Pot-pourri de calculs

1.
$$f(x) = e^{1-\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6)} = e^1 e^{-\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6)}$$
. On pose $u = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6)$, alors $u \xrightarrow[x \to 0]{} 0$ et

•
$$u^2 = \frac{x^4}{4} - \frac{x^6}{24} + o(x^6)$$

•
$$u^3 = u \times u^2 = -\frac{x^6}{8} + o(x^6) \sim -\frac{x^6}{8}$$

• ainsi, $o(u^3) = o(x^6)$

• ainsi,
$$o(u^3) = o(x^6)$$

$$f(x) = e \times e^{u} = e \left(1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + o(u^{3})\right)$$

$$= e \left(1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} - \frac{x^{6}}{720} + o(x^{6}) + \frac{\frac{x^{4}}{4} - \frac{x^{6}}{24} + o(x^{6})}{2} + \frac{-\frac{x^{6}}{8} + o(x^{6})}{6} + o(x^{6})\right)$$

$$= e - \frac{ex^{2}}{2} + \frac{ex^{4}}{6} - \frac{e31x^{6}}{720} + o(x^{6})$$

- 2. Par composée de fonctions de classe \mathscr{C}^6 sur \mathbb{R} , f est de classe \mathscr{C}^6 , ainsi d'après la formule de Taylor-Young, la fonction f admet un développement limité en 0 à l'ordre 6 et le coefficient devant x^6 , vaut $\frac{f^{(6)}(0)}{720}$. Par unicité d'un développement limité, $f^{(6)}(0) = -31e$.
- 3. $\det(M) = \begin{bmatrix} x & 0 & y & x \\ 0 & y & 0 & x \\ 0 & x & 0 & y \\ 0 & y & y & x \end{bmatrix}$, en développant suivant la première colonne, on obtient $\det(M) = (-1)^2 x \begin{vmatrix} y & 0 & x \\ x & 0 & y \\ y & y & x \end{vmatrix}$, en développant suivant la deuxième colonne, on obtient

$$\det(M) = xy(-1)^{3+2} \begin{vmatrix} y & x \\ x & y \end{vmatrix} = xy(x^2 - y^2) = xy(x - y)(x + y)$$

- 4. Si X prend la valeur 1, Y vaut 1, si X prend la valeur 2, Y vaut 0, si X prend la valeur 3, Y prend la

 - valeur 1 et si X prend la valeur 4, $Y = 2^4 = 16$, ainsi, $Y(\Omega) = \{0, 1, 16\}$.

 $\mathbb{P}(Y = 0) = \mathbb{P}((X 2)^4 = 0) = \mathbb{P}(X = 0) = \frac{1}{4}$ $\mathbb{P}(Y = 1) = \mathbb{P}((X 2)^4 = 1) = \mathbb{P}(X 2 = 1 \bigcup X 2 = -1) = \mathbb{P}(X = 3 \bigcup X = 1) = \mathbb{P}(X = 3) + \mathbb{P}(X = 1) = \frac{1}{2}$ (l'union est disjointe)
 - $\mathbb{P}(Y=16) = \mathbb{P}((X-2)^4 = 2^4) = \mathbb{P}(X-2=2 \cup X-2=-2) = \mathbb{P}(X=4) + \mathbb{P}(X=0) = \frac{1}{4} + 0$ (union disjointe)
- 5. Par définition de l'espérance, $\mathbb{E}(Y) = 0\mathbb{P}(X = 0) + 1\mathbb{P}(Y = 1) + 16\mathbb{P}(Y = 16) = \frac{1}{2} + 16\frac{1}{4} = \frac{9}{2}$. D'après la formule de König-Huygens, $\mathbb{V}(Y) = \mathbb{E}(Y^2) \mathbb{E}(Y)^2$, on calcule $\mathbb{E}(Y^2)$ à l'aide de la formule de transfert,

$$\mathbb{E}(Y^2) = 0^2 \mathbb{P}(Y = 0) + 1^2 \mathbb{P}(Y = 1) + 16^2 \mathbb{P}(Y = 16) = \frac{1}{2} + 64 = \frac{129}{2}$$

ainsi,
$$\mathbb{V}(Y) = \frac{129}{2} - \frac{81}{4} = \frac{258 - 81}{4} = \frac{177}{4}$$

6. Soit un entier $n \ge 3$. En développant sur la première ligne, on obtient

$$\det(A_n) = 1 \times (-1)^{1+1} \det(A_{n-1}) + (-1)^{n+1} \times 1 \times \det(B_{n-1})$$

où B_{n-1} est la matrice obtenue en supprimant la première ligne et la dernière colonne de A_n . En développant, suivant la première colonne de B_{n-1} ,

$$\det(B_{n-1}) = 1 \times (-1)^{(n-1)+1} \det(I_{n-2}) = (-1)^n$$

donc $\det(A_n) = \det(A_{n-1}) - 1$. Ainsi, $(\det(A_n))_{n \ge 2}$ est une suite arithmétique de raison -1. Comme $\det(A_1) = 1$, $\det(A_2) = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$, alors, pour tout entier $n \ge 3$, $\det(A_n) = \det(A_2) - (n-2) = 2 - n$. On peut en conclure que pour tout $n \in \mathbb{N}^*$, $\det(A_n) = 2 - n$.

- 7. On tire un ensemble de trois boules parmi les 10, il y a donc $\binom{10}{3} = \frac{10 \times 9 \times 8}{6} = 120$ tirages possibles.
- 8. Il y a cinq nombres impairs, ainsi, il y a $\binom{5}{3} = \frac{5 \times 4}{2} = 10$ tirages avec que des nombres impairs, ainsi il y 120 - 10 = 110 tirages avec au moins un nombre pair.

Un exercice d'actualité

1. Soit $(x,y) \in \mathbb{C}^2$, $(x',y') \in \mathbb{C}^2$ et $\lambda \in \mathbb{C}$:

$$f(\lambda(x,y) + (x',y')) = f(\lambda x + x', \lambda y + y') = ((\lambda x + x') + (\lambda y + y'), a(\lambda y + y'))$$

= $\lambda(x + y, ax) + (x' + y', ay') = \lambda f(x,y) + f(x',y')$

Ainsi, $f: \mathbb{C}^2 \to \mathbb{C}^2$ est un endomorphisme de \mathbb{C}^2 .

2. $\mathscr{B} = ((1,0),(0,1), \text{ ainsi } f(1,0) = (1,0) = 1(1,0) + 0(0,1) \text{ et } f(0,1) = (1,a) = 1(1,0) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,0) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) = 1(1,a) + a(0,1), \text{ ainsi, } f(0,1) = (1,a) + a(0,1), \text{ a$ $C = \operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} f(1,0) & (f(0,1)) \\ 1 & 1 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1,0 \\ 0,1 \end{pmatrix}$

$$(1,0)$$
 $(1,a-1)$

- $3. \det_{\mathscr{B}}(\mathscr{B}') = \begin{vmatrix} (1,0) & (1,a-1) \\ 1 & 1 \\ 0 & a-1 \end{vmatrix} \begin{vmatrix} (1,0) \\ (0,1) \end{vmatrix} = 1 \times (a-1) \neq 0 \text{ (car } a \neq 1), \text{ ainsi } \mathscr{B}' \text{ est une base de } \mathbb{C}^2.$

$$f(1,0) = (1,0) = 1(1,0) + 0(0,1)$$
• $f(1,a-1) = (a, a(a-1)) = 0(1,0) + a(1,a-1)$

$$f(1,0) \quad f(1,a-1)$$
Ainsi, $D = \text{Mat}_{\mathscr{B}'}(f) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1,0 \\ 1,a-1 \end{pmatrix}$

4. D'après la formule de changement de base $C = PDP^{-1}$ avec $P = P_{\mathscr{B} \to \mathscr{B}'} = \begin{pmatrix} 1 & 1 \\ 0 & a-1 \end{pmatrix}$, la matrice de passage de \mathcal{B} à \mathcal{B}' . Ainsi, pour tout $p \in \mathbb{N}$,

$$C^{p} = PD^{p}P^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & a - 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & a^{p} \end{pmatrix} \frac{1}{a - 1} \begin{pmatrix} a - 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$= \frac{1}{a - 1} \begin{pmatrix} 1 & a^{p} \\ 0 & (a - 1)a^{p} \end{pmatrix} \begin{pmatrix} a - 1 & -1 \\ 0 & 1 \end{pmatrix} = \frac{1}{a - 1} \begin{pmatrix} a - 1 & a^{p} - 1 \\ 0 & (a - 1)a^{p} \end{pmatrix} = \begin{pmatrix} 1 & \frac{a^{p} - 1}{a - 1} \\ 0 & a^{p} \end{pmatrix}$$

5. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soient $(M, M', \lambda) \in \mathcal{M}_n(\mathbb{C})^2 \times \mathbb{C}$, alors par distributivité du produit matriciel,

$$\phi_A(\lambda M + M') = A(\lambda M + M') = \lambda AM + AM' = \lambda \phi_A(M) + \phi_A(M')$$

Ainsi, ϕ_A est linéaire.

6. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Pour tout $M \in \mathcal{M}_n(\mathbb{C})^2$, par associativité du produit matriciel,

$$\phi_{AB}(M) = (AB)M = A(BM) = A(\phi_B(M)) = \phi_A(\phi_B(M)) = (\phi_A \circ \phi_B)(M)$$

Ainsi, ϕ_{AB} et $\phi_A \circ \phi_B$ sont deux applications définies sur $\mathcal{M}_n(\mathbb{C})$ à valeurs dans $\mathcal{M}_n(\mathbb{C})$ qui prennent la même image en tout $M \in \mathcal{M}_n(\mathbb{C})$, dès lors $\phi_{AB} = \phi_A \circ \phi_B$

7. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Supposons A inversible, alors d'après la question précédente, $\phi_A \circ \phi_{A^{-1}} = \phi_{A \times A^{-1}} = \phi_{I_n} \colon M \mapsto I_n \times M$, ainsi, $\phi_A \circ \phi_{A^{-1}} = \operatorname{Id}_{\mathcal{M}_n(\mathbb{C})}$, de même $\phi_{A^{-1}} \circ \phi_A = \operatorname{Id}_{\mathcal{M}_n(\mathbb{C})}$, ceci prouve que ϕ_A est un automorphisme. Réciproquement, si ϕ_A est un automorphisme, alors il est surjectif, ainsi I_n admet un antécédent par ϕ_A noté $B \in \mathcal{M}_n(\mathbb{C})$, donc $I_n = \phi_A(B) = AB$, or, d'après le cours, comme A est une matrice carrée, nécessairement A est inversible.

8. •
$$\phi_A \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = A \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
• $\phi_A \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = A \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
• $\phi_A \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = A \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & 0 \end{pmatrix} = 1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
• $\phi_A \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = A \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & a \end{pmatrix} = 0 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

- Ainsi, $F = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix}$
- 9. Pour $z \in \mathbb{C}$, $F zI_4$ est une matrice triangulaire supérieure, ainsi son déterminant vaut le produit des éléments de la diagonale, ainsi, $\det(F zI_4) = (1 z)^2(a z)^2$. Ainsi, les $z \in \mathbb{C}$ tels que $M zI_4$ ne soit pas inversibles sont exactement z = 1 et z = a.
- 10. $F I_4 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & a 1 & 0 \\ 0 & 0 & 0 & a 1 \end{pmatrix}$, notons C_1 , C_2 , C_3 et C_4 les colonnes de $F I_4$, alors $\operatorname{rg}(F I_4) = \operatorname{rg}(C_1, C_2, C_3, C_4)$, comme C_1 et C_2 sont nulles, $\operatorname{rg}(F I_4) = \operatorname{rg}(C_3, C_4) = 2$ (car C_3 et C_4 sont non colinéaires).
 - $F-aI_4 = \begin{pmatrix} 1-a & 0 & 1 & 0 \\ 0 & 1-a & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, notons C_1 , C_2 , C_3 et C_4 les colonnes de $F-aI_4$, alors $\operatorname{rg}(F-aI_4) = \operatorname{rg}(C_1, C_2, C_3, C_4)$, comme $C_1 = (1-a)C_3$ et $C_2 = (1-a)C_4$, $\operatorname{rg}(F-I_4) = \operatorname{rg}(C_3, C_4) = 2$ (car C_3 et C_4 sont non colinéaires).
- 11. Si $G \in \mathcal{M}_{n,p}(\mathbb{K})$, alors $\dim(\text{Ker}(G)) + \text{rg}(G) = p$ (nombre de colonnes de G).
- 12. D'après le théorème du rang pour les matrices dim $(\text{Ker}(F-I_4))+\text{rg}(F-I_4)=4$, donc $\text{Ker}(F-I_4)$ est de dimension 2. En notant C_1 , C_2 , C_3 et C_4 ses colonnes, on a $C_1=0$ donc $1C_1+0C_2+0C_3+0C_4=0$, ainsi $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ est dans le noyau de $\text{Ker}(F-I_4)$, de même, $C_2=0$, ainsi $\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$ est dans le noyau de $\text{Ker}(F-I_4)$.

 $\operatorname{Ker}(F-I_4)$, on a ainsi deux vecteurs non colinéaires appartenant au noyau qui est de dimension

2, ainsi
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ est une base de $Ker(F - I_4)$

• D'après le théorème du rang pour les matrices $\dim(\text{Ker}(F-aI_4)) + \text{rg}(M-aI_4) = 4$, donc $\text{Ker}(F-aI_4)$ est de dimension 2. En notant C_1 , C_2 , C_3 et C_4 ses colonnes, on a $C_1 = (1-a)C_3$ donc

a
$$I_4$$
) est de dimension 2. En notant C_1 , C_2 , C_3 et C_4 ses colonnes, on a $C_1 = (1-a)C_3$ donc $1C_1 + 0C_2 + (a-1)C_3 + 0C_4 = 0$, ainsi $\begin{pmatrix} 1 \\ 0 \\ a-1 \\ 0 \end{pmatrix}$ est dans le noyau de $Ker(F - aI_4)$, de même,

 $C_2 = (1-a)C_4$, ainsi $\begin{pmatrix} 0\\1\\0\\a-1 \end{pmatrix}$ est dans le noyau de $\operatorname{Ker}(M-I_4)$, on a ainsi deux vecteurs non

colinéaires appartenant au noyau qui est de dimension 2, ainsi
$$\begin{pmatrix} 1 \\ 0 \\ a-1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \\ a-1 \end{pmatrix}$) est une base de $\text{Ker}(F-aI_4)$

- 13. Par linéarité, la matrice de $\phi_A \operatorname{Id}_{\mathscr{M}_2(\mathbb{C})}$ dans \mathscr{C} est $F I_4$, ainsi, $M \mapsto \operatorname{Mat}_{\mathscr{C}}(M)$ réalise un isomorphisme de $\operatorname{Ker}(\phi_A \operatorname{Id}_{\mathscr{M}_2(\mathbb{C})})$ vers $\operatorname{Ker}(F I_4)$, et donc l'isomorphisme réciproque transforme une base de $\operatorname{Ker}(F - I_4)$ en une base de $\operatorname{Ker}(\phi_A - \operatorname{Id}_{\mathscr{M}_2(\mathbb{C})})$, ainsi, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est une base de $\operatorname{Ker}(\phi_A - \operatorname{Id}_{\mathscr{M}_2(\mathbb{C})})$, de même $\left(\begin{pmatrix} 1 & 0 \\ a-1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & a-1 \end{pmatrix}\right)$ est une base de $\operatorname{Ker}(\phi_A - a\operatorname{Id}_{\mathscr{M}_2(\mathbb{C})})$
- 14. $\det_{\mathscr{C}}(\mathscr{C}') = \begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & a-1 & 0 \\ 0 & 0 & 0 & a-1 \end{vmatrix} = 1^2(a-1)^2 \neq 0$ (déterminant d'une matrice triangulaire supérieure), ainsi \mathscr{C}' set

15. Posons $(E_1, E_2, E_3, E_4) = \mathscr{C}'$:

- $E_1 \in \text{Ker}(\phi_A \text{Id}_{\mathcal{M}_2(\mathbb{C})}), \ \phi_A(E_1) E_1 = 0_2 \ \text{donc} \ \phi_A(E_1) = E_1 = 1E_1 + 0E_2 + 0E_3 + 0E_4$ De même $\phi_A(E_2) = E_2 = 0E_1 + 1E_2 + 0E_3 + 0E_4$.
- En revanche, $E_3 \in \text{Ker}(\phi_A a \text{Id}_{\mathscr{M}_2(\mathbb{C})}), \ \phi_A(E_3) a E_3 = 0_2 \ \text{donc} \ \phi_A(E_3) = a E_3 = 0 E_1 + 0 E_2 + 0 E_3 = 0$ $aE_3 + 0E_4$

$$\bullet \text{ De même } \phi_A(E_4) = aE_4 = 0E_1 + 0E_2 + 0E_3 + aE_4$$

$$\text{Ainsi : Mat}_{\mathscr{C}'}(\varphi_A) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix}$$

16. En notant Δ la matrice déterminée à la question précédente, on a $F=P\Delta P^{-1}$ avec $P=P_{\mathscr{C}\to\mathscr{C}'}=P_{\mathscr{C}\to\mathscr{C}'}=P_{\mathscr{C}\to\mathscr{C}'}$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & a - 1 \end{pmatrix}$$
la matrice de changement de base de $\mathscr C$ vers $\mathscr C'$

- 17. Le calcul du déterminant de ϕ_A repose sur les points suivants :
 - Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, on détermine la matrice de ϕ_A dans la base cannonique en fonction de a, b, c et d, puis on calcule le déterminant et on obtient $det(A)^2$ (exercice démontré en TD).
 - En taille n, on conjecture alors que $\det(\phi_A) = \det(A)^n$, on va montrer que cette formule est vraie.
 - Si A n'est pas inversible alors $\det(A) = 0$ et ϕ_A n'est pas un automorphisme d'après la question 7. Ainsi, $\det(\phi_A) = 0$ et donc la formule $\det(\phi_A) = \det(A)^n$. est vraie dans ce cas.
 - Traitons le cas où A est inversible. Cela veut dire que l'on peut calculer l'inverse de A en partant de A et en faisant des opérations sur les lignes, on obtient identité, comme effectuer des opérations sur les lignes de A revient à multiplier A à gauche par des matrices d'opérations élémentaires, on obtient que $P_1P_2...P_rA = I_n$, comme ces matrices d'opérations sont inversibles, on obtient, $A = P_r^{-1} \dots P_2^{-1} P_1^{-1}$, et comme l'inverse d'une matrice d'opérations élémentaires, est une matrice d'opérations élémentaires, A est un produit de matrices d'opérations élémentaires.
 - Ainsi, $A=Q_1Q_2\dots Q_r$, comme $\phi_{Q_1Q_2}=\phi_{Q_1}\varphi_{Q_2}$ (question 6), par récurrence sur r, on obtient que $\varphi_A = \varphi_{Q_1} \circ \varphi_{Q_2} \circ \ldots \circ \varphi_{Q_r}$, ainsi, $\det(\phi_A) = \prod_{i=1}^s \det(\varphi_{Q_i})$
 - Si on admet (provisoirement) que pour une matrice d'opération élémentaire Q, $\det(\varphi_Q) = \det(Q)^n$, alors on obtient

$$\det(\varphi_A) = \prod_{i=1}^{s} (\det(Q_i)^n) = \left(\prod_{i=1}^{s} \det(Q_i)\right)^n = (\det(Q_1 Q_2 \dots Q_s))^n = \det(A)^n$$

• Il reste donc à montrer le résultat pour les matrices d'opérations élémentaires : on considère $\mathscr{B} =$ $(E_{1,1}, E_{2,1}, \ldots, E_{1,n}, E_{2,1}, \ldots, E_{2,n}, E_{3,1}, \ldots, E_{n,n})$ la base canonique de $\mathcal{M}_n(\mathbb{C})$ dont les matrices sont rangés d'abord par ordre croissante d'indice de lignes, puis par indice de ligne égale, on range par ordre croissante d'indices de colonnes

- Pour une matrice de dilatation $D_a(\lambda)$. Alors, $\varphi_{D_a(\lambda)} = D_a(\lambda)E_{i,j}$ et vaut $E_{i,j}$ si $i \neq a$ et vaut $\lambda E_{i,j}$ si j=a. Ainsi, toutes les colonnes de la matrice de $\phi_{D_a(\lambda)}$ vont avoir un 1 sur la diagonale et des zéros ailleurs, sauf les n dont l'indice de ligne commence par a et il en a n. Ainsi, on a une matrice diagonale dont n terme valent λ et les autres 1 donc $\det(\phi_{D_a(\lambda)}) = \lambda^n = \det(D_a(\lambda))^n$.
- Pour une matrice de transposition $P_{a,b}$ avec $(a,b) \in [1;n]$. Alors si $(i,j) \in [1;n]$, $\varphi_{P_{a,b}}(E_{i,j})$ échange la a-ième ligne et la b-ième ligne de $E_{i,j}$. Si $i \neq a$ et $i \neq b$, alors on échange deux lignes nulles ce qui ne change pas la matrice, ainsi $\varphi_{P_{a,b}}(E_{i,j}) = E_{i,j}$, ainsi dans la matrice de $\varphi_{P_{a,b}}$ dans la base canonique, dans la colonne qui représente l'image $E_{i,j}$, il y a aura un 1 en position diagonale et des zéros égales. Si i = a, alors $\varphi_{P_{a,b}}(E_{i,j}) = E_{b,j}$ et si i = b alors $\varphi_{P_{a,b}}(E_{i,j}) = E_{a,j}$. Ainsi, dans la matrice de $\varphi_{P_{a,b}}$ il y aura 1 à la ligne qui correspondant à $E_{b,j}$ dans la colonne de $E_{a,j}$ et 1 à la ligne qui correspondant à $E_{a,j}$ dans la colonne de $E_{b,j}$. Ainsi, à j fixé il y a deux lignes à inverser, et comme $j \in [1; n]$. Il y a donc 2n 1 qui ne sont pas à leur place, il faut faire n permutations de lignes, or échanger deux lignes multiplie le déterminant par -1. Ainsi, en faisant n permutations, on multiplie le déterminant par $(-1)^n$ avant d'obtenir la matrice identité. Donc, $\det(\varphi_{a,b}) = (-1)^n = (\det(P_{a,b}))^n$.
- Pour une matrice de transvection $T_{a,b}(\lambda)$ avec $(a,a) \in [[1;n]]^2$ avec $a \neq b$ et $\lambda \in \mathbb{C}$, $\varphi_{T_{a,b}(\lambda)}(E_{i,j}) =$ $E_{i,j} + \lambda \delta_{a,i} E_{a,j}$. Supposons a > b (le cas b < a se traite de façon similaire). Si $i \neq b$, alors $\varphi_{T_{a,b}(\lambda)}(E_{i,j}) = E_{i,j}$ il y aura donc 1 en position diagonale sur la colonne qui représente l'image de $E_{i,j}$ et des zéros ailleurs. Si i=b, alors $\varphi_{T_{a,b}(\lambda)}(E_{i,j})=E_{i,j}+\lambda E_{a,j}$, ainsi sur la colonne qui représente l'image de $E_{i,j}$ il y aura un 1 en position diagonale et un àlambda à la ligne que représente $E_{a,j}$ mais comme i=b>a ce λ sera sous la diagonale. Ainsi, la matrice de $\varphi_{T_{a,b}}$ dans la base canonique est triangulaire inférieure et ne contient que des 1 sur la diagonale, ainsi, $\det(\varphi_{T_{a,b}}) = 1 = \det(T_{a,b})^n.$
- On a donc montré que $\det(\phi_A) = \det(A)^n$

Encore un exercice de boules et billes

- 1. Il y a initialement n billes roses sur un total de n+1 billes indiscernables, ainsi $\mathbb{P}(R_1) = \frac{n}{n+1}$
- 2. Soit A_1, A_2, \ldots, A_n un système complet d'évènements et B un évènement, alors

$$\mathbb{P}(B) = \sum_{k=1}^{n} \mathbb{P}(A_k \cap B) = \sum_{k=1}^{n} \mathbb{P}(B|A_k)\mathbb{P}(A_k)$$

3. Le deuxième tirage survient après le premier, mais le premier a pu donné une boule rose ou verte, ainsi R_1 et $\overline{R_1}$ forment un système complet d'évènements, ainsi d'après la formule des probabilités totales,

$$\mathbb{P}(R_2) = \mathbb{P}(R_2|R_1)\mathbb{P}(R_1) + \mathbb{P}(R_2|\overline{R_1})\mathbb{P}(\overline{R_1})$$

- $\mathbb{P}(R_1) = \frac{n}{n+1}$ (d'après la question 1)
- Si on sait que l'évènement R_1 s'est produit, alors il reste n-1 billes roses sur un total de n donc $\mathbb{P}(R_2|R_1) = \frac{n-1}{n}.$
- Si on sait que l'évènement $\overline{R_1}$ s'est produit, alors c'est qu'on a tiré la bille vert, alors il reste n

billes roses sur un total de
$$n$$
 donc $\mathbb{P}(R_2|\overline{R_1}) = 1$
• $\mathbb{P}(\overline{R_1}) = 1 - \mathbb{P}(R_1) = 1 - \frac{n}{n+1} = \frac{1}{n+1}$

$$\mathbb{P}(R_2) = \frac{n-1}{n} \times \frac{n}{n+1} + \frac{n}{n+1} \times 1 = \frac{n}{n+1}$$

4. D'après la formule de Bayes,

$$\mathbb{P}(R_1|R_2) = \frac{\mathbb{P}(R_2|R_1)\mathbb{P}(R_1)}{\mathbb{P}(R_2)} = \mathbb{P}(R_2|R_1) = \frac{n-1}{n}$$

5. Présentons deux méthodes :

- Si les évènements $R_1, R_2, \ldots, R_{n+1}$ étaient indépendants, alors en particulier R_1 et R_2 le serait et on aurait $\mathbb{P}(R_2|R_1) = \mathbb{P}(R_2)$ ce qui n'est pas le cas d'après les calculs de la question 3.
- Si les évènements $R_1, R_2, \ldots, R_{n+1}$ étaient indépendants, alors en particulier R_1 et R_2 le serait ainsi que $\overline{R_1} \cap \overline{R_2}$. Or, $\mathbb{P}(\overline{R_1} \cap \overline{R_2}) = \mathbb{P}(\emptyset) = 0$ (on ne peut pas tirer la bille verte au premier et au deuxième tirage car il n'y a pas de remise), tandis que $\mathbb{P}(R_1)\mathbb{P}(R_2) \neq 0$

Ainsi, $R_1, R_2, \ldots, R_{n+1}$ ne sont pas indépendants

- 6. L'évènement (X = j) signifie que tous les tirages avant le j-ième avait donné des boules roses et le j-ième la boule verte soit : $(X = j) = \left(\bigcap_{k=1}^{j-1} R_k\right) \cap \overline{R_j}$
- 7. Soit A_1, A_2, \ldots, A_n des évènements, alors

$$\mathbb{P}\left(\bigcap_{k=1}^{n} A_{k}\right) = \mathbb{P}(A_{1}) \prod_{k=2}^{n} \mathbb{P}\left(A_{k} | \left(\bigcap_{i=1}^{k-1} A_{i}\right)\right)$$

8. En appliquant la formule des probabilités composées, après simplification d'un produit télescopique, on trouve que $\mathbb{P}(X=j) = \frac{1}{n+1}$, ainsi X suit une loi uniforme sur [1; n+1].

Un exercice mortel pour les tueurs/tueuses

Soit $K \in \mathcal{P}(\llbracket 1; n \rrbracket)$, pour $k \in K$, on pose $B_k = A_k$ et pour $k \in \llbracket 1; n \rrbracket \backslash K$, on pose $B_k = \overline{A_k}$, alors B_1, \ldots, B_n sont indépendants (d'après le cours), en particulier, $\mathbb{P}(\bigcap_{k=1}^n B_k) = \prod_{k \in K} \mathbb{P}(B_k)$, ainsi,

$$\mathbb{P}\left(\bigcap_{k\in K} A_k \bigcap \bigcap_{k\in \llbracket 1\,;\,n\,\rrbracket\setminus K} \overline{A_k}\right) = \prod_{k\in K} \mathbb{P}(A_k) \prod_{k\in \llbracket 1\,;\,n\,\rrbracket\setminus K} (1-\mathbb{P}(A_k)) > 0$$

Or, si $A=\varnothing$, alors $\mathbb{P}(A)=0$, par contraposée, on en déduit que $\bigcap_{k\in K}A_k\bigcap_{k\in \llbracket 1;n\rrbracket\setminus K}\overline{A_k}$ n'est pas vide. Ainsi, il existe $x_K\in\bigcap_{k\in K}A_k\bigcap_{k\in \llbracket 1;n\rrbracket\setminus K}\overline{A_k}$. Ceci veut dire que si $k\in K,\,x_K\in A_k$ et si $k\in \llbracket 1;n\rrbracket\setminus K$, alors $x_K\notin A_k$, et ce pour tout $K\subset \llbracket 1;n\rrbracket$.

Ainsi, on a définit une application $\varphi \colon \begin{cases} \mathscr{P}(\llbracket 1\,;n \rrbracket) \longrightarrow \Omega \\ K \longmapsto x_K \end{cases}$. Montrons que φ est injective. Soit K et K' deux éléments de $\mathscr{P}(\llbracket 1\,;n \rrbracket)$. Supposons que $x_K = x_{K'}$. Soit $k \in K$, alors $x_{K'} = x_K \in A_k$ donc $k \in K'$ ceci montre que $K \subset K'$. En inversant les rôles de K et K', on obtient l'autre inclusion et donc K = K'. Ainsi, φ est injective. Dès lors, $|\Omega| \geqslant |\mathscr{P}(\llbracket 1\,;n \rrbracket)| = 2^n$.