Problème: tourner en rond tout en étant rationnel!

1.
$$f\left(\frac{1}{2}\right) = \frac{2 \times \frac{1}{2}}{1 + \left(\frac{1}{2}\right)^2} = \frac{1}{\frac{5}{4}} = \frac{4}{5}$$
. L'image de $\frac{1}{2}$ par f vaut $\frac{4}{5}$.

2. Soit $x \in \mathbb{R}$.

$$f(x) = \frac{1}{2} \iff \frac{2x}{1+x^2} = \frac{1}{2} \iff 2x = \frac{1+x^2}{2} \iff 4x = 1+x^2$$

$$\iff x^2 - 4x + 1 = 0 \iff x = \frac{4+\sqrt{12}}{2} \text{ ou } x = \frac{4-\sqrt{12}}{2}$$

Ainsi, les antécédents de $\frac{1}{2}$ par f sont $2 + \sqrt{3}$ et $2 - \sqrt{3}$.

Remarque 1. Puisque $\frac{1}{2}$ a deux antécédents pour la fonction f, f n'est pas bijective.

3. Soit $x \in \mathbb{R}^*$. Alors,

$$f(x) = \frac{2x}{x^2(1+x^{-2})} = \frac{2}{x(1+x^{-2})}$$

Or, $(1+x^{-2}) \xrightarrow[x \to +\infty]{} 1$, ainsi, par un produit de limites, $x(1+x^{-2}) \xrightarrow[x \to +\infty]{} +\infty$. Par passage à l'inverse, on en déduit que $f(x) \xrightarrow[x \to +\infty]{} 0$

4. Soit $x \in \mathbb{R}$. Par parité de la fonction carrée, $f(-x) = \frac{2(-x)}{1+(-x)^2} = -\frac{2x}{1+x^2} = -f(x)$. Ainsi,

La fonction f est impaire.

- 5. (a) $\forall (x, x') \in \mathbb{R}^2$ $x \leqslant x' \implies f(x) \leqslant f(x')$. (b) $\exists (x, x') \in \mathbb{R}^2$ $x \leqslant x'$ et f(x) > f(x')

 - (c) $\forall (x, x') \in \mathbb{R}^2$ $x \leqslant x' \implies f(x) \geqslant f(x')$. (d) $\exists (x, x') \in \mathbb{R}^2$ $x \leqslant x'$ et f(x) < f(x')
- 6. Posons $x = 1 \in \mathbb{R}$ et $x' = 2 + \sqrt{3} \in \mathbb{R}$, ainsi, $x \leq x'$ et

$$f(x) = f(1) = 1 > \frac{1}{2} = f(2 + \sqrt{3}) = f(x')$$

Par conséquent, on a montré qu'il existe $(x, x') \in \mathbb{R}^2$ tel que $x \leq x'$ et f(x) > f(x').

Donc, La fonction \overline{f} n'est pas croissante sur \mathbb{R} .

Posons $x = 0 \in \mathbb{R}$ et $x' = 1 \in \mathbb{R}$, ainsi, $x \leq x'$ et

$$f(x) = f(0) = 0 < 1 = f(1) = f(x')$$

On a montré qu'il existe $(x, x') \in \mathbb{R}^2$ tel que $x \leq x'$ et f(x) < f(x').

Par conséquent, La fonction f n'est pas décroissante sur \mathbb{R} .

7. La fonction f est dérivable sur \mathbb{R} comme quotient de fonctions dérivables sur \mathbb{R} dont le dénominateur ne s'annule pas sur \mathbb{R} . Ainsi, pour tout $x \in \mathbb{R}$,

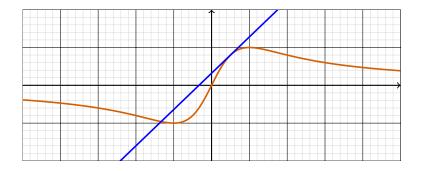
$$f'(x) = \frac{2(1+x^2) - (2x)(2x)}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$$

Remarquons que f'(x) = 0 si et seulement si x = 1 ou x = -1. Ainsi, pour $x \in [-1, 1], 1 - x^2 \ge 0$ et donc $f'(x) \ge 0$, f est strictement croissante sur [-1;1]. Pour $x \ge 1$ ou $x \le -1$, $1-x^2 \le 0$ et donc $f'(x) \leq 0$, f est strictement décroissante sur $[1; +\infty[$ et f est strictement décroissante sur $]-\infty; -1]$.

8. D'après la question précédente,

$$f'\left(\frac{1}{2}\right) = \frac{2\left(1 - \frac{1}{4}\right)}{\left(1 + \frac{1}{4}\right)^2} = \frac{\frac{6}{4}}{\left(\frac{5}{4}\right)^2} = \frac{24}{25}$$

Ainsi, la tangente en $\frac{1}{2}$ de f a pour équation $y = \frac{24}{25}\left(x - \frac{1}{2}\right) + \frac{4}{5} = \frac{24}{25}x + \frac{8}{25}$.



9.

10. On dit que h est bornée sur $\mathbb R$ si

$$\exists (m, M) \in \mathbb{R}^2 \quad \forall x \in \mathbb{R} \qquad m \leqslant h(x) \leqslant M$$

11. Soit $x \in \mathbb{R}$, distinguons les cas :

- Si $x \ge 1$, alors comme f est décroissante sur $[1; +\infty[$, $f(x) \le f(1) = 1$, de plus, $f(x) = \frac{2x}{1+x^2} \ge 0$, ainsi $0 \le f(x) \le 1$.
- Si $-1 \le x \le 1$, f étant croissante sur [-1;1], $f(-1) \le f(x) \le f(1)$, donc $-1 \le f(x) \le 1$
- Si $x \le -1$, alors comme f est décroissante sur $]-\infty;-1]$, $f(x) \ge f(-1)=-1$, de plus, $f(x) \le 0$, donc $-1 \le f(x) \le 0$

Ainsi, dans tous les cas, $-1 \leqslant f(x) \leqslant 1$. Posons m = -1 et M = 1, ainsi, pour tout $x \in \mathbb{R}$, $m \leqslant f(x) \leqslant M$. Par conséquent, on a montré qu'il existe $(m,M) \in \mathbb{R}^2$ tel que pour tout $x \in \mathbb{R}$, $m \leqslant f(x) \leqslant M$. La fonction f est donc bornée sur \mathbb{R} .

Remarque 2. On pouvait aller plus vite, en écrivant ¹ que pour tout $x \in \mathbb{R}$, $(1 - |x|)^2 \ge 0$, et donc $1 - 2|x| + x^2 \ge 0$, ainsi, $2|x| \le 1 + x^2$ dès lors, $|f(x)| \le 1$ et f est ainsi bornée.

12. Présentons deux méthodes :

- Supposons que f soit périodique. Ainsi, il existe T > 0 tel que pour tout $x \in \mathbb{R}$, f(x+T) = f(x). En particulier, pour x = 0, f(T) = f(0) = 0. Dès lors, $\frac{2T}{1+T^2} = 0$, en multipliant par $1+T^2$, on en déduit que T = 0, ce qui est absurde. On a ainsi montré que f n'est pas périodique.
- Supposons que f soit périodique. Ainsi, il existe T > 0 tel que pour tout $x \in \mathbb{R}$, f(x+T) = f(x). En particulier, pour x = 1, f(T+1) = f(1). Comme T > 0, T+1 > 1, or f est strictement décroissante sur $[1; +\infty[$, donc f(T+1) < f(1). Ce qui est une contradiction. On a ainsi montré que f n'est pas périodique.
- 13. La fonction h est bijective si

$$\forall y \in J \quad \exists! x \in I \qquad y = h(x)$$

14. $h(I) = \{h(x) \mid x \in I\}$

15. La fonction g est continue et strictement décroissante sur $[1; +\infty[$, ainsi d'après le théorème de la bijection strictement croissante, g est une bijection de $[1; +\infty[$ vers

$$g([\,1\,;{}_{+}\infty\,[\,)\,=\,\Big]\lim_{x\to+\infty}f(x)\,;f(1)\,\Big]=\,]\,0\,;1\,]$$

^{1.} Méthode vue dans l'exercice 2 du TD2.

- 16. Soit $y \in]0;1]$. Comme $g: [1;+\infty[\rightarrow]0;1]$ est bijective, il existe un unique $x \in [1;+\infty[$ tel que $y=g(x)=\frac{2x}{1+x^2}$, ainsi, $(1+x^2)y=2x$ soit $yx^2-2x+y=0$, comme y>0, x est solution d'une équation du second degré dont le discriminant est $\Delta=4-4y^2$. Distinguons les cas : • Si y=1, alors $\Delta=0$ et $x=\frac{2}{2y}=1$.

 - Si $y \in]0;1[$. Comme 0 < y < 1 et que la fonction carrée est strictement croissante sur \mathbb{R}_+ , $0^2 < y^2 < 1^2$, ainsi, $\Delta > 0$. Dès lors,

$$x = \frac{2 + \sqrt{4 - 4y^2}}{2y} = \frac{1 + \sqrt{1 - y^2}}{y}$$
 ou $x = \frac{2 - \sqrt{4 - 4y^2}}{2} = \frac{1 - \sqrt{1 - y^2}}{y}$

Notons $x_1 = \frac{1 + \sqrt{1 - y^2}}{y}$ et $x_2 = \frac{1 - \sqrt{1 - y^2}}{y}$, comme $\sqrt{1 - y^2} > 0$, $1 + \sqrt{1 - y^2} > 1$, comme $0 < y < 1, \frac{1}{\eta} > 1$ (la fonction inverse est strictement décroissante sur \mathbb{R}_+^*), par produit $x_1 > 1$. De plus, $x_1x_2 = \frac{y}{y} = 1$, donc $x_2 = \frac{1}{x_1} < 1$. Comme x > 1, on en déduit que $x = x_2$ est impossible, dès lors, $x = x_1$.

Remarquons que si y=1, alors l'équation $x=\frac{1+\sqrt{1-y^2}}{y}$ est encore vraie. Dès lors, pour tout $y \in]0;1]$, l'unique $x \in [1;+\infty[$ tel que y = g(x) vérifie $x = \frac{1+\sqrt{1-y^2}}{y}$.

Par conséquent,
$$g^{-1}$$
:
$$\begin{cases}]0;1] \longrightarrow [1;+\infty[\\ y \longmapsto \frac{1+\sqrt{1-y^2}}{y} \end{cases}.$$

Remarque 3. Si on préfère, on peut écrire g^{-1} : $\begin{cases}]0;1] \longrightarrow [1;+\infty[\\ x \longmapsto \frac{1+\sqrt{1-x^2}}{x} \end{cases}$

- 17. $\cos(2\theta) = \cos^2(\theta) \sin^2(\theta)$ et $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$
- 18. L'ensemble de définition de tan est $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$. On peut aussi noter cet ensemble de définition

$$\bigcup_{k\in\mathbb{Z}}\left]-\frac{\pi}{2}+k\pi;\frac{\pi}{2}+k\pi\right[$$

19. tan est dérivable sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$ et

$$\forall x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} \qquad \tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$$

20. En écrivant tan comme $\frac{\sin}{\cos}$ puis en multipliant par \cos^2 et en utilisant la formule de $\cos(2\theta)$ avec $\theta = \frac{x}{2}$, on obtient :

$$\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{1 - \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}}{1 - \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}} = \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)} = \frac{\cos(2\frac{x}{2})}{1} = \cos(x)$$

En écrivant tan comme $\frac{\sin}{\cos}$ puis en multipliant par \cos^2 et en utilisant la formule de $\sin(2\theta)$ avec

 $\theta = \frac{x}{2}$, on obtient :

$$\frac{2\tan\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)} = \frac{2\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}}{1-\frac{\sin^2(\frac{x}{2})}{\cos^2(\frac{x}{2})}} = \frac{2\cos(\frac{x}{2})\sin(\frac{x}{2})}{\cos^2(\frac{x}{2})+\sin^2(\frac{x}{2})} = \frac{\sin(2\frac{x}{2})}{1} = \sin(x)$$

En écrivant que tan $=\frac{\sin}{\cos}$, on obtient :

$$\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{\frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}}{\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}} = \frac{2\tan\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)}$$

21. $\frac{3}{5}$ et $\frac{4}{5}$ sont bien des rationnels. Si on note M le point de coordonnées $\left(\frac{3}{5}, \frac{4}{5}\right)$ et O l'origine du repère,

$$OM^2 = \left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = \frac{9+16}{25} = 1$$

Ainsi, le point de coordonnées $\left(\frac{3}{5}, \frac{4}{5}\right)$ est bien un point birationnel appartenant au cercle trigonométrique.

- 22. Voir démo du cours
- 23. Comme $\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$, on peut en conclure que le point de coordonnées $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ est bien sur le cercle trigonométrique. De plus, si $\frac{1}{\sqrt{2}} \in \mathbb{Q}$, alors il existe p et q deux entiers non nuls $(\operatorname{car} \frac{1}{\sqrt{2}} \neq 0)$ tels que $\frac{1}{\sqrt{2}} = \frac{p}{q}$, donc $\sqrt{2} = \frac{q}{p} \in \mathbb{Q}$ ce qui est impossible. Donc $\frac{1}{\sqrt{2}} \notin \mathbb{Q}$.

 Ainsi, le point de coordonnées $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ est sur le cercle trigonométrique mais n'est pas birationnel.

24. Soit un entier $n \ge 2$, comme tan réalise une bijection de $]-\pi/2;\pi 2[$ vers \mathbb{R} , il existe un unique $t \in]-\pi/2$; $\pi/2$ [tel que $n = \tan(t)$. Notons x = 2t. D'après la question 20,

$$\sin(x) = \frac{2\tan(x/2)}{1+\tan^2(x/2)} = \frac{2n}{1+n^2} = g(n)$$

De même, $\cos(x) = \frac{1 - \tan^2(x/2)}{1 + \tan^2(x/2)} = \frac{1 - n^2}{1 + n^2}$. Ainsi le point de coordonnées

$$(\cos(x), \sin(x)) = (\frac{2n}{1+n^2}, \frac{1-n^2}{1+n^2})$$

est bien un point birationnel du cercle trigonométrique (car $\cos^2(x) + \sin^2(x) = 1$). De plus, g est une bijection de $[1; +\infty[$ vers]0; 1], ainsi si n et m sont deux entiers supérieurs ou égaux à 2 avec $n \neq m$, alors $g(n) \neq g(m)$, autrement dit les points de coordonnées $(\frac{2n}{1+n^2}, \frac{1-n^2}{1+n^2})$ pour $n \in \mathbb{N}^*$, ont tous des ordonnées différentes donc ce sont des points deux à deux distincts et ceux sont des points birationnels du cercle trigonométrique.

Il existe une infinité de points à coordonnées birationnels sur le cercle trigonométrique.

Remarque 4. Comme le point $(\cos(x), \sin(x))$ est sur le cercle trigonométrique, on a

$$\left(\frac{1-n^2}{1+n^2}\right)^2 + \left(\frac{2n}{1+n^2}\right)^2 = 1$$

En multipliant par $(1+n^2)^2$, on obtient, $(1-n^2)^2+(2n)^2=(1+n^2)^2$ (et ce pour tout $n \in \mathbb{N}$) ce qui prouve qu'il existe un nombre infini de triplets Pythagoricien. On a fait le lien ici entre deux choses a priori différentes, les points birationnels du cercle trigonométrique et les triplets d'entiers (a,b,c) vérifiant $c^2=a^2+b^2$.

Exercice: soyez fonctionnels!

- 1. En prenant x = x' = 0, on obtient f(0)f(0) f(0) = 0, ainsi f(0)(f(0) 1) = 0. Par conséquent, f(0) = 0 ou f(0) = 1. Supposons que f(0) = 0, alors pour tout $x \in \mathbb{R}$, $f(x)f(0) f(x \times 0) = x$, pour x = 3, on obtient $f(3) \times 0 0 = 3$ donc 3 = 0 ce qui est absurde. Ainsi, f(0) = 1. Prenons x = 0 et x' = 1, alors $f(0)f(1) f(0 \times 1) = 0 + 1$ donc f(0)f(1) = 1 + f(0). Comme f(0) = 1, on obtient f(1) = 2.
- 2. Raisonnons par analyse-synthèse:
 - Analyse : si f est solution, alors la question précédente montre que f(0) = 1, ainsi pour tout $x \in \mathbb{R}$, $f(x)f(0) f(x \times 0) = x + 0$, soit f(x) = x + f(0) = x + 1. Ainsi, $f: x \mapsto x + 1$.
 - Synthèse: posons $f: x \mapsto x + 1$, alors $f: \mathbb{R} \to \mathbb{R}$. Soit $(x, x') \in \mathbb{R}^2$,

$$f(x)f(x') - f(xx') = (x+1)(x'+1) - (xx'+1) = xx' + x + x' + 1 - xx' - 1 = x + x'$$

Ainsi, f est bien solution de l'équation fonctionnelle.

Par conséquent, la synthèse montre que la fonction $x \mapsto x+1$ est bien solution de l'équation fonctionnelle. L'analyse montre que c'est la seule solution de l'équation fonctionnelle. En conclusion, L'équation fonctionnelle admet une et unique solution et c'est $x \mapsto x+1$.

Exercice : trouver le bon raisonnement pour répondre à la grande question sur la vie, l'univers et le reste

Raisonnons par analyse-synthèse:

• Analyse: supposons qu'il existe g et h deux fonctions telles que f = g + h avec g(0) = g(42) = 0 et $h: x \mapsto a\cos(x) + b\sin(x)$ avec a et b des réels. Alors,

$$f(0) = g(0) + h(0) = 0 + a = a$$

$$f(42) = g(42) + h(42) = a\cos(42) + b\sin(42)$$

Ainsi, $b\sin(42) = f(42) - f(0)\cos(42)$. Supposons que $\sin(42) = 0$, alors il existe $k \in \mathbb{Z}$ tel que $42 = k\pi$, ainsi nécessairement, $k \neq 0$ et $\pi = \frac{42}{k} \in \mathbb{Q}$ ce qui est absurde car π est irrationnel. Par conséquent, $\sin(42) \neq 0$ et $b = \frac{f(42) - f(0)\cos(42)}{\sin(42)}$ Dès lors, $h \colon x \mapsto f(0)\cos(x) + \frac{f(42) - f(0)\cos(42)}{\sin(42)}\sin(x)$. De plus, comme f = g + h, on obtient :

$$g: x \mapsto f(x) - f(0)\cos(x) - \frac{f(42) - f(0)\cos(42)}{\sin(42)}\sin(x)$$

• Synthèse : posons les deux fonctions suivantes définies sur $\mathbb R$ et à valeurs dans $\mathbb R$:

$$g: x \mapsto f(x) - f(0)\cos(x) - \frac{f(42) - f(0)\cos(42)}{\sin(42)}\sin(x)$$
 et
 $h: x \mapsto f(42)\cos(x) + \frac{f(42) - f(0)\cos(42)}{\sin(42)}\sin(x)$

Ainsi, il existe bien $(a, b) \in \mathbb{R}^2$ tel que $h: x \mapsto a\cos(x) + b\sin(x)$. De plus,

$$g(0) = f(0) - f(0) \times 1 + \frac{f(42) - f(0)\cos(42)}{\sin(42)} \times 0 = 0$$

$$g(42) = f(42) - f(0)\cos(42) - \frac{f(42) - f(0)\cos(42)}{\sin(42)}\sin(42) = 0$$

En conclusion, la synthèse montrer qu'il existe g et h deux fonctions définies sur \mathbb{R} telles que g(0) = g(42) = 0 et $h: x \mapsto a\cos(x) + b\sin(x)$ avec $(a,b) \in \mathbb{R}^2$ vérifiant f = g + h. L'analyse nous a permis de montrer que g et h sont uniques.

Exercice: le football se joue à 11 et la fin, c'est l'exponentielle qui gagne ²

On remarque que si n=0, alors il y aura aucune étape de réalisé dans la boucle for i in range(1,n+1), on peut donc faire le code suivant plus court :

```
def Factoriel(n):
    p=1
    for i in range(1,n+1):#i va prendre toutes les valeurs entre 1 et n
        p=p*i
    return p

2. def Somme(n,x):
    S=0
    for k in range(0,n+1):#k va prendre toutes les valeurs entre 0 et n
        S=S+x**k/Factoriel(k)
    return S
```

- 3. Posons, pour $n \in \mathbb{N}$, $\mathscr{P}(n)$: « pour tout $x \ge 0$, $e^x \ge 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}$.».
 - Pour n = 0. Soit $x \in \mathbb{R}_+$, comme exp est croissante et que $x \ge 0$, $e^x \ge e^0 = 1$. Ainsi, $\mathscr{P}(0)$ est vraie.
 - Soit $n \in \mathbb{N}$. Supposons $\mathscr{P}(n)$ vraie. Posons, pour $x \in \mathbb{R}$,

$$f(x) = e^x - \sum_{k=0}^{n+1} \frac{x^k}{k!} = e^x - 1 - x - \frac{x^2}{2} - \frac{x^3}{6} \dots - \frac{x^n}{n!} - \frac{x^{n+1}}{(n+1)!}$$

Remarquons que f est dérivable sur $\mathbb R$ par différence de fonctions dérivables sur $\mathbb R$ et pour tout $x \in \mathbb R$

$$f'(x) = e^x - 0 - 1 - \frac{2x}{2} - \frac{3x^2}{6} - \dots + \frac{nx^{n-1}}{n!} - \frac{(n+1)x^n}{(n+1)!} = e^x - 1 - x - \frac{x^2}{2} - \dots + \frac{x^{n-1}}{(n-1)!} - \frac{x^n}{n!}$$

En utilisant $\mathscr{P}(n)$, il en découle que pour tout x appartenant à l'intervalle \mathbb{R}_+ , $f'(x) \ge 0$ Ainsi, f est croissante sur \mathbb{R}_+ et donc pour tout $x \in \mathbb{R}_+$, $f(x) \ge f(0) = 0$. Ainsi $\mathscr{P}(n+1)$ est vraie.

• Par récurrence, la propriété est vraie pour tout $n \in \mathbb{N}$.

En particulier, $\mathscr{P}(11)$ est vraie, ainsi, pour tout $x \in \mathbb{R}_+$, $e^x \geqslant \sum_{k=0}^{11} \frac{x^k}{k!}$.

^{2.} Histoire de troller la coupe du monde de rugby!