6, X_7^8$ sont indépendantes.

3 Espérance et Variance

On cherche à calculer des indicateurs permettant de décrire X une variable aléatoire réelle. On se ne travaillera donc dans cette partie qu'avec des variables aléatoires réelles.

3.1 Espérance

Définition de l'espérance

Pour $X(\Omega) = \{x_1, \dots, x_p\}$, on appelle **espérance** de X: $\mathbb{E}(X) = \sum_{k=1}^p x_k \mathbb{P}(X = x_k) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x)$ On dit que X est **centrée** si $\mathbb{E}(X) = 0$.

Remarques 16. • $\mathbb{E}(X)$ est une moyenne pondérée (par les probabilités) des valeurs prises par X.

• $\mathbb{E}(X)$ ne dépend que de la loi de X, si $X \sim X'$, alors $\mathbb{E}(X) = \mathbb{E}(X')$.

Exemples : espérances usuelles à connaître

- 1. Si $X \sim \mathcal{U}(\llbracket\, 1\,; n\, \rrbracket)$ alors
- $\mathbb{E}(X) = \frac{n+1}{2} \quad \text{2. Si } X \sim \mathscr{B}(p) \text{ alors}$

 $\mathbb{E}(X) = p$

- 3. Si $X \sim \mathcal{B}(n, p)$ alors
- $\mathbb{E}(X) = np$ 4. Si A est un évènement de Ω , alors $\mathbb{E}(\mathbb{1}_A) = \mathbb{P}(A)$

Démonstration des espérances usuelles : Montrons ces résultats :

1. Si $X \sim \mathcal{U}(\llbracket 1; n \rrbracket)$, alors $X(\omega) = \llbracket 1; n \rrbracket$, ainsi

$$\mathbb{E}(X) = \sum_{k=1}^{n} k \mathbb{P}(X = k) = \sum_{k=1}^{n} \frac{k}{n} = \frac{1}{n} \sum_{k=1}^{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

2. Si $X \sim \mathcal{B}(p)$, alors $X(\Omega) = \{0, 1\}$, donc $\mathbb{E}(X) = 0\mathbb{P}(X = 0) + 1\mathbb{P}(X = 1) = p$.

3. Si $X \sim \mathcal{B}(n, p)$, alors $X(\Omega) = [0; n]$, donc

$$\mathbb{E}(X) = \sum_{k=0}^{n} k \mathbb{P}(X = k) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

Or 1 , pour $k \in [[1; n]]$, $k \binom{n}{k} = n \binom{n-1}{k-1}$ On obtient donc

$$\mathbb{E}(X) = \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k (1-p)^{n-k} = \sum_{j=0}^{n-1} n \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j+1} (1-p)^{n-(j+1)} = np \sum_{j=0}^{n-1} \binom{n-1}{j} p^j (1-p)^{(n-1)-j}$$

En reconnaissant la formule du binôme de Newton, on trouve $\mathbb{E}(X) = np(p + (1-p))^{n-1} = np$.

4. $X(\Omega) = \{0, 1\}, \mathbb{E}(X) = 0\mathbb{P}(X = 0) + 1\mathbb{P}(X = 1) = \mathbb{P}(\{\omega \in \Omega, \mathbb{1}(\omega) = 1\}) = \mathbb{P}(A).$

Proposition no 12 : écriture théorique de $\mathbb{E}(X)$

Si
$$\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$$

$$\mathbb{E}(X) = \sum_{i=1}^{m} X(\omega_i) \mathbb{P}(\{\omega_i\}) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$$

Démonstration de la proposition n° 12 : Soit $x \in X(\Omega)$, alors $(X = x) = \bigcup_{\substack{\omega \in \Omega \\ \text{si } X(\omega) = x}} \{\omega\}$ (union d'ensembles deux à deux

disjoints) Ainsi, $\mathbb{P}(X=x)=\sum_{\substack{\omega\in\Omega\\\text{Si }X(\omega)=x}}\mathbb{P}(\{\omega\}).$ Dès lors,

$$\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x) = \sum_{x \in X(\Omega)} x \sum_{\substack{\omega \in \Omega \\ \text{SI } X(\omega) = x}} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$$

Proposition no 13 : propriétés de l'espérance

Soient X et Y deux variables aléatoires et $\lambda \in \mathbb{R}$ alors :

1. Linéarité de l'espérance :

 $\mathbb{E}(\lambda X + Y) = \lambda \mathbb{E}(X) + \mathbb{E}(Y)$

2. Espérance d'une variable aléatoire constante :

II ())

3. Positivité de l'espérance :

si $X \ge 0$ (pour tout $\omega \in \Omega, X(\omega) \ge 0$), alors $\mathbb{E}(X) \ge 0$

- 4. Croissance de l'espérance :
- si $X \leq Y \ (\forall \omega \in \Omega, X(\omega) \leq Y(\omega))$ alors,
- $\mathbb{E}(X) \leqslant \mathbb{E}(Y)$

5. Inégalité triangulaire :

 $|\mathbb{E}(X)| \leq \mathbb{E}(|X|)$

Exemple 26. Si $X \sim \mathcal{B}(n, p)$, alors

 $\mathbb{E}(X) = np$

Théorème n° 5 formule de transfert

Soient X une VA à valeurs dans E et $f \colon E \to \mathbb{R}$ et Y = f(X) alors :

$$\mathbb{E}(Y) = \sum_{x \in X(\Omega)} f(x) \mathbb{P}(X = x)$$

1. Formule du maire : dans une ville de n citoyens, on a un conseil municipal de k personnes dont un maire (avec $k \ge 1$ forcément) Combien y a-t-il de possibilités ? Pour choisir le conseil municipal de k personnes parmi les n citoyens, il y a $\binom{n}{k}$ possibilités. Une fois ce conseil municipal choisi, il y a k choix possibles pour le maire. Cela fait donc $k\binom{n}{k}$. Sinon, on choisit d'abord le maire parmi les n citoyens de la ville, il reste k-1 personnes à choisir pour le conseil municipal parmi les n-1 citoyens restant. Cela fait $\binom{n-1}{k-1}$ possibilités, en multipliant par n, cela fait $n\binom{n-1}{k-1}$, on a donc compter de deux façons différente la même chose, donc $k\binom{n}{k}=n\binom{n-1}{k-1}$.

Démonstration du théorème $n^o 5$: En utilisant l'expression de la loi de Y en fonction de X, on obtient :

$$\mathbb{E}(Y) = \sum_{y \in Y(\Omega)} y \mathbb{P}(Y = y) = \sum_{y \in Y(\Omega)} y \sum_{\substack{x \in X(\Omega) \\ \text{Si } f(x) = y}} \mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \sum_{\substack{x \in X(\Omega) \\ \text{Si } f(x) = y}} f(x) \mathbb{P}(X = x) = \sum_{x \in X(\Omega)} f(x) \mathbb{P}(X = x)$$

Remarque 17. Ce théorème permet de calculer $\mathbb{E}(Y)$ sans connaître la loi de Y mais à partir de la loi de X. On remarque que ce théorème s'applique si X est un couple ou un n-uplet de variables aléatoires.

Exemples 27.

1.
$$\hat{\text{Si}}\ X \sim \mathcal{U}(\llbracket 1; n \rrbracket)$$
 calculer $\mathbb{E}(X^2)$ 2. $\hat{\text{Si}}\ X \sim \mathcal{U}(\llbracket 1; n \rrbracket)$ calculer $\mathbb{E}(3^X)$ 3. $\hat{\text{Si}}\ X \sim \mathcal{B}(n, p)$, calculer $\mathbb{E}(X^2)$

Proposition nº 14 : inégalité de Markov

Soient a > 0 et X une variable aléatoire **positive**. Alors

$$\mathbb{P}(X \geqslant a) \leqslant \frac{\mathbb{E}(X)}{a}$$

Démonstration de la proposition n° 14 : Comme, X est positive $x\mathbb{P}(X=x) \ge 0$ pour $x \in X(\omega)$ et x < a, ainsi :

$$\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x) \geqslant \sum_{\substack{x \in X(\Omega) \\ x \geqslant a}} x \mathbb{P}(X = x) \geqslant \sum_{\substack{x \in X(\omega) \\ x \geqslant a}} a \mathbb{P}(X = x) = a \mathbb{P}(X \geqslant a)$$

Exemple 28. Si dans une classe, la moyenne au DS est 6, alors que peut-on dire de la probabilité d'avoir une note supérieure ou égale à 18?

Proposition nº 15 : espérance du produit de variables aléatoires indépendantes

Soient X et Y deux VA indépendantes alors

Si
$$X_1, X_2 \dots, X_n$$
 sont indépendantes alors

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

$$\mathbb{E}\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} \mathbb{E}(X_i)$$

Démonstration de la proposition n° 15 : En utilisant l'écriture théorique de l'espérance :

$$\mathbb{E}(XY) = \sum_{\omega \in \Omega} (XY)(\omega) \mathbb{P}(\{\omega\}) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} \sum_{\omega \in (X=x) \cap (Y=y)} X(\omega) Y(\omega) \mathbb{P}(\{\omega\})$$

$$= \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy \sum_{\omega \in (X=x) \cap (Y=y)} \mathbb{P}(\{\omega\})$$

$$= \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy \mathbb{P}((X=x) \cap (Y=y))$$

$$= \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$$

$$= \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy \mathbb{P}(X=x) \times \mathbb{P}(Y=y) = \mathbb{E}(X) \mathbb{E}(Y)$$

Péril imminent : la réciproque est fausse

Si $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, ça ne prouve pas forcément que X et Y sont indépendantes.

Exemple 29. $X \sim \mathcal{U}([-1;1])$ et $Y = 1 - X^2$

Solution de l'exemple 29 : En effet, $XY = X(1-X^2) = 0$. Or, $\mathbb{E}(X) = 0$ et $\mathbb{E}(XY) = 0$. De plus,

$$\mathbb{P}((X=0) \cap (Y=0)) = \mathbb{P}((X=0) \cap (X^2=1)) = 0$$

Tandis que $\mathbb{P}(X=0) \times \mathbb{P}(Y=0) = \frac{1}{3} \times \frac{2}{3}$. Ainsi, X et Y ne sont indépendantes mais $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

3.2 Variance

Définition de la variance et de l'écart-type

Soit X une variable aléatoire, on appelle **variance** de X le réel positif On appelle **écart-type** de X le réel positif

$$\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$
$$\sigma(X) = \sqrt{\mathbb{V}(X)}$$

Remarques 18. • La variance mesure la moyenne les carrés des écarts de X par rapport à $\mathbb{E}(X)$.

- Par la formule de transfert, $\mathbb{V}(X) = \sum_{x \in X(\Omega)} (x \mathbb{E}(X))^2 \mathbb{P}(X = x)$.
- La variance ne dépend que de la loi de X : si $X \sim X'$, alors $\mathbb{V}(X) = \mathbb{V}(X')$.

Proposition nº 16: propriétés de la variance

Soit X une variable aléatoire alors :

- 1. $\mathbb{V}(X) \geqslant 0$
- 2. $\forall (a,b) \in \mathbb{R}^2 \quad \mathbb{V}(aX+b) = a^2 \mathbb{V}(X)$

(la variance est quadratique)

3. $\mathbb{V}(X) = 0 \iff \mathbb{P}(X = \mathbb{E}(X)) = 1$

(X est presque sûrement constante)

4. $\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

(formule de König-Huygens)

5. Si $\mathbb{V}(X) > 0$, alors $Y = \frac{X - \mathbb{E}(X)}{\sigma(X)}$ est une variable centrée réduite

$$(\mathbb{E}(Y)=0$$
 et $\mathbb{V}(Y)=1)$

Démonstration de la proposition n° 16 :

- 1. Comme $(X \mathbb{E}(X))^2 \ge 0$ par positivité de l'espérance, $\mathbb{V}(X) \ge 0$.
- 2. $\mathbb{V}(aX + b) = \mathbb{E}((aX + b \mathbb{E}(aX + b))^2) = \mathbb{E}((aX + b a\mathbb{E}(X) b)^2) = \mathbb{E}(a^2(X \mathbb{E}(X))^2) = a^2\mathbb{V}(X)$
- 3. Pour cette démonstration on va séparer les valeurs que peut prendre X entre celles qui ont une probabilité non nulle et celles qui ont une probabilité nulle : notons $B = \{x \in X(\Omega), \mathbb{P}(X = x) = 0\}$ et $C = X(\Omega) \setminus B$, alors $X(\Omega) = B \cup C$ et $B \cap C = \emptyset$, ainsi

$$\mathbb{V}(X) = \sum_{x \in B} (x - \mathbb{E}(X))^2 \underbrace{\mathbb{P}(X = x)}_{=0} + \sum_{x \in C} (x - \mathbb{E}(X))^2 \underbrace{\mathbb{P}(X = x)}_{\neq 0} = \sum_{x \in C} (x - \mathbb{E}(X))^2 \mathbb{P}(X = x)$$

Ainsi, supposons que $\mathbb{V}(X) = \sum_{x \in C} (x - \mathbb{E}(X))^2 \mathbb{P}(X = x) = 0$ alors $x \in C$, $(x - \mathbb{E}(X))^2 \mathbb{P}(X = x) = 0$ (somme nulle de termes positifs) alors pour tout $x \in C$, $x = \mathbb{E}(X)$. Ainsi, $C = \{\mathbb{E}(X)\}$ Or,

$$\mathbb{P}(X \in B) = \sum_{x \in B} \mathbb{P}(X = x) = 0$$

Donc $\mathbb{P}(X \in C) = 1 - \mathbb{P}(X \in B) = 1$, ainsi $\mathbb{P}(X = \mathbb{E}(X)) = 1$. Ainsi, X est quasi-certaine égale à $\mathbb{E}(X)$. Réciproquement, supposons que X est quasi-certaine égale à $\mathbb{E}(X)$. Alors $X(\Omega) = \{\mathbb{E}(X), x_2, \dots, x_p\}$, avec $\mathbb{P}(X = \mathbb{E}(X)) = 1$ et donc $i \in [2; p]$, $\mathbb{P}(X = x_i) = 0$. En réutilisant la formule de transfert,

$$\mathbb{V}(X) = \sum_{x \in X(\Omega)} (x - \mathbb{E}(X))^2 \mathbb{P}(X = x) = (\mathbb{E}(X) - \mathbb{E}(X))^2 \mathbb{P}(X = \mathbb{E}(X)) + 0 = 0$$

4. En utilisant une identité remarquable et la linéarité de l'espérance :

$$V(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}\left(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2\right)$$
$$= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2 = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Exemples de variances des lois usuelles à connaître :

1. Si
$$X \sim \mathcal{U}(\llbracket 1; n \rrbracket)$$
, alors $\mathbb{V}(X) = \frac{n^2 - 1}{12}$ 2. Si $X \sim \mathcal{B}(p)$, alors

3. Si
$$X \sim \mathcal{B}(n, p)$$
, alors $\mathbb{V}(X) = np(1-1)$

 $\mathbb{V}(X) = p(1-p)$

Démonstration des variances usuelles à connaître : En utilisant la formule de transfert pour calculer $\mathbb{E}(X^2)$, on obtient :

1.
$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \sum_{k=1}^n k^2 \frac{1}{n} - \frac{(n+1)^2}{4} = \frac{n(n+1)(2n+1)}{6n} - \frac{(n+1)^2}{4} = \frac{n+1}{12}(4n+2-(3n+3)) = \frac{n^2-1}{12}.$$

- 2. Comme $X^2 = X$, on a $\mathbb{V}(X) = \mathbb{E}(X) \mathbb{E}(X)^2 = p p^2 = p(1-p)$.
- 3. En utilisant $k(k-1)\binom{n}{p} = n(n-1)\binom{n-2}{k-2}$ valable pour $k \in [2; n]$, on obtient :

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X(X-1)) + \mathbb{E}(X) - \mathbb{E}(X)^2 = \sum_{k=0}^n \left(k(k-1) \binom{n}{k} p^k (1-p)^{n-k} \right) + np - (np)^2$$

$$= \sum_{k=2}^n \left(k(k-1) \binom{n}{k} p^k (1-p)^{n-k} \right) + np - (np)^2$$

$$= \sum_{k=2}^n \left(n(n-1) \binom{n-2}{k-2} p^k (1-p)^{n-k} \right) + np - (np)^2$$

$$= n(n-1) p^2 \sum_{j=0}^{n-2} \left(\binom{n-2}{j} p^j (1-p)^{n-2-j} \right) + np - (np)^2$$

$$= n(n-1) p^2 (p+(1-p))^{n-2} + np - n^2 p^2 = n(n-1) p^2 + np - n^2 p^2 = np(1-p)$$

Définition de la covariance de deux variables aléatoires

Soit X et Y deux VA réelles, on définit la **covariance** de X et Y par $cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$ On dit que X et Y sont **décorrélées** si cov(X,Y) = 0.

Proposition n° 17 : formule de la covariance

Si X et Y sont deux VA réelles, alors

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Remarque 19. • $\mathbb{V}(X) = \text{cov}(X, X)$

 \bullet Si X et Y sont indépendantes, alors X et Y sont décorrélées.

Attention la réciproque est fausse

Il est possible d'être décorrélées sans être indépendantes.

Exemple 30. Si $X \sim \mathcal{U}(\{-1,0,1\})$, alors $cov(X,X^2) = 0$ alors que X et X^2 ne sont pas indépendantes.

Proposition nº 18 : variance de la somme de variables aléatoires

1. Soient X et Y deux VA alors

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\operatorname{cov}(X,Y)$$

2. Si X et Y sont décorrélées (ou indépendantes), alors

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$$

3. Soient X_1, \ldots, X_n , n variables aléatoires,

$$\mathbb{V}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{V}(X_i) + 2\sum_{1 \leq i < j \leq n} \operatorname{cov}(X_i, X_j)$$

- 4. Si X_1, \ldots, X_n sont deux à deux décorrélées (ou deux à deux indépendantes), alors $\mathbb{V}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{V}(X_i)$
- 2. Formule du maire et de son adjoint : dans une ville de n citoyens, on veut un conseil municipal de k personnes dont un maire et un adjoint (avec $k \ge 2$ donc). Soit on choisit d'abord le conseil de k personnes, cela fait $\binom{n}{k}$ possibilités, parmi ce groupe, on a k choix pour le maire, à ce maire fixé, il reste k-1 pour son adjoint, soit $k(k-1)\binom{n}{k}$ possibilités. Soit on choisit le maire parmi les n personnes, puis son adjoint parmi les n-1 personnes restantes, cela fait n(n-1) possibilités, il reste à choisir les k-2 personnes pour former le conseil municipal parmi les n-2 citoyens restants, soit $n(n-1)\binom{n-2}{k-2}$ possibilités.

Démonstration de la proposition nº 18:

• En utilisant la formule de Koënig-Huygens, les identités remarquables et la linéarité de l'espérance et ce qui précède, on obtient :

$$\begin{split} \mathbb{V}(X+Y) &= \mathbb{E}((X+Y)^2) - \mathbb{E}(X+Y)^2 \\ &= \mathbb{E}(X^2 + 2XY + Y^2) - (\mathbb{E}(X) + \mathbb{E}(Y))^2 \\ &= \mathbb{E}(X^2) + 2\mathbb{E}(XY) + \mathbb{E}(Y^2) - \mathbb{E}(X)^2 - 2\mathbb{E}(X)\mathbb{E}(Y) - \mathbb{E}(Y)^2 = \mathbb{V}(X) + \mathbb{V}(Y) + 2\text{cov}(X,Y) \end{split}$$

• Posons $X = \sum_{i=1}^{n} X_i$, par linéarité de l'espérance, $\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X_i)$.

$$\mathbb{V}(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^{2}\right) = \mathbb{E}\left(\left(\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mathbb{E}(X_{i})\right)^{2}\right) = \mathbb{E}\left(\left(\sum_{i=1}^{n} (X_{i} - \mathbb{E}(X_{i}))\right)^{2}\right)$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} (X_{i} - \mathbb{E}(X_{i}))(X_{j} - \mathbb{E}(X_{j}))\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left(X_{i}X_{j} - \mathbb{E}(X_{i})X_{j} - X_{i}\mathbb{E}(X_{j}) + \mathbb{E}(X_{i})\mathbb{E}(X_{j})\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}(X_{i}X_{j}) - \mathbb{E}(X_{i})\mathbb{E}(X_{j}) - \mathbb{E}(X_{i})\mathbb{E}(X_{j}) + \mathbb{E}(X_{i})\mathbb{E}(X_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}(X_{i}X_{j}) - \mathbb{E}(X_{i})\mathbb{E}(X_{j})$$

Exemple 31. Si $X \sim \mathcal{B}(n, p)$, alors

 $\mathbb{V}(X) = np(1-p)$

Théorème n° 6 : inégalité de Bienaymé-Tchebychev

Soient X une variable aléatoire et $\varepsilon > 0$, alors

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \varepsilon) \le \frac{\mathbb{V}(X)}{\varepsilon^2}$$

Démonstration du théorème n° 6 : Par croissance des applications $x \mapsto x^2$ et $x \mapsto \sqrt{x}$ sur \mathbb{R}_+ , $(|X - \mathbb{E}(X)| \ge \varepsilon) = (|X - \mathbb{E}(X)|^2 \ge \varepsilon^2)$. Ainsi, par application de l'inégalité de Markov, à la variable aléatoire **positive** $|X - \mathbb{E}(X)|^2$:

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \varepsilon) = \mathbb{P}(|X - \mathbb{E}(X)|^2 \ge \varepsilon^2) \le \frac{1}{\varepsilon^2} \mathbb{E}(|X - \mathbb{E}(X)|^2) = \frac{\mathbb{V}(X)}{\varepsilon^2}$$

Exemple 32. Supposons qu'on ait dé dont la probabilité d'obtention un six est notée p. Pour approximer p, on lance ce dé n fois et on note F la fréquence du six. Pour quelle valeur de n la probabilité pour que F soit une approximation de p à 0.01 près est-elle supérieure à 0.9?

Remarque 20. Sur cet exemple, on a montré que la probabilité d'un évènement est la limite de la fréquence de cet évènement lorsque l'on répète un évènement un «grand» nombre de fois. Cela est conforme à l'intuition, dire qu'un dé est équilibré indique que si on le lance un très grand nombre de fois la fréquence d'une face doit tendre vers 1/6. Cela permet de relier la probabilité à cette notion intuitive ce que l'on avait soigneusement évité jusqu'à présent.

4 Tableau récapitulatif des lois usuelles

Les caractéristiques de ce tableau doivent être absolument connu par cœur pour les quatre premières variables aléatoires. Les deux dernières seront vu en PC/PSI. Ainsi l'année prochaine, vous pourrez réviser toutes les lois usuelles sur ce tableau.

Nom de la loi	Paramètre	Univers image	Loi de probabilité	Espérance	Variance	Interprétation
Constante	$a \in \mathbb{R}$	$\{a\}$	$\mathbb{P}(X=a)=1$	a	0	Constante
Bernoulli	$p \in [0;1]$	$\{0,1\}$	$\mathbb{P}(X=1) = p$	p	p(1 - p)	Succès vs échec
			$\mathbb{P}(X=0) = 1 - p$			
Binomiale	$(p,n) \in [0;1] \times \mathbb{N}^*$	$\llbracket 0; n \rrbracket$	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	Nombre de succès dans n Va de
			$pour k \in \llbracket 0; n \rrbracket$	-		Bernoulli de paramètre p indépendantes
Uniforme	n	$\llbracket 1 ; n \rrbracket$	$\mathbb{P}(X = k) = \frac{1}{n}$ pour $k \in [[1; n]]$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	Tirage équitable
			$ \text{ pour } k \in [\![1]; n]\!] $			
Géométrique	$p \in]0;1[$	N*	$\mathbb{P}(X = k) = p(1 - p)^{k-1}$ pour $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	Donne le premier succès dans une suite de Va indépendantes de Bernoulli de paramètre p
Poisson	$\lambda > 0$	N	$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ pour $k \in \mathbb{N}$	λ	λ	Désintégration radioactive, arrivé dans une file d'attente, évènements rares etc.