Correction de l'exercice 1. Corrigé sur Youtube : https://youtu.be/a0VugX07Gpk

Correction de l'exercice 2. 1. La famille (u, v) est libre (deux vecteurs non colinéaires). Cette famille a deux vecteurs et \mathbb{R}^2 est de dimension 2, donc (u, v) est une base de \mathbb{R}^2 .

2. Comme une application linéaire est entièrement caractérisée par l'image des vecteurs d'une base, on sait qu'il existe une unique application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ tel que f(u) = (2,1), f(v) = (1,-1). S'il existe une application qui correspond aux exigences de la question forcément c'est ce f-là. Donc tout ce qui nous reste à faire, c'est savoir si f convient. Remarquons que w = 3u - v, donc

$$f(w) = 3f(u) - f(v) = 3(2,1) - (1,-1) = (5,4)$$

Ainsi, si a = 4, il existe bien une application f, sinon il n'en existe pas.

Correction de l'exercice 3. 1. Soient $(x, y) \in \mathbb{R}^2$ et $(x', y') \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$:

$$f(\lambda(x,y) + (x',y')) = f((\lambda x + x', \lambda y + y'))$$

$$= (\lambda x + x' + 2(\lambda y + y'), \lambda x + x' - (\lambda y + y'))$$

$$= (\lambda x + x' + 2\lambda y + 2y', \lambda x + x' - \lambda y - y')$$

$$= \lambda(x + 2y, x - y) + (x' + 2y', x' - y')$$

$$= \lambda f(x,y) + f(x',y')$$

Donc f est un endomorphsime de \mathbb{R}^2 .

- 2. $e_1 = (1,0)$ et $e_2 = (0,1)$, ainsi $f(e_1) = (1,1)$ et $f(e_2) = (2,-1)$. Soit $(a,b) \in \mathbb{R}^2$, supposons a(1,1) + b(2,-1) = (0,0), alors (a+2b,a-b) = (0,0), donc a+2b=0 et a-b=0, par différence 3b=0. Donc b=0, puis a=b=0, ainsi $(f(e_1),f(e_2))$ est libre.
- 3. On a $\operatorname{vect}(f(e_1), f(e_2)) \subset \operatorname{Im}(f)$ (car $\operatorname{Im}(f)$ est un sous-espace vectoriel de \mathbb{R}^2). De plus, $\operatorname{Im}(f) \subset \mathbb{R}^2$, donc

$$\operatorname{vect}(f(e_1), f(e_2)) \subset \operatorname{Im}(f) \subset \mathbb{R}^2$$

Comme la famille $(f(e_1), f(e_2))$ est libre, $\dim(\text{vect}(f(e_1), f(e_2))) = 2 = \dim(\mathbb{R}^2)$, ainsi $\text{vect}(f(e_1), f(e_2)) = \mathbb{R}^2$, ainsi

$$\operatorname{vect}(f(e_1), f(e_2)) \subset \operatorname{Im}(f) \subset \operatorname{vect}(f(e_1), f(e_2))$$

Dès lors $\text{Im}(f) = \text{vect}(f(e_1), f(e_2))$. Comme $(f(e_1), f(e_2))$ est libre, on en déduit que $(f(e_1), f(e_2))$ est une base de Im(f).

Correction de l'exercice 4. 1. Soit $(M, M') \in \mathcal{M}_2(\mathbb{R})^2$ et $\lambda \in \mathbb{R}$, alors, par distributivité,

$$f_d(M + \lambda M') = A(M + \lambda M') = AM + \lambda AM' = f_d(M) + \lambda f_d(M')$$

De même

$$f_q(M + \lambda M') = (M + \lambda M')A = MA + \lambda M'A = f_q(M) + \lambda f_q(M')$$

Donc f_g et f_d sont bien des endomorphismes de $\mathcal{M}_2(\mathbb{R})$.

2. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors :

$$M \in \operatorname{Ker}(f_d) \iff f_d(M) = 0 \iff AM = 0$$

$$\iff \begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\iff a+c=b+d=0 \iff c=-a \text{ et } d=-b$$

$$\iff M = \begin{pmatrix} a & b \\ -a & -b \end{pmatrix} \iff M=a\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} + b\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

$$\iff M \in \operatorname{vect}\left(\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}\right)$$

On a donc prouvé que $\operatorname{Ker}(f_d) = \operatorname{vect}\left(\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}\right)$. De la même façon, on peut prouver que $\operatorname{Ker}(f_g) = \operatorname{vect}\left(\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}\right)$

3. Calculons $\operatorname{Im}(f_g)$, d'après le cours, on sait que $\operatorname{Im}(f_g) = \operatorname{vect}(f_g(E_{1,1}), f_g(E_{1,2}), f_g(E_{2,1}), f_g(E_{2,2}))$. En effet, on sait, d'après le cours, que $(E_{i,j})_{\substack{1 \leq i \leq 2 \\ 1 \leq j \leq 2}}$ est la base canonique de $\mathscr{M}_2(\mathbb{R})$. Donc :

$$\operatorname{Im}(f_g) = \operatorname{vect}\left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right) = \operatorname{vect}\left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right)$$

De même, on trouve que

$$\operatorname{Im}(f_d) = \operatorname{vect}\left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}\right)$$

Correction de l'exercice 5. 1. Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$, alors par somme de fonctions de classe \mathscr{C}^{∞} , $f''-2f+f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Soit $(f, g) \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $\lambda \in \mathbb{R}$

$$\Phi(\lambda f + g) = (\lambda f + g)'' - 2(\lambda f + g)' + \lambda f + g
= \lambda f'' + g'' - 2\lambda f' - 2g + \lambda f + g
= \lambda (f'' - 2f' + f) + (g'' - 2g' + g)
= \lambda \Phi(f) + \Phi(g)$$

Ainsi, Φ est linéaire, $\Phi \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}))$.

2. Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$

$$f \in \operatorname{Ker}(\Phi) \iff \Phi(f) = 0 \iff f'' - 2f' + f = 0$$

On reconnaît une équation différentielle linéaire homogène d'ordre 2 à coefficients constant. Or son équation caractéristique est $(r^2 - 2r + 1) = (r - 1)^2 = 0$. Ainsi, r = 1. Donc

$$f \in \operatorname{Ker}(\Phi) \iff \exists (C_1, C_2) \in \mathbb{R}^2 \quad \forall x \in \mathbb{R} \qquad f(x) = C_1 \underbrace{e^x}_{f_1(x)} + C_2 \underbrace{xe^x}_{f_2(x)} = C_1 f_1(x) + C_2 f_2(x)$$

Où on a posé $f_1: x \mapsto e^x$ et $f_2: x \mapsto xe^x$. Ainsi,

$$f \in \ker(\Phi) \iff \exists (C_1, C_2) \in \mathbb{R}^2 \quad f = C_1 f_1 + C_2 f_2 \iff f \in \operatorname{vect}(f_1, f_2)$$

On a ainsi montré que $\operatorname{Ker}(\Phi) = \operatorname{vect}(f_1, f_2)$ Donc (f_1, f_2) est une famille génératrice du noyau, on peut aussi montrer qu'elle est libre : soit $(a, b) \in \mathbb{R}^2$, supposons $af_1 + bf_2 = 0$ (fonction nulle), alors en évaluant en 0, il vient $af_1(0) + bf_2(0) = 0$, donc a + b0 = 0, donc a = 0. Ainsi $bf_2 = 0$, comme f_2 n'est pas le vecteur nul, b = 0. Ainsi, (f_1, f_2) est libre, c'est une base de $\operatorname{Ker}(\Phi)$. D'où $\operatorname{Ker}(\Phi)$ est un espace vectoriel de dimension finie de dimension 2.

Correction de l'exercice 6. Corrigé sur Youtube : https://youtu.be/vkcqEUoG3Bw

Correction de l'exercice 7. 1. Remarquons que si $P \in \mathbb{R}_n[X]$, alors $P(X+1) \in \mathbb{R}_n[X]$, donc par différence $\Delta(P) \in \mathbb{R}_n[X]$. Soit $(P,Q) \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$, on a

$$\begin{split} \Delta(\lambda P+Q) &= (\lambda P+Q)(X+1)-(\lambda P+Q) \\ &= \lambda P(X+1)+Q(X+1)-\lambda P-Q \\ &= \lambda (P(X+1)-P)+(Q(X+1)-Q \\ &= \lambda \Delta(P)+\Delta(Q) \end{split}$$

Ainsi, Δ est un endomorphisme.

- 2. Soit $P \in \text{Ker}(\Delta)$, alors P(X+1) = P(X), ainsi P est 1-périodique, donc chaque valeur est atteinte une infinité de fois, par exemple P(0) est atteint en 0 en 1, en 2 etc. Posons donc Q(X) = P(X) P(0), alors comme pour tout $n \in \mathbb{N}$, P(n) = P(0), on a Q(n) = 0. Donc Q a une infinité de racines, donc Q est le polynôme nul (seul polynôme à avoir strictement plus de racines que son degré). Ainsi, P(X) = P(0). Ainsi, P = c où $c \in \mathbb{R}$, donc $P \in \text{vect}(1)$ (ici 1 est le polynôme constant égale à 1). Donc $\text{Ker}(\Delta) \subset \text{vect}(1)$. Réciproquement soit $P \in \text{vect}(1)$, alors P = c où $c \in \mathbb{R}$, ainsi $\Delta(P) = c c = 0$, donc $P \in \text{Ker}(\Delta)$. D'où $\text{Ker}(\Delta) = \text{vect}(1)$.
- 3. Appliquons le théorème du rang à Δ linéaire avec $\mathbb{R}_n[X]$ de dimension finie, on a

$$\dim(\mathbb{R}_n[X]) = \dim(\mathrm{Ker}(\Delta)) + \mathrm{rg}(\Delta)$$

Comme (1) est une base de $\operatorname{Ker}(\Delta)$, on a $\dim(\operatorname{Ker}(\Delta)) = 1$. Ainsi, $\operatorname{rg}(\Delta) = \dim(\mathbb{R}_n[X]) - 1 = \mathbf{n} + \mathbf{1} - 1 = n$. De plus, on sait, d'après le cours que comme $(1, X, \dots, X^n)$ est une famille génératrice de $\mathbb{R}_n[X]$ (c'est la base canonique on a) $\operatorname{Im}(\Delta) = \operatorname{vect}(\Delta(1), \Delta(X), \dots, \Delta(X^n))$. De plus, $\Delta(1) = 0$. D'où $\operatorname{Im}(\Delta) = \operatorname{vect}(\Delta(X), \dots, \Delta(X^n))$. Remarquons que

$$\Delta(X) = (X+1) - X = 1$$
 $\Delta(X^2) = (X+1)^2 - X^2 = 2X+1$ et $\Delta(X^3) = (X+1)^3 - X^3 = 3X^3 + 3X + 1$

en généralisant, par la formule du binôme de Newton

$$\forall k \in [[1; n]] \qquad \Delta(X^k) = (X+1)^k - X^k = \sum_{i=0}^k \binom{k}{i} X^i - X^k = \sum_{i=0}^{k-1} \binom{k}{i} X^i$$

Ainsi, $d^{\circ}\Delta(X^k) = k - 1$. Donc $d^{\circ}\Delta(X) < d^{\circ}\Delta(X^2) < \ldots < \Delta(X^n) = n - 1$. Ainsi, $(\Delta(X), \ldots, \Delta(X^n))$ est une famille de $\mathbb{R}_{n-1}[X]$ Dès lors, comme $\mathbb{R}_{n-1}[X]$ est un espace vectoriel, on a $\mathrm{Im}(\Delta) \subset \mathbb{R}_{n-1}[X]$, par égalité des dimension, $\mathrm{Im}(\Delta) = \mathbb{R}_{n-1}[X]$.

4. $1 \in \text{Ker}(\Delta)$ et $\Delta(X) = 1$, ainsi $1 \in \text{Im}(\Delta) \cap \text{Ker}(\Delta)$ et $1 \neq 0$, donc $\text{Im}(\Delta)$ et $\text{Ker}(\Delta)$ ne sont pas en somme directe et donc ne sont pas supplémentaires.

Correction de l'exercice 8.

Correction de l'exercice 9. 1. Soient $(x, y, z) \in \mathbb{R}^3$, $(x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. Alors :

$$\begin{split} p((x,y,z) + \lambda(x',y',z')) &= p((x+\lambda x',y+\lambda y'+z+\lambda z')) \\ &= (2(x+\lambda x') + (y+\lambda y') + 2(z+\lambda z'), y+\lambda y', -(x-\lambda x') - (y-\lambda y') - (z-\lambda z')) \\ &= (2x+y+2z, y, -x-y-z) + \lambda(2x'+y'+2z', y', -x'-y'-z') \\ &= p(x,y,z) + \lambda p(x',y',z') \end{split}$$

- 2. $p(e_1) = p(1,0,0) = (2,0,-1), p(e_2) = p(0,1,0) = (1,1,-1) \text{ et } p(e_3) = p(0,0,1) = (2,0,-1)$
- 3. En composant par p les égalités précédentes, on obtient : $p^2(e_1) = p(2,0,-1) = (2,0,-1)$, $p^2(e_2) = p(1,1,-1)$ et $p^3(e_3) = (2,0,-1)$. On remarque donc que p^2 et p coïncident sur la base canonique. D'après le cours, on peut en déduire que $p^2 = p$. Donc, comme p est linéaire, on en déduit que p est une projection.
- 4. D'après le cours $\text{Im}(p) = \text{vect}(p(e_1), p(e_2), p(e_3)) = \text{vect}(p(e_1), p(e_2))$ car $p(e_1) = p(e_3)$. Or $p(e_1) = (2, 0, -1)$ et $p(e_2) = (1, 1, -1)$ forment une famille libre, donc $\text{rg}(p) = \dim(\text{Im}(p)) = 2$.

Correction de l'exercice 10.

Correction de l'exercice 11. Soit $v \in F \cap G$, alors $v \in F$ et $v \in G$, donc il existe $(a,b) \in \mathbb{R}^2$ tel que v = a(1,1,2) + b(1,1,3) = (a+b,a+b,2a+3b) et il existe $c \in \mathbb{R}$ tel que v = c(1,0,0) = (c,0,0), donc (a+b,a+b,2a+3b) = (c,0,0) par identification, on obtient :

$$\begin{cases} a+b & = c \\ a+b & = 0 \\ 2a+3b & = 0 \end{cases} \underset{L_{1} \leftarrow L_{1}-L_{2}}{\Longleftrightarrow} \begin{cases} 0 & = c \\ a+b & = 0 \\ -a & = 0 \end{cases} \Longleftrightarrow a=b=c=0$$

Ainsi $v = 0(1, 0, 0) = 0_{\mathbb{R}^3}$. Ceci montre que $F \cap G \subset \{0_{\mathbb{R}^3}\}$. Comme l'inclusion est toujours vrai, $F \cap G = \{0_{\mathbb{R}^3}\}$. Donc F et G sont en bien en somme directe. De plus, $\dim(G) = 1$ (sous-espace vectoriel engendré par un vecteur non nul), et $\dim(F) = 2$ (sous-espace vectoriel engendré par deux vecteurs indépendants). Ainsi $\dim(\mathbb{R}^3) = 3 = \dim(F) + \dim(G)$ avec F et G en somme directe, cela suffit pour montrer que F et G sont supplémentaires dans \mathbb{R}^3 .

Notons p la projection recherchée. Soit $v=(x,y,z)\in\mathbb{R}^3$, on va décomposer v dans $F\oplus G$, on sait qu'il existe $(f,g)\in F\times G$ tel que v=f+g, comme $f\in F$, il existe $(a,b)\in\mathbb{R}^2$, f=a(1,1,2)+b(1,1,3). De même, il existe $c\in\mathbb{R}$ tel que g=c(1,0,0), donc v=f+g=a(1,1,2)+b(1,1,3)+c(1,0,0)=(a+b+c,a+b,2a+3b). On a donc :

$$\begin{cases} a+b+c &= x \\ a+b &= y \iff 2a+3b &= z & \underset{L_3 \leftarrow L_3-3L_2}{\longleftarrow} \begin{cases} c &= x-y \\ a+b &= y \iff b = -2y+z \\ -a &= z-3y \end{cases} \iff \begin{cases} a &= 3y-z \\ b &= -2y+z \\ c &= x-y \end{cases}$$

Ainsi, p(x, y, z) = p(v) = f = a(1, 1, 2) + b(1, 1, 3) = (3y - z)(1, 1, 2) + (z - 2y)(1, 1, 3) = (y, y, z).

Notons s la symétrie associée, alors s(x, y, z) = 2p(x, y, z) - (x, y, z) = (2y - x, y, z).

Correction de l'exercice 12. Corrigé sur Youtube : https://youtu.be/PnEVQ8ncSoI

Correction de l'exercice 13.

Correction de l'exercice 14. Corrigé sur Youtube : https://youtu.be/hf12P6T4eLQ

Correction de l'exercice 15.

Correction de l'exercice 16. Supposons $g \circ f = 0$, montrons $\text{Im}(f) \subset \text{Ker}(g)$. Soit $y \in \text{Im}(f)$, alors il existe $x \in E$ tel que y = f(x), donc $g(y) = g(f(x)) = (g \circ f)(x) = 0(x) = 0_E$. Dès lors $y \in \text{Ker}(g)$ et ce pour tout $y \in \text{Im}(f)$. Donc $\text{Im}(f) \subset \text{Ker}(g)$. Supposons $\text{Im}(f) \subset \text{Ker}(g)$ et montrons $g \circ f = 0$. Soit $x \in E$, posons $y = f(x) \in \text{Im}(f)$, donc $y \in \text{Ker}(g)$, donc $g(y) = 0_E$, ainsi $g(f(x)) = 0_E$. Par conséquent, $(g \circ f)(x) = 0_E$ et ce pour tout $x \in E$, donc $g \circ f = 0$ (application nulle).

Correction de l'exercice 17. Soit $x \in \text{Ker}(f) \cap \text{Ker}(f - \text{Id}_E)$, alors $f(x) = 0_E$ et $(f - \text{Id}_E)(x) = 0_E$, soit f(x) = x, donc $x = 0_E$, ainsi $\text{Ker}(f) \cap \text{Ker}(f - \text{Id}_E) \subset \{0_E\}$. Comme l'inclusion réciproque est toujours vérifiée, on peut dire que Ker(f) et $\text{Ker}(f - \text{Id}_E)$ sont en somme directe.

- Correction de l'exercice 18. 1. Soit $x \in E$ non nul, par hypothèse, la famille (x, f(x)) est liée. Donc il existe $(a, b) \in \mathbb{K}^2$ tel que $ax + bf(x) = 0_E$ avec $(a, b) \neq (0, 0)$. Supposons par l'absurde que b = 0, alors $a \neq 0$ et $ax = 0_E$ donc a = 0 ou $x = 0_E$ ce qui est impossible dans tous les cas. Ainsi, $b \neq 0$ et $f(x) = -\frac{a}{b}x$. En posant $\lambda_x = -\frac{a}{b} \in \mathbb{K}$, on a bien $f(x) = \lambda_x x$. Supposons que $f(x) = \mu x$, alors par soustraction, on a $(\lambda_x \mu)x = 0_E$, comme $x \neq 0_E$, on en déduit que $\lambda_x \mu = 0$ soit que $\mu = \lambda_x$. D'où l'existence et l'unicité de λ_x .
 - 2. Soit x et y non nuls telle que (x, y) soit liée, alors $y = \alpha x$ où $\alpha \in \mathbb{K}$ avec $\alpha \neq 0$, composant par f, on a $f(y) = \alpha f(x)$. Soit $\lambda_y y = \alpha \lambda_x x$, donc $\lambda_y \alpha x = \alpha \lambda_x x$, donc $(\lambda_y \alpha \alpha \lambda_x) x = 0_E$ soit $\alpha(\lambda_y \lambda_x) = 0$. Comme $\alpha \neq 0$, on a $\lambda_y = \lambda_x$.
 - 3. Soit (x, y) une famille libre de E, posons z = x + y, alors f(z) = f(x + y) = f(x) + f(y), soit $\lambda_z z = \lambda_x x + \lambda_y y$. Donc $\lambda_z(x + y) = \lambda_x x + \lambda_y y$. On a donc $(\lambda_x \lambda_z)x + (\lambda_y \lambda_z) = 0_E$. Comme la famille (x, y) est libre, on en déduit que $\lambda_x \lambda_z = 0$ et $\lambda_y \lambda_z = 0$. Donc que $\lambda_x = \lambda_y$.
 - 4. On a donc montré que $\lambda_x = \lambda_y$ quelque soit $(x,y) \in (E \setminus \{0\})^2$. Notons λ cette valeur commune. On a donc, pour tout $x \in E \setminus \{0\}$, $f(x) = \lambda x$. On remarque qu'on a également $f(0_E) = \lambda 0_E$. Ainsi f est bien une homothétie.
 - 5. Réciproquement si f est une homothétie, alors pour tout $x \in E$, (x, f(x)) est une famille liée.

Correction de l'exercice 19.

Correction de l'exercice 20. 1. En utilisant que $p \circ p = p$, $q \circ q = q$ et $p \circ q = q \circ p$. Montrons que $p \circ q$ est une projection :

$$(p \circ q) \circ (p \circ q) = p \circ (q \circ q) \circ p = p \circ (q \circ p) = p \circ (p \circ q) = (p \circ p) \circ q = p \circ q$$

De plus, p et q sont des endomorphismes, par composition $p \circ q$ est linéaire. Ainsi $p \circ q$ est une projection. On sait, donc d'après le cours que $p \circ q$ projette sur $\operatorname{Im}(p \circ q)$ parallèlement à $\operatorname{Ker}(p \circ q)$. Donc $F = \operatorname{Im}(p \circ q)$ et $G = \operatorname{Ker}(p \circ q)$.

2. Déterminons $F = \operatorname{Im}(p \circ q)$, soit $y \in \operatorname{Im}(p \circ q)$, donc il existe $x \in E$ tel que $y = (p \circ q)(x)$, alors y = p(q(x)), posons z = q(x), alors y = p(z) et donc $y \in \operatorname{Im}(p)$. De plus, y = q(p(x)), posons w = p(x), alors y = q(w) et donc $y \in \operatorname{Im}(q)$. Ainsi $y \in \operatorname{Im}(p) \cap \operatorname{Im}(q)$.

Soit $y \in \text{Im}(p) \cap \text{Im}(q)$, alors comme p est une projection sur Im(p), on a p(y) = y, de même q(y) = y, alors

$$(p \circ q)(y) = p(q(y)) = p(y) = y$$

Ainsi $y \in \text{Im}(p \circ q)$. Ainsi $F = \text{Im}(p) \cap \text{Im}(q)$.

3. Soit $x \in \text{Ker}(p \circ q)$, on sait que $\text{Ker}(p) \oplus \text{Im}(p) = E$, donc il existe un unique $(k, i) \in \text{Ker}(p) \times \text{Im}(p)$ tel que x = k + i, donc

$$0 = (p \circ q)(x) = (q \circ p)(x) = q(p(k+i)) = q(p(k) + p(i)) = q(i)$$

Donc $i \in \text{Ker}(q)$, ainsi x = k + i avec $(k, i) \in \text{Ker}(p) \times \text{Ker}(i)$. Ceci montre que $x \in \text{Ker}(p) + \text{Ker}(q)$. On a donc montré que $\text{Ker}(p \circ q) \subset \text{Ker}(p) + \text{Ker}(q)$.

Soit $x \in \text{Ker}(p) + \text{Ker}(q)$, donc il existe $(k, k') \in \text{Ker}(p) + \text{Ker}(q)$ tel que x = k + k', alors

$$(p \circ q)(x) = (p \circ q)(k + k') = (p \circ q)(k) + (p \circ q)(k') = q(p(k)) + p(q(k')) = q(0_E) + p(0_E) = 0_E$$

Donc $x \in \text{Ker}(p \circ q)$. Donc $\text{Ker}(p) + \text{Ker}(q) \subset \text{Ker}(p \circ q)$. On a donc montré que $\text{Ker}(p) + \text{Ker}(q) = \text{Ker}(p \circ q)$. Conclusion $p \circ q$ est une projection de $\text{Im}(p) \cap \text{Im}(q)$ parallèlement à Ker(p) + Ker(q).

Correction de l'exercice 21. 1. Soit $x \in E$ tel que $f^{p-1}(x) \neq 0_E$. Montrer que $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est une famille libre. Soit $(\lambda_i)_{0 \leq i \leq p-1} \in \mathbb{K}^p$ tel que

$$\sum_{i=0}^{p-1} \lambda_i f^i(x) = 0 \tag{1}$$

Présentons trois preuves similaires que les $\lambda_i = 0$ (chacune ayant une longueur et un niveau de rédaction différent, la dernière étant la plus courte et rigoureuse) :

• En composant par f^{p-1} l'équation (1), on a

$$\sum_{i=0}^{p-1} \lambda_i f^{i+p-1}(x) = \lambda_0 f^{p-1}(x) + \sum_{i=1}^{p-1} \lambda_i f^{i+p-1}(x) = 0_E$$

Or pour tout $i \in [1; p-1]$, $i-1 \ge 0$ et donc $f^{i+p-1} = f^p \circ f^{i-1} = 0 \circ f^{i-1} = 0$, on obtient donc $\lambda_0 f^{p-1}(x) + 0_E = 0_E$ et comme le vecteur $f^{p-1}(x) \ne 0_E$, on en déduit que $\lambda_0 = 0^1$, puis on recommence en composant cette fois-ci par f^{p-2} pour montrer que $\lambda_1 = 0$ puis etc. (court mais pas très rigoureux, le etc. cache une récurrence que l'on a la flemme de faire).

^{1.} Rappelons que si $\lambda u = 0_E$ avec $\lambda \in \mathbb{K}$ et $u \in E$, alors $\lambda = 0$ ou $u = 0_E$. En revanche, si A et B sont deux matrices telles que AB = 0, on ne peut pas dire/écrire A = 0 ou B = 0 sous peine d'avoir de gros ennuis.

• Effectuons donc cette récurrence finie, posons, pour $k \in [0; p-1]$

$$\mathscr{P}(k)$$
: $\forall q \in [0; k] \quad \lambda_q = 0$

- **Initialisation**: on a montré que $\lambda_0 = 0$ dans la première méthode donc $\mathcal{P}(0)$ est vérifiée.
- **Hérédité :** soit $k \in [0; p-2]$. Montrons : $\mathscr{P}(k) \implies \mathscr{P}(k+1)$.

Supposons $\mathscr{P}(k)$ vraie et montrons $\mathscr{P}(k+1)$ vraie. Comme $\lambda_0 = \lambda_1 = \ldots = \lambda_k = 0$, on a $\sum_{i=k+1}^{p-1} \lambda_i f^i(x) = 0$. En composant par f^{p-k-2} , on a

$$\sum_{i=k+1}^{p-1} \lambda_i f^{p-k-2+i}(x) = \lambda_{k+1} f^{p-1}(x) + \sum_{i=k+2}^{p-1} \lambda_i f^{p-k-2+i}(x)$$

Or pour tout $i \in \llbracket k+2; p-1 \rrbracket$, $i-k-2 \ge 0$, ainsi $f^{p-k-2+i}(x) = f^{i-k-2} \circ f^p(x) = 0$, on a donc $\lambda_{k+1} f^{p-1}(x) = 0$, comme $f^{p-1}(x) \ne 0_E$, on en déduit que $\lambda_{k+1} = 0$. Pour tout $q \in \llbracket 0; k+1 \rrbracket$, $\lambda_q = 0$, ainsi $\mathscr{P}(k+1)$ est vérifiée.

— Conclusion: pour tout $k \in [0; p-1], \mathcal{P}(k)$ est vraie.

Ainsi, comme $\mathscr{P}(p-1)$ est vraie, on a pour tout $k \in \llbracket 0; p-1 \rrbracket$, $\lambda_k = 0$. On a ainsi montré que la famille $(x, f(x), \ldots, f^{p-1}(x))$ est libre.

• Supposons que l'un des λ_i soit non nul, posons $i_0 = \min\{i \in [0; p-1], \lambda_i \neq 0\}$ (le minimum d'un ensemble de \mathbb{N} non vide est toujours défini). Ainsi pour tout $i \in [0; i_0], \lambda_i = 0$. On a donc

$$\sum_{i=i_0}^{p-1} \lambda_i f^i(x) = 0_E$$

Et comme à la méthode par récurrence, en composant par f^{p-i_0-1} , on prouve que $\lambda_{i_0}=0$ ce qui est absurde. Ainsi il n'est pas possible de trouver un λ_i non nul. Donc la famille est libre.

- 2. Comme la famille $(x, f(x), \ldots, f^{p-1}(x))$, a p éléments et est une famille libre, on en déduit que $p \le \dim(E) = n$. Soit $p \le n$.
- 3. Comme $p \leq n$, on peut écrire $f^n = f^{n-p} \circ f^p = 0$. Donc $f^n = 0$.

Correction de l'exercice 22. Corrigé sur Youtube : https://youtu.be/ yVYDibuDb8

Correction de l'exercice 23.

Correction de l'exercice 24.

Correction de l'exercice 25.

Correction de l'exercice 26. • Montrons que $\text{Im}(f+g) \subset \text{Im}(f) + \text{Im}(g)$ Soit $y \in \text{Im}(f+g)$, alors il existe $x \in E$ tel que y = (f+g)(x), donc y = f(x) + g(x). Posons $a = f(x) \in \text{Im}(f)$ et $b = g(x) \in \text{Im}(g)$, alors $y \in \text{Im}(f) + \text{Im}(g)$. Dès lors $\text{Im}(f+g) \subset \text{Im}(f) + \text{Im}(g)$. En utilisant la formule de Grassmann

$$\dim(\operatorname{Im}(f+g)) \leq \dim(\operatorname{Im}(f) + \operatorname{Im}(g)) = \dim(\operatorname{Im}(f)) + \dim(\operatorname{Im}(g)) - \underbrace{\dim(\operatorname{Im}(f) \cap \operatorname{Im}(g))}_{\geqslant 0}$$

$$\leq \dim(\operatorname{Im}(f)) + \dim(\operatorname{Im}(g))$$

D'où $\operatorname{rg}(f+q) \leq \operatorname{rg}(f) + \operatorname{rg}(q)$.

• On procède comme dans la preuve de la seconde inégalité triangulaire :

$$rg(f) = rg((f - q) + q) \le rg(f - q) + rg(q)$$

Donc $rg(f) - rg(g) \le rg(f - g)$. Par symétrie des rôles, on obtient $rg(g) - rg(f) \le rg(g - f)$. Or pour $h \in \mathcal{L}(E)$, rg(h) = rg(-h), en effet, pour tout $g \in E$

$$y \in \operatorname{Im}(h) \iff \exists x \in E \quad y = h(x)$$
 $\iff \exists x \in E \quad y = -h(-x)$
 $\iff \exists \tilde{x} \in E \quad y = -h(\tilde{x})$
 $\iff y \in \operatorname{Im}(-h)$

Dès lors, $\operatorname{Im}(h) = \operatorname{Im}(-h)$ d'où $\operatorname{rg}(h) = \operatorname{rg}(-h)$. Par conséquent, $\operatorname{rg}(g) - \operatorname{rg}(f) \leqslant \operatorname{rg}(f-g)$. Or

$$|\operatorname{rg}(f) - \operatorname{rg}(f)| = \operatorname{rg}(g) - \operatorname{rg}(f)$$
 ou $|\operatorname{rg}(f) - \operatorname{rg}(f)| = \operatorname{rg}(f) - \operatorname{rg}(g)$

Dans les deux cas, on a $|rg(f) - rg(g)| \le rg(f - g)$.

Correction de l'exercice 27. Soit $(f,g) \in F \times G$, remarquons que $f+g \in F+G$, on peut donc définir l'application suivante :

$$\varphi \colon \begin{cases} F \times G \longrightarrow F + G \\ (f,g) \longmapsto f + g \end{cases}$$

Cette application est linéaire (facile à montrer), surjective (par définition de F + G). De plus d'après le cours, $F \times G$ est de dimension finie et vaut $\dim(F) + \dim(G)$, on peut donc appliquer le théorème du rang

$$\dim(F) + \dim(G) = \dim(F \times G) = \dim(\operatorname{Ker}(\varphi)) + \operatorname{rg}(\varphi) = \dim(\operatorname{Ker}(\varphi)) + \dim(F + G) \tag{2}$$

Il reste à étudier le noyau de φ , soit $(f,g) \in \operatorname{Ker}(\varphi)$, on a donc f+g=0, soit f=-g, comme G est un espace vectoriel et que $-g \in G$, on en déduit que $f \in G$ et donc que $f \in G \cap F$. Ainsi les éléments du noyaux sont de la forme (f,-f) où $f \in F \cap G$. Réciproquement si on prend un élément de la forme (f,-f) où $f \in F \cap G$, alors $(f,-f) \in F \times G$ et $(f,-f) \in \operatorname{Ker}\varphi$. Posons l'application suivante :

$$\Psi \colon \begin{cases} F \cap G \longrightarrow \operatorname{Ker} \varphi \\ f \longmapsto (f, -f) \end{cases}$$

Alors, par ce qui précède, cette application est bien définie, on montre également qu'elle est linéaire, injective et surjective. Et donc que Ψ est un isomorphisme ce qui montre que $\operatorname{Ker}(\varphi)$ et $F \cap G$ ont la même dimension. En reportant dans l'équation (2), on obtient

$$\dim(F) + \dim(G) = \dim(F + G) + \dim(F \cap G)$$

On a donc montré la formule de Grassmann.

Correction de l'exercice 28. 1. Supposons que $u^2 = 0$ (endomorphisme nul) et n = rg(u). Alors soit $y \in Im(u)$, il existe $x \in E$ tel que y = u(x), ainsi $u(y) = u(u(x)) = u^2(x) = 0_E$. Ainsi, $y \in Ker(u)$, on a donc montré que $Im(u) \subset Ker(u)$. De plus, comme E est de dimension finie, et u linéaire, le théorème du rang, fournit

$$\dim(E) = \dim(\operatorname{Ker}(u)) + \dim(\operatorname{Im}(u)) = 2n = 2\dim(\operatorname{Im}(u))$$

Ainsi, en retranchant $\dim(\operatorname{Im}(u))$, on obtient $\dim(\operatorname{Ker}(u)) = \dim(\operatorname{Im}(u))$. Ainsi, on a deux espaces vectoriels de même dimension avec l'un inclus dans l'autre, d'après le cours sur la dimension finie, on en conclut que $\operatorname{Ker}(u) = \operatorname{Im}(u)$.

2. Supposons que Im(u) = Ker(u). Alors le théorème du rang affirme que

$$2n = \dim(E) = \dim(\operatorname{Ker}(u)) + \dim(\operatorname{Im}(u)) = \dim(\operatorname{Im}(u)) + \dim(\operatorname{Im}(u)) = 2\dim(\operatorname{Im}(u))$$

Ainsi, $n = \operatorname{rg}(u)$. De plus, soit $x \in E$, alors $u(x) \in \operatorname{Im}(u) = \operatorname{Ker}(u)$. D'où $u(x) \in \operatorname{Ker}(u)$, ainsi, $u(u(x)) = 0_E$. D'où $(u \circ u)(x) = 0_E$ et ce pour tout $x \in E$, donc $u \circ u = 0_{\mathscr{L}(E)}$.

Correction de l'exercice 29.

- Correction de l'exercice 30. 1. Notons $F = \text{Ker}(f 2\text{Id}_E)$ et $G = \text{Ker}(f 3\text{Id}_E)$. Comme noyaux d'applications linéaires, F et G sont des sous-espaces vectoriels de E. Soit $x \in E$, le but est de montrer qu'il existe un unique couple $(a,b) \in F \times G$ tel que x = a + b. Procédons par analyse-synthèse :
 - Analyse: supposons que x = a + b avec $a \in F$ et $b \in G$. Comme $a \in F = \text{Ker}(f 2\text{Id}_E)$, on a $\overline{0}_E = (f 2\text{Id}_E)(a) = f(a) 2\text{Id}_E(a) = f(a) 2a$. Ainsi, f(a) = 2a. De même, on prouve que f(b) = 3b. Ainsi, f(x) = f(a) + f(b) = 2a + 3b. Ainsi, on a $\begin{cases} x = a + b \\ f(x) = 2a + 3b \end{cases}$. En résolvant ce système, on trouve que a = 3x f(x) et b = f(x) 2x.
 - Synthèse: posons a = 3x f(x) et b = f(x) 2x. Alors a = a + b = (3x f(x)) + (f(x) 2x) = x.

 Montrons que $a \in F$.

$$(f - 2\mathrm{Id}_{E})(a) = (f - 2\mathrm{Id}_{E})(3x - f(x))$$

$$= f(3x - f(x)) - 2\mathrm{Id}_{E}(3x - f(x))$$

$$= 3f(x) - f(f(x)) - 2(3x - f(x))$$

$$= -(f \circ f)(x) + 5f(x) - 6x$$

$$= -(f \circ f - 5f + 6\mathrm{Id}_{E})(x)$$

$$= -0_{\mathscr{L}(E)}(x)$$

$$= 0_{E}$$

Ainsi, $a \in \text{Ker}(f - 2\text{Id}_E)$.

— On démontre de même que $b \in \text{Ker}(f - 3\text{Id}_E)$.

Ainsi, la synthèse, nous montre donc qu'on a trouvé $a \in F$ et $b \in G$ tel que x = a + b. L'analyse nous montre que ce a et ce b sont uniques.

- 2. x = a + b avec $a \in F$ et $b \in G$, ainsi $a = p_F(x)$ et $b = p_G(x)$. Or, on a établi, à la question d'avant que $f(x) = 2a + 3b = 2p_F(x) + 3p_G(x) = (2p_F + 3p_G)(x)$. Ainsi, $f = 2p_F + 3p_G$ s'écrit bien comme une combinaison linéaire de projecteurs.
- 3. On pose $g = \frac{1}{2}p_F + \frac{1}{3}p_G$ et on calcule

$$f \circ g = (2p_F + 3p_G) \circ \left(\frac{1}{2}p_F + \frac{1}{3}p_G\right)$$

$$= (2p_F + 3p_G) \circ \left(\frac{1}{2}p_F\right) + (2p_F + 3p_G) \circ \left(\frac{1}{3}p_G\right)$$

$$= 2p_F \circ \left(\frac{1}{2}p_F\right) + 3p_G \circ \left(\frac{1}{2}p_F\right) + 2p_F \circ \left(\frac{1}{3}p_G\right) + 3p_G \circ \left(\frac{1}{3}p_G\right)$$

$$= 2 \times \frac{1}{2}p_F \circ p_F + 3 \times \frac{1}{2}p_G \circ p_F + 2 \times \frac{1}{3}p_F \circ p_G + 3 \times \frac{1}{3}p_G \circ p_G$$

$$= p_F + 3 \times \frac{1}{2}0_{\mathscr{L}(E)} + 2 \times \frac{1}{3}0_{\mathscr{L}(E)} + p_G = p_F + p_G = \mathrm{Id}_E$$

On démontre de la même façon que $g \circ f = \mathrm{Id}_E$, ainsi f est bijective et $f^{-1} = g = \frac{1}{2}p_F + \frac{1}{3}p_G$.

Correction de l'exercice 31.

Correction de l'exercice 32.

Correction de l'exercice 33.

Correction de l'exercice 34.

Correction de l'exercice 35. Considérons l'application $\operatorname{tr}: M \mapsto \operatorname{tr}(M)$, d'après le cours cette application est linéaire, non nulle $\operatorname{tr}(I_n) = n \neq 0$, de plus ses valeurs sont dans \mathbb{K} , ainsi $\operatorname{Ker}(\operatorname{tr})$ est le noyau d'une forme linéaire non nulle, donc c'est un hyperplan (il est de dimension $n^2 - 1$. Soit $M \in \mathscr{M}_n(\mathbb{K})$ une matrice dont la trace est non nulle, alors $\operatorname{vect}(M)$ est un supplémentaire de $\operatorname{Ker}(\operatorname{tr})$.

Correction de l'exercice 36.

Correction de l'exercice 37.

Correction de l'exercice 38. Posons $A = E_{i,j}$ et $B = E_{j,k}$, alors $\varphi(E_{i,k}) = \varphi(AB) = \varphi(BA) = \delta_{k,i}\varphi(E_{j,j})$. On en déduit que $\varphi(E_{i,i}) = \varphi(E_{j,j})$ pour tout i et j et que $\varphi(E_{i,j}) = 0$ si $i \neq j$. En notant $\alpha = \varphi(E_{1,1})$, on en déduit que φ et α tr coïncident sur la base canonique de $\mathcal{M}_n(\mathbb{K})$. Comme ce sont des applications linéaires, on en déduit que $\varphi = \alpha$ tr.

Correction de l'exercice 39.

Correction de l'exercice 40.

2.

3. Soit $M \in \mathcal{M}_3(\mathbb{R})$, alors

$$M \in F \iff \exists (a, b, c) \in \mathbb{R}^3 \quad M = \begin{pmatrix} a + c & b & c \\ b & a + 2c & b \\ c & b & a + c \end{pmatrix}$$

$$\iff \exists (a, b, c) \in \mathbb{R}^3 \quad M = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\iff \exists (a, b, c) \in \mathbb{R}^3 \quad M = aI_3 + bA + cA^2$$

$$\iff M \in \text{vect}(I_3, A, A^2)$$

Ainsi, $F = \text{vect}(I_3, A, A^2)$. Donc (I_3, A, A^2) est une famille génératrice de F. Montrons qu'elle est libre. Soit $(a, b, c) \in \mathbb{R}^3$. Supposons $aI_3 + bA + cA^2 = 0_3$. Alors

$$\begin{pmatrix} a+c & b & c \\ b & a+2c & b \\ c & b & a+c \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Par identification, sur la première ligne, a + c = b = c = 0. D'où a = b = c = 0. Ainsi, (I_3, A, A^2) est une famille libre. Donc (I_3, A, A^2) est une base de F. Dès lors $\dim(F) = 3$.

4. Soient $(M, N) \in F^2$ et $\lambda \in \mathbb{R}$, alors

$$f(\lambda M + M') = A(\lambda M + M') = \lambda AM + AM' = \lambda f(M) + f(M')$$

De plus, il existe $(a, b, c) \in \mathbb{R}^3$ tel que $M = aI + bA + cA^2$, alors

$$f(M) = f(aI_3 + bA + cA^2) = af(I_3) + bf(A) + cf(A^2) = aA + bA^2 + cA^3 = (a + 2c)A + bA^2 \in \text{vect}(I_3, A, A^2) = F(A^2) + bA^2 + cA^2 = (a + 2c)A + bA^2 + cA^2 + cA^2 = (a + 2c)A + bA^2 + cA^2 +$$

Ainsi, pour tout $M \in F$, $f(M) \in F$ et f est linéaire. Dès lors, $f \in \mathcal{L}(F)$.

5.

6.

7.

8.

9. Soit $M \in F$, il existe un unique triplet $(a, b, c) \in \mathbb{R}^3$ tel que $M = aI_3 + bA + cA^2$.

$$f(M) = I_3 + A^2 \iff f(aI_3 + bA + cA^2) = I_3 + A^2$$

$$\iff af(I_3) + bf(A) + cf(A^2) = I_3 + A^2$$

$$\iff aA + bA^2 + 2cA = I_3 + A^2$$

$$\iff (-1) \cdot I_3 + (a + 2c) \cdot A + (b - 1) \cdot A^2 = 0_3$$

Or comme (I_3, A, A^2) est libre cela implique que -1 = 0, a + 2c = 0 et b - 1 = 0. Mais comme $-1 \neq 0$, on en déduit qu'il n'y a pas de solutions à cette équation. L'ensemble des solutions est donc $S = \emptyset$.

10. Soit $M \in F$, il existe un unique triplet $(a, b, c) \in \mathbb{R}^3$ tel que $M = aI_3 + bA + cA^2$.

$$f(M) = A + A^2 \iff f(aI_3 + bA + cA^2) = A + A^2$$

$$\iff af(I_3) + bf(A) + cf(A^2) = A + A^2$$

$$\iff aA + bA^2 + 2cA = I_3 + A^2$$

$$\iff (0) \cdot I_3 + (a + 2c - 1) \cdot A + (b - 1) \cdot A^2 = 0_3$$

$$\iff \begin{cases} 0 = 0 \\ a + 2c - 1 = 0 \\ b - 1 = 0 \end{cases}$$

$$\iff a = 1 - 2c \text{ et } b = 1$$

$$\iff M = (1 - 2c)I_3 + bA + cA^2$$

Ainsi, l'ensemble des solutions de l'équation est $S = \{(1-2c)I_3 + A + cA^2, c \in \mathbb{R}\}$. On remarque que ce n'est pas un espace vectoriel, en effet, la matrice nulle ne vérifie pas $f(0_3) = A + A^2$.

11.

12.

13. Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$$

$$X \in \operatorname{Ker}(A) \iff AX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} y \\ x+z \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff y = x+z = 0 \iff z = -x \quad \text{et} \quad y = 0$$

$$\iff X = \begin{pmatrix} x \\ 0 \\ -x \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \iff X \in \operatorname{vect} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

^{2.} Je tiens à remercier très chaleureusement Cyriaque D. pour m'avoir signalé une coquille à cet endroit.

Ainsi,
$$Ker(A) = vect \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$X \in \operatorname{Ker}(A - \sqrt{2}I_{3}) \iff (A - \sqrt{2}I_{3})X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} y - \sqrt{2}x \\ x + z - \sqrt{2}y \\ y - 2\sqrt{z} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} y - \sqrt{2}x &= 0 \\ x + z - \sqrt{2}y &= 0 \\ y - 2\sqrt{z} &= 0 \end{cases} \iff \begin{cases} y &= \sqrt{2}x \\ x + z - 2x &= 0 \\ \sqrt{2}x - 2\sqrt{z} &= 0 \end{cases}$$

$$\iff y = \sqrt{2}x \quad \text{et} \quad z = x \iff X = \begin{pmatrix} x \\ \sqrt{2}x \\ x \end{pmatrix} = x \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$$

$$\iff X \in \operatorname{vect}\left(\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}\right)$$

Ainsi, $\operatorname{Ker}(A - \sqrt{2}I_3) = \operatorname{vect}\left(\begin{pmatrix} 1\\\sqrt{2}\\1 \end{pmatrix}\right)$. Je vous laisse trouver de la même façon que $\operatorname{Ker}(A + \sqrt{2}I_3) = \operatorname{vect}\left(\begin{pmatrix} 1\\-\sqrt{2}\\1 \end{pmatrix}\right)$

14. On pose donc $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \sqrt{2} & -\sqrt{2} \\ -1 & 1 & 1 \end{pmatrix}$. On vérifie que P est inversible et on l'inverse grâce à la méthode

de Gauss-Jordan. Puis on calcule ³
$$P^{-1}AP=\begin{pmatrix}0&0&0\\0&\sqrt{2}&0\\0&0&-\sqrt{2}\end{pmatrix}$$

^{3.} On verra l'année prochaine des outils théoriques qui nous permettrons d'obtenir le même résultat, sans calculer P^{-1} ni aucun produit matriciel. Patience...