Algèbre

1. Soient $(x, y, z) \in \mathbb{R}^3$, $(x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$

$$f(\lambda(x, y, z) + (x', y', z')) = f(\lambda x + x', \lambda y + y', \lambda z + z')$$

$$= (\lambda x + x', -(\lambda z + z'), (\lambda y + y') + 2(\lambda z + z'))$$

$$= \lambda(x, -z, y + 2z) + (x', -z', y' + 2z')$$

$$= \lambda f(x, y, z) + f(x', y', z')$$

Par conséquent, f est linéaire.

2. Soit $u = (x, y, z) \in \mathbb{R}^3$.

$$\begin{array}{lll} u \in \operatorname{Ker}(f-\operatorname{Id}_{\mathbb{R}^3}) & \Longleftrightarrow & (f-\operatorname{Id}_{\mathbb{R}^3})(u) = (0,0,0) & \Longleftrightarrow & f(u)-u = (0,0,0) \\ & \Longleftrightarrow & (x,-z,y+2z)-(x,y,z) = (0,0,0) & \Longleftrightarrow & \begin{cases} 0 & = & 0 \\ -y-z & = & 0 \\ y+z & = & 0 \end{cases} \\ & \Longleftrightarrow & y+z=0 & \Longleftrightarrow & y=-z \\ & \Longleftrightarrow & u = (x,-z,z) & \Longleftrightarrow & u = x(1,0,0)+z(0,-1,1) \\ & \Longleftrightarrow & u \in \operatorname{vect}((1,0,0),(0,-1,1)) \end{array}$$

Posons $\mathscr{B}_K = ((1,0,0),(0,-1,1))$, par double inclusion, on a montré que $\operatorname{Ker}(f-\operatorname{Id}_{\mathbb{R}^3}) = \operatorname{vect}(\mathscr{B}_K)$. Ainsi, \mathscr{B}_K est une famille génératrice de $\operatorname{Ker}(f-\operatorname{Id}_{\mathbb{R}^3})$. Or, cette famille contient exactement deux vecteurs et ces deux vecteurs sont non colinéaires. Donc, \mathscr{B}_K est libre. Ainsi, \mathscr{B}_K est une base de $\operatorname{Ker}(f-\operatorname{Id}_{\mathbb{R}^3})$.

- 3. Notons $\mathscr{B} = ((1,0,0),(0,1,0),(0,0,1))$ la base canonique de \mathbb{R}^3 . Alors :
 - f(1,0,0) = (1,0,0) = 1(1,0,0) + 0(1,0,0) + 0(0,0,1)
 - f(0,1,0) = (0,0,1) = 0(1,0,0) + 0(1,0,0) + 1(0,0,1)
 - f(0,0,1) = (0,-1,2) = 0(1,0,0) + (-1)(1,0,0) + 2(0,0,1)

Ainsi,
$$M = \text{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

4. $\det_{\mathscr{B}}(\mathscr{B}') = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = -1$ (déterminant d'une matrice triangulaire), comme $\det_{\mathscr{B}}(\mathscr{B}') \neq 0$, on en déduit que \mathscr{B}' est une base de \mathbb{R}^3 .

5.
$$(0,-1,2) = 0(1,0,0) + 1(0,-1,1) + 1(0,0,1)$$
, ainsi les coordonnées de $(0,-1,2)$ dans \mathscr{B}' sont $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$

Alors:

- f(1,0,0) = (1,0,0) = 1(1,0,0) + 0(0,-1,1) + 0(0,0,1)
- f(0,-1,1) = (0,-1,1) = 0(1,0,0) + 1(0,-1,1) + 1(0,0,1)
- f(0,0,1) = (0,-1,2) = 0(1,0,0) + 1(0,-1,1) + 1(0,0,1)

Ainsi,
$$T = \text{Mat}_{\mathscr{B}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- 6. Comme:
 - (1,0,0) = 1(1,0,0) + 0(0,1,0) + 0(0,0,1)
 - (0,-1,1) = 0(1,0,0) + (-1)(0,1,0) + 1(0,0,1)
 - (0,0,1) = 0(1,0,0) + 0(0,1,0) + 1(0,0,1)

Notons $P = P_{\mathcal{B} \to \mathcal{B}'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Alors, d'après la formule de passage $M = PTP^{-1}$. De plus,

- (1,0,0) = 1(1,0,0) + 0(0,-1,1) + 0(0,0,1)
- (0,1,0) = 0(1,0,0) + (-1)(0,-1,1) + 1(0,0,1)

•
$$(0,0,1) = 0(1,0,0) + 0(0,-1,1) + 1(0,0,1)$$

Donc
$$P^{-1} = P_{\mathscr{B}' \to \mathscr{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

7. Remarquons que $T = I_3 + E_{2,3}$, de plus, $E_{2,3}^2 = 0_3$, ainsi, comme I_3 commute avec $E_{2,3}$, d'après la formule du binome de Newton,

$$T^{n} = (I_{3} + E_{2,3})^{n} = \sum_{k=0}^{n} \binom{n}{k} \underbrace{E_{2,3}^{k}}_{=0_{3} \text{ si } k \ge 2} I_{3}^{n-k} = \sum_{k=0}^{1} \binom{n}{k} E_{2,3}^{k} = I_{3} + nE_{2,3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

De plus,

$$M^{n} = PT^{n}P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -n \\ 0 & 1 & n+1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1-n & -n \\ 0 & n & n+1 \end{pmatrix}$$

- 8. (a) Posons $P = I_3$, alors P est inversible et $P^{-1} = I_3$, dès lors, $PAP^{-1} = I_3AI_3 = A$, donc A est semblable à A.
 - (b) Supposons que A est semblable à B, alors il existe $P \in GL_3(\mathbb{R})$ tel que $A = PBP^{-1}$, donc AP = PB, puis $P^{-1}AP = B$, posons alors $Q = P^{-1}$, ainsi, Q est inversible et $Q^{-1} = P$, ainsi, $B = QAQ^{-1}$ donc B est semblable à A.
 - (c) Supposons que A soit semblable à B et que B soit semblable à C, alors il existe P une matrice inversible telle que $A = PBP^{-1}$ et il existe Q une matrice inversible telle que $B = QCQ^{-1}$, Alors, $A = P(QCQ^{-1})P^{-1}$, posons R = PQ, alors R est inversible et $R^{-1} = Q^{-1}P^{-1}$ de sorte que $A = RCR^{-1}$, donc A est semblable à C.
 - (d) Supposons que A soit semblable à B donc il existe P une matrice inversible telle que $A = PBP^{-1}$, alors,

$$\det(A) = \det(PBP^{-1}) = \det(P)\det(B)\det(P^{-1})$$

Or, $\det(P^{-1}) = \det(P)^{-1}$, de sorte que

$$\det(A) = \det(P)\det(B)\det(P)^{-1} = \det(B)$$

- (e) Par contraposée, si $det(A) \neq det(B)$ alors A n'est pas semblable à B.
- 9. \bullet det $(T) = 1 \times 1 \times 1 \neq 0$ (matrice triangulaire) donc T est inversible.
 - D'après la question 8d, det(A) = det(T) = 1 donc A est aussi inversible.
 - De plus, $det(N) = 0 \times 0 \times 0 = 0$ (matrice triangulaire), donc N n'est pas inversible.

$$10.\ \ N^2 \ = \ \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix} = \ \begin{pmatrix} 0 & 0 & \gamma \alpha \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ puis } N^3 \ = \ N^2 N \ = \ \begin{pmatrix} 0 & 0 & \gamma \alpha \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix} = \ 0_3.$$

Proposons plusieurs méthodes pour inverser T:

• Rappelons que si C et D sont deux matrices qui commutent, $C^n - D^n = (C - D) \sum_{k=0}^{n-1} C^k D^{n-k}$, ici on applique ce résultat avec $C = I_3$, D = -N et n = 3 ce qui est possible car I_3 et -N commutent dans ce cas, et on obtient :

$$I_n^3 - (-N)^3 = (I_3 - (-N))(I_3 - N + N^2)$$

Comme $(-N)^3=-N^3=0_3$, on en déduit que $I_n=T\times (I_3-N+N^2)$, dès lors, $T^{-1}=I_3-N+N^2$

•
$$T \times (I_3 - N + N^2) = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & -\alpha & \gamma \alpha - \beta \\ 0 & 1 & -\gamma \\ 0 & 0 & 1 \end{pmatrix} = I_3 \text{ (après calcul) donc } T^{-1} = I_3 - N + N^2.$$

• On inverse T en faisant des opérations sur les lignes et en effectuant les mêmes opérations sur I_3 et on trouve que $T^{-1} = I_3 - N + N^2$ (flemme).

Comme $A = PTP^{-1}$, par produit de matrices inversibles, on a

$$A^{-1} = (P^{-1})^{-1}T^{-1}P^{-1} = PT^{-1}P^{-1} = P(I_3 - N + N^2)P^{-1}$$

- 11. Si $N=0_3$, alors $T=I_3$ et donc $A=PI_3P^{-1}=I_3$, donc $A=I_3$ est semblable à $A^{-1}=I_3$ d'après la question 8a.
- 12. Soient E et F deux \mathbb{K} -espace vectoriel avec E de dimension finie. Si $f \in \mathcal{L}(E,F)$ alors $\dim(E) = \dim(\operatorname{Ker}(f)) + \operatorname{rg}(f)$
- 13. (a) Soit $y \in \text{Im}(w)$, donc il existe $x \in \text{Ker}(u^{i+j})$ tel que $y = w(x) = u^j(x)$. Alors, $u^i(y) = u^i(u^j(x)) = u^{i+j}(x) = 0_E$ (car $x \in \text{Ker}(u^{i+j})$), dès lors, $y \in \text{Ker}(u^i)$. On a donc montré que $\text{Im}(w) \subset \text{Ker}(u^i)$.
 - (b) Soit $x \in \text{Ker}(w)$, alors $w(x) = u^j(x) = 0$, donc $x \in \text{Ker}(u^j)$, dès lors, $\text{Ker}(w) \subset \text{Ker}(u^j)$.
 - (c) D'après le théorème du rang appliqué à w, $\dim(\operatorname{Ker}(u^{i+j}) = \dim(\operatorname{Ker}(w)) + \dim(\operatorname{Im}(w))$. D'après les questions 13a et 13b, $\operatorname{Ker}(w) \subset \operatorname{Ker}(u^i)$ donc $\dim(\operatorname{Ker}(w)) \leq \dim(\operatorname{Ker}(u^i))$ et $\operatorname{Im}(w) \subset \operatorname{Ker}(u^i)$ donc $\dim(\operatorname{Im}(w)) \leq \dim(\operatorname{Ker}(u^j))$, ainsi, par somme d'inégalités

$$\dim(\operatorname{Ker}(u^{i+j})) = \dim(\operatorname{Ker}(w)) + \dim(\operatorname{Im}(w)) \leq \dim(\operatorname{Ker}(u^{i})) + \dim(\operatorname{Ker}(u^{j}))$$

- 14. (a) D'après le théorème du rang $3 = \dim(E) = \dim(\operatorname{Ker}(u)) + \operatorname{rg}(u)$ donc $\dim(\operatorname{Ker}(u)) = 1$.
 - (b) En appliquant 13c avec i = j = 1, on obtient $\dim(\operatorname{Ker}(u^2)) \leq \dim(\operatorname{Ker}(u)) + \dim(\operatorname{Ker}(u)) = 2$. En appliquant 13c avec i = 2 et j = 1, on obtient $\dim(\operatorname{Ker}(u^3)) \leq \dim(\operatorname{Ker}(u^2)) + \dim(\operatorname{Ker}(u))$. Comme $u^3 = 0$, $\operatorname{Ker}(u^3) = E$, donc $\dim(\operatorname{Ker}(u^3)) = 3$, ainsi, $2 \leq \dim(\operatorname{Ker}(u^2))$. Par double inégalité, $\dim(\operatorname{Ker}(u^2)) = 2$
 - (c) Comme $\operatorname{Ker}(u^2) \subset E$ et $\dim(\operatorname{Ker}(u^2)) < \dim(E)$, on peut en conclure, que $\operatorname{Ker}(u^2) \neq E$, ainsi, il existe $a \in E \backslash \operatorname{Ker}(u^2)$, comme $0_E \in \operatorname{Ker}(u^2)$, $a \neq 0$, comme $a \notin \operatorname{Ker}(u^2)$, $u^2(a) \neq 0_E$. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. Supposons que $\lambda_1 u^2(a) + \lambda_2 u(a) + \lambda_3 u(a) = 0_3$.
 - En composant par u^2 , on obtient, $\lambda_1 u^4(a) + \lambda_2 u^3(a) + \lambda_3 u^2(a) = 0_E$, comme $u^3 = 0$, $u^4 = u^3 \circ u = 0$, donc $\lambda_3 u^2(a) = 0_E$, comme $u^2(a) \neq 0_E$, on en déduit que $\lambda_3 = 0$.
 - Ainsi, $\lambda_1 u^2(a) + \lambda_2 u(a) = 0_E$, en composant par u, il vient $\lambda_2 u^2(a) = 0_E$, comme $u^2(a) \neq 0_E$, $\lambda_2 = 0$
 - Il en découle que $\lambda_1 u^2(a) = 0_E$. Encore une fois $u^2(a) \neq 0_E$ donc $\lambda_1 = 0$ Ainsi, $\mathcal{B}_a = (u^2(a), u(a), a)$ est une famille libre de plus, $|\mathcal{B}_a| = 3 = \dim(E)$, donc \mathcal{B}_a est une base de E.
 - (d) $u(u^2(a)) = 0_E = 0u^2(a) + 0u(a) + 0a$
 - $u(u(a)) = u^2(a) = 1u^2(a) + 0u(a) + 0a$
 - $u(a) = u(a) = 0u^2(a) + 1u(a) + 0u(a)$

donc $U = \operatorname{Mat}_{\mathscr{B}_a}(u) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. De plus, comme on sait que $f \mapsto \operatorname{Mat}_{\mathscr{B}_a(f)}$ est linéaire et que

 $\operatorname{Mat}_{\mathscr{B}_a}(f\circ g)=\operatorname{Mat}_{\mathscr{B}_a}(f)\times\operatorname{Mat}_{\mathscr{B}_a}(g),$ on peut en déduire que

$$V = \operatorname{Mat}_{\mathscr{B}_a}(u^2 - u) = \operatorname{Mat}_{\mathscr{B}_a}(u)^2 - \operatorname{Mat}_{\mathscr{B}_a}(u) = U^2 - U = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

- 15. (a) D'après le théorème du rang, $3 = \dim(\text{Ker}(u)) + \text{rg}(u)$ donc $\dim(\text{Ker}(u)) = 2$.
 - (b) Comme $\operatorname{rg}(u) = 1$, $u \neq 0$, donc il existe $b \in E$ tel que $u(b) \neq 0_E$, comme $u(0_E) = 0_E$, en particulier $b \neq 0_E$.
 - (c) $u(u(b)) = u^2(b) = 0_E$, donc $u(b) \in \text{Ker}(b)$, comme $u(b) \neq 0_E$, (u(b)) est une famille libre de Ker(b) on peut la compléter en une base de Ker(b), nécessairement une telle base contient deux vecteurs, ainsi, en notant c un tel vecteur, (u(b), c) est donc libre. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. Supposons $\lambda_1 b + \lambda_2 u(b) + \lambda_3 c = 0_E$.
 - En composant par u, il vient, $\lambda_1 u(b) + \lambda_2 u^2(b) + \lambda_3 u(c) = 0_E$, donc $\lambda_1 u(b) = 0_E$. Comme $u(b) \neq 0_E$, $\lambda_1 = 0$.

- Ainsi, $\lambda_2 u(b) + \lambda_3 c = 0_E$. Or, (u(b), c) est libre, on en déduit que $\lambda_2 = \lambda_3 = 0$. Par conséquent, $\mathcal{B}_b = (b, u(b), c)$ est une famille libre de E de plus, $|\mathcal{B}_b| = 3 = \dim(E)$, on en déduit que \mathcal{B}_b est une base de E.
- (d) u(b) = 0b + 1u(b) + 0c
 - $u(u(b)) = 0_E = 0b + 0u(b) + 0c$
 - $u(c) = 0_E = 0b + 0u(b) + 0c$

Donc
$$U' = \operatorname{Mat}_{\mathscr{B}_b}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. De plus,

$$V' = \operatorname{Mat}_{\mathscr{B}_b}(u^2 - u) = \operatorname{Mat}_{\mathscr{B}_b}(u)^2 - \operatorname{Mat}_{\mathscr{B}_b}(u) = U'^2 - U' = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

16. (a) Soit \mathscr{B} une base quelconque de E, d'après le cours $f\mapsto \operatorname{Mat}_{\mathscr{B}}(f)$ est un isomorphisme de $\mathscr{L}(E)$ vers $\mathscr{M}_3(\mathbb{R})$. En particulier, il existe $u\in\mathscr{L}(E)$ tel que $\operatorname{Mat}_{\mathscr{B}}(u)=N$. Alors, $\operatorname{Mat}_{\mathscr{B}}(u^3)=N^3=0_3$, d'après la question 10. Par injectivité, $u^3=0$. De plus, $\operatorname{rg}(u)=\operatorname{rg}(N)=2$. On peut donc appliquer le résultat des questions 14c et 14d, il existe a tel que $\mathscr{B}_a=(u^2(a),u(a),a)$ soit une base de E, alors $\operatorname{Mat}_{\mathscr{B}_a}(u)=U$. Par formule de changement de base, $N=PUP^{-1}$ avec $P=P_{\mathscr{B}\to\mathscr{B}_a}$. Ainsi,

 $N \text{ est semblable à } U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$

(b) Comme $M = N(N - I_3)$ et que N et $N - I_3$ commutent, $M^3 = N^3(N - I_3)^3 = 0_3(N - I_3) = 0_3$. De plus,

$$M = N^2 - N = (PUP^{-1})^2 - PUP^{-1} = PU^2P^{-1} - PUP^{-1} = P(U^2 - U)P^{-1} = PVP^{-1}$$

Or, multiplier par une matrice inversible (à gauche ou à droite) ne change pas le rang, donc $rg(M) = rg(PVP^{-1}) = rg(VP^{-1}) = rg(V)$. Or, V contient une colonne nulle ainsi que deux colonnes non colinéaires, donc rg(V) = 2. Ainsi, rg(M) = 2.

- (c) En appliquant le résultat de la question 16a à M (car cette matrice vérifie les mêmes propriétés que N: à savoir $M^3 = 0_3$ et $\operatorname{rg}(M) = 2$), on peut en déduire que M est semblable à U. Comme de plus, U est semblable à N (question 8b), on en déduit d'après la question 8c, que M est semblable à N.
- (d) D'après ce qui précède, il existe Q une matrice inversible telle que $M=QNQ^{-1}$. Ainsi, en utilisant la question 10,

$$A^{-1} = PTP^{-1} = P(I_3 + M)P^{-1} = P(I_3 + QNQ^{-1})P^{-1}$$

= $P(QI_3Q^{-1} + QNQ^{-1})P^{-1} = P(Q(I_3 + N)Q^{-1})P^{-1} = (PQ)(I_3 + N)(PQ)^{-1}$

Ainsi, A^{-1} est semblable à T, T est semblable à A donc A^{-1} est semblable à A (question 8c).

17.

18. Prenons $A = -I_3$, alors A est inversible et $A^{-1} = -I_3$, ainsi, d'après la question 8a, A est semblable

à $A = A^{-1}$. Supposons que A soit semblable à une matrice $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$, alors il existe P une

matrice inversible telle que $-I_3 = PTP^{-1}$, donc $T = P^{-1}(-I_3)P = P^{-1}P = I_3$ donc comme deux matrices égales ont mêmes coefficients, il en découle que I = -I ce qui est absurde. La réciproque est donc fausse.

Analye

1. Comme f est le quotient de deux fonctions dérivables sur \mathbb{R}_+ donc le dénominateur est strictement positif sur \mathbb{R}_+ , f est dérivable sur \mathbb{R}_+ et pour tout $x \in \mathbb{R}_+$,

$$f'(x) = \frac{1(e^x + 1) - xe^x}{(e^x + 1)^2} = \frac{(1 - x)e^x + 1}{(e^x + 1)^2}$$

- 2. Posons $g: x \mapsto (1-x)e^x + 1$, par produit et somme de fonctions dérivables sur \mathbb{R}_+ , g est dérivable sur \mathbb{R}_+ , et pour tout $x \in \mathbb{R}_+$, $g'(x) = -xe^x \le 0$, De plus, comme g' s'annule qu'en 0, on peut en déduire que g est strictement décroissante sur \mathbb{R}_+ . Remarquons que g(1) = 1 et $g(2) = 1 e^2 < 0$, ainsi, g(2) < 0 < g(1), comme g est continue sur [1;2], d'après le théorème des valeurs intermédiaires, il existe $\alpha \in [1;2]$ tel que $g(\alpha) = 0$, comme $g(2) < g(\alpha) = 0 < g(1)$, on peut aussi affirmer que $\alpha \in [1;2]$. De plus, comme g est strictement décroissante, elle est injective, donc g s'annule une et une seule fois sur \mathbb{R}_+ . De plus, comme, pour tout $x \ge 0$, $f'(x) = \frac{g(x)}{(e^x + 1)^2}$, f'(x) = 0 ssi g(x) = 0 ssi g(x) = 0 ssi g(x) = 0 ssi g(x) = 0 soi g(x) = 0
- 3. import numpy as np

4. On a $(1-\alpha)e^{\alpha} + 1 = 0$, comme $1-\alpha < 0$, on a $e^{\alpha} = \frac{1}{\alpha - 1}$ donc

$$f(\alpha) = \frac{\alpha}{e^{\alpha} + 1} = \frac{\alpha}{\frac{1}{\alpha - 1} + 1} = \frac{\alpha(\alpha - 1)}{1 + (\alpha - 1)} = \alpha - 1$$

5. Commençons par faire le $DL_2(0)$ d'exponentielle 1 :

$$f(x) = \frac{x}{1+x+\frac{x^2}{2}+\mathcal{O}(x^2)+1} = \frac{x}{2+x+\frac{x^2}{2}+\mathcal{O}(x^2)} = \frac{x}{2} \times \frac{1}{1+\frac{x}{2}+\frac{x^2}{4}+\mathcal{O}(x^2)}$$

On pose alors $u = \frac{x}{2} + \frac{x^2}{4} + \mathcal{O}(x^2) \xrightarrow[x \to 0]{} 0$, alors $u^2 = \frac{x^2}{4} + \mathcal{O}(x^2)$, comme $u^2 \sim \frac{x^2}{4}$, $\mathcal{O}(u^2) = \mathcal{O}(x^2)$. Ainsi,

$$f(x) = \frac{x}{2} \times \frac{1}{1+u} = \frac{x}{2}(1-u+u^2+\mathcal{O}(u^2))$$

$$= \frac{x}{2}\left[1-\left(\frac{x}{2}+\frac{x^2}{4}+\mathcal{O}(x^2)\right)+\left(\frac{x^2}{4}+\mathcal{O}(x^2)\right)\right)+\mathcal{O}(x^2)\right]$$

$$= \frac{x}{2}\left(1-\frac{x}{2}+\mathcal{O}(x^2)\right)$$

$$= \frac{x}{2}-\frac{x^2}{4}+\mathcal{O}(x^3)$$

6. Ainsi, par troncature à l'ordre 1, $y = \frac{x}{2}$ est la tangente de f en 0, $f(x) - \frac{x}{2} \sim -\frac{x^4}{4}$, comme deux fonctions équivalentes en 0 ont même signe au voisinage de 0, on en déduit que f est en dessous de sa tangente en 0 au voisinage de 0.

^{1.} À l'ordre 2, car on a anticipé le x au numérateur qui fera gagner un ordre à la toute fin.

- 7. Comme g est strictement décroissante sur \mathbb{R}_+ , pour tout $x \in [0; \alpha[, g(x) > g(\alpha) = 0, \text{ ainsi}, f' \text{ est strictement positive sur } [0; \alpha[\text{ et } f'(\alpha) = 0, \text{ donc } f \text{ est strictement croissante sur } [0; \alpha].$ De même, comme g est strictement décroissante sur \mathbb{R}_+ , pour tout $x \in]\alpha; +\infty[, g(x) < g(\alpha) = 0, \text{ ainsi}, f'(x) < 0 \text{ et } f'(\alpha) = 0, \text{ donc } f \text{ est strictement décroissante sur } [\alpha; +\infty[.$
 - De plus, f(0) = 0, $f(x) \sim \frac{x}{e^x} \xrightarrow[x \to +\infty]{} 0$ (par croissance comparée).

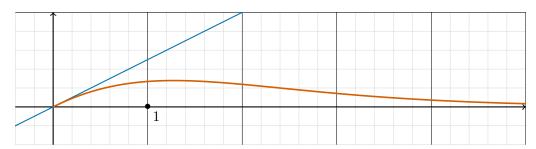


FIGURE 1 – La courbe de f en rouge avec la tangente en 0 en bleu.

8. Notons $m: x \mapsto e^x + 1$, par quotient de fonctions de classe \mathscr{C}^n sur \mathbb{R}_+ dont le dénominateur ne s'annule pas f est de classe \mathscr{C}^n tout comme m. De plus, $m^{(0)}: x \mapsto e^x + 1$, tandis que pour tout $i \in \mathbb{N}^*$, $m^{(i)}: x \mapsto e^x$. Appliquons la formule de Leibniz à $f \times m: x \mapsto x$, (avec $n \ge 2$):

$$\sum_{i=0}^{n} \binom{n}{i} f^{(i)} m^{(n-i)} = 0$$

En isolant le terme pour i = n, il vient

$$f^{(n)} : x \mapsto \frac{-e^x}{e^x + 1} \sum_{i=0}^{n-1} \binom{n}{i} f^{(i)}(x)$$

- 9. Comme f est strictement croissante et continue sur $[0; \alpha]$, d'après le théorème de la bijection strictement monotone, f réalise une bijection de $[0; \alpha]$ vers $J = f([0; \alpha]) = [f(0); f(\alpha)] = [0; \alpha 1]$
- 10. Soit $n \in \mathbb{N}^*$, alors $0 \leq \frac{\alpha 1}{n} \leq \alpha 1$, il en découle que $\frac{\alpha 1}{n} \in J$, or, f réalise une bijection de $[0; \alpha]$ vers J, ainsi, $\frac{\alpha 1}{n}$ admet un unique antécédent dans $[0; \alpha]$. Ainsi, il existe un unique $u_n \in [0; \alpha]$ tel que $f(u_n) = \frac{\alpha 1}{n}$. Remarquons que $u_n = h\left(\frac{\alpha 1}{n}\right)$.
- 11. Comme f est strictement croissante sur $[0; \alpha]$, on en déduit que h est aussi strictement croissante. Soit $n \in \mathbb{N}^*$, remarquons que $\frac{\alpha-1}{n+1} < \frac{\alpha-1}{n}$, par croissance stricte de h, on en déduit que

$$h\left(\frac{\alpha-1}{n+1}\right) < h\left(\frac{\alpha-1}{n}\right)$$

Donc $u_{n+1} < u_n$. Ainsi, la suite $(u_n)_n$ est strictement décroissante.

- 12. Comme f est continue sur $[0; \alpha]$, h est aussi continue sur J en particulier en 0, or, $\frac{\alpha 1}{n} \xrightarrow[n \to \infty]{} 0$, donc d'après la caractérisation séquentielle de la continuité en 0, $h\left(\frac{\alpha 1}{n}\right) \xrightarrow[n \to \infty]{} h(0)$, or f(0) = 0, donc h(0) = 0, on en déduit que $u_n \xrightarrow[n \to \infty]{} 0$
- 13. La fonction f est dérivable en 0 et $f'(0) = 1/2 \neq 0$, d'après le théorème de dérivabilité de la bijection réciproque, on en déduit que h est dérivable en 0 = f(0) et que

$$h'(0) = \frac{1}{f'(h(0))} = \frac{1}{f'(0)} = 2$$

Dès lors, comme h est dérivable en 0, h admet un $DL_1(0)$:

$$h(x) = h(0) + xh'(0) + O(x) = 2x + O(x) \sim 2x$$

En particulier, $h\left(\frac{\alpha-1}{n}\right) \sim 2\frac{\alpha-1}{n}$. On en déduit que $u_n \sim 2\frac{\alpha-1}{n}$

- 14. Soit $x \in \mathbb{R}_+$, alors $k(x) = x \sin 1 + e^{-x} = x \sin e^x + 1 = xe^x \sin e^x (1-x) + 1 = 0 \sin g(x) = 0 \sin x = \alpha$
- 15. Comme $\alpha > 1$, $\alpha = k(\alpha) = 1 + e^{-\alpha} < 1 + e^{-1}$ (par croissance stricte d'exponentielle), ainsi, $\alpha 1 < e^{-1}$
- 16. Remarquons que k est continue sur $[1; +\infty[$, dérivable sur $]1; +\infty[$, de plus pour tout x > 1,

$$|k'(x)| = |-e^{-x}| = e^{-x} < e^{-1}$$

D'après l'inégalité des accroissements finis, k est e^{-1} -lipschitzienne sur $[1; +\infty[$. En particulier, pour tout $x \ge 1$, $|k(x) - k(\alpha)| \le e^{-1}|x - \alpha|$ comme $k(\alpha) = \alpha$, $|k(x) - \alpha| \le e^{-1}|x - \alpha|$

- 17. Remarquons que $[1; +\infty[$ est un intervalle stable par k, en effet si $x \ge 1$, $k(x) = 1 + e^{-x} \ge 1$. Ainsi, pour tout $n \in \mathbb{N}$, $v_n \in [1; +\infty[$. Posons, pour $n \in \mathbb{N}$, $\mathscr{P}(n) : \langle v_n \alpha | \le e^{-(n+1)} \rangle$
 - Pour n = 0, $|v_0 \alpha| = \alpha 1 < e^{-1}$ (question 15) donc $\mathcal{P}(0)$ est vraie.
 - Soit $n \in \mathbb{N}$, supposons $\mathscr{P}(n)$ vraie. Alors, comme $v_n \ge 1$, d'après la question 16, il en découle que

$$|v_{n+1} - \alpha| = |k(v_n) - \alpha| \le e^{-1}|v_n - \alpha| \le e^{-1}e^{-n-1} = e^{-(n+2)}$$

Ainsi, $\mathcal{P}(n+1)$ est vraie.

- Par récurrence, pour tout $n \in \mathbb{N}$, $|v_n \alpha| \leq e^{-n-1}$
- 18. Comme $e^{-n-1} \xrightarrow[n \to \infty]{} 0$, par le théorème des gendarmes, on en déduit que $v_n \alpha \xrightarrow[n \to \infty]{} 0$ donc que $v_n \xrightarrow[n \to \infty]{} \alpha$, il suffit d'approximer α par v_n avec n assez grand :

import numpy as np

```
def Approximation(epsilon):
```

```
assert epsilon > 0 v = 1 \# v = v_0 E = np.exp(-1) \# majoration de l'erreur pour n = 0 r = np.exp(-1) \text{while E > epsilon:} v = 1 + np.exp(-v) \# v_1 \{n+1\} = k(v_n) E = E * r \# la \ majoration \ de \ l'erreur \ est \ une \ suite \ g\'eom\'etrique \ de \ raison \ r \# Quand \ la \ boucle \ while \ s'arr\^ete, \ cela \ veut \ dire \ que \ e^{-n-1} < epsilon \# donc \ que \ |v_n-alpha| < epsilon return \ v
```

19. Dans la dichotomie, l'erreur est majorée par 2^{-n} , dans la méthode qui précède l'erreur est majorée par e^{-n-1} , comme $e^{-n-1} = \mathcal{O}(2^{-n})$, on en déduit que la seconde méthode converge plus rapidement.