Débat : pour ou contre les variables uniformes à l'école?

Soient un entier $n \ge 2$ et X une variable aléatoire suivant une loi uniforme sur [1; n].

- 1. Donner, sans preuve, les valeurs de $\mathbb{P}(X = k)$ (pour tout $k \in [1; n]$) de $\mathbb{E}(X)$ et de $\mathbb{V}(X)$.
- 2. Soit $k \in [[1; n]]$, si l'évènement (X = k) est réalisé, on tire un nombre uniformément au hasard dans [[1; k]] et on note Y ce nombre. Pour tout $(k, j) \in [[1; n]]^2$, donner la valeur de $\mathbb{P}(Y = j | X = k)$.
- 3. Déterminer la loi de Y (les probabilités seront données sous forme de sommes que l'on ne cherchera pas à calculer)
- 4. Les variables aléatoires X et Y sont-elles indépendantes?
- 5. Calculer $\mathbb{P}(X=Y)$ (sous forme d'une somme que l'on ne cherchera pas à calculer).

Des questions en séries

- 1. Démontrer que la série $\sum \frac{1}{(n+1)(n+2)}$ converge et calculer sa somme.
- 2. Étudier la convergence de la série $\sum \left(\sin\left(\frac{1}{n}\right) + \ln\left(1 \frac{1}{n}\right)\right)$.
- 3. En comparant à une série de Riemann, montrer que $\sum ne^{-n^2}$ converge.
- 4. Déterminer une majoration et une minoration du reste d'ordre $n: R_n = \sum_{k=n+1}^{+\infty} k e^{-k^2}$.

Étant entendu que la majoration et la minoration sont des suites strictement positives et tendant vers 0 quand n tend vers $+\infty$.

Des questions d'intégration

- 1. À l'aide d'un changement de variable, calculer $\int_0^{\frac{\pi}{2}} \frac{\sin(x) dx}{\cos^2(x) + 5\cos(x) + 6}$
- 2. Déterminer la limite de $\sum_{k=0}^{n-1} \frac{k e^{k/n}}{n^2}$ quand $n \to +\infty$.
- 3. Calculer $\int_{2}^{3} x^{3} \ln(x) dx$.

Wallis-like

On pose pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

- 1. Calculer I_0 , I_1 et I_2 .
- 2. Démontrer que pour tout $n \in \mathbb{N}$, $I_n > 0$.
- 3. Démontrer que la suite $(I_n)_n$ est décroissante.
- 4. Démontrer que pour tout $n \in \mathbb{N}$, $I_{n+2} + I_n = \frac{1}{n+1}$. On pourra poser $u = \tan(t)$.
- 5. Démontrer que la suite $(I_n)_n$ converge et déterminer sa limite.
- 6. Démontrer que pour tout $n \in \mathbb{N}^*$, $I_{2n} = (-1)^n \left(\frac{\pi}{4} \sum_{k=0}^{n-1} \frac{(-1)^k}{2k+1}\right)$ en déduire que la série $\sum \frac{(-1)^n}{2n+1}$ converge et déterminer sa somme.

Quand les séries jouent à transformers!

On considère $(a_n)_n$ et $(b_n)_n$ deux suites complexes. Pour $n \ge 1$, on pose $S_n = \sum_{i=0}^n a_i$

- 1. Soit $k \ge 1$, exprimer a_k en fonction de S_k et S_{k-1}
- 2. Déduire de la question précédente, que pour tout $n \ge 1$,

$$\sum_{k=1}^{n} a_k b_k = S_n b_n - S_0 b_1 + \sum_{k=1}^{n-1} S_k (b_k - b_{k+1})$$

Toute récurrence sera considérée comme une agression envers le correcteur et sera sanctionnée.

- 3. Montrer que si $(S_n)_n$ est bornée et si (b_n) est une suite positive décroissante et de limite nulle, alors la série $\sum a_n b_n$ converge.
- 4. On suppose que (b_n) est une suite positive décroissante et de limite nulle, déduire de la question précédente que $\sum (-1)^n b_n$ est une série convergente.
- 5. Soit $\theta \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} \sin(k\theta)$
- 6. Montrer que la série $\sum\limits_{n\geqslant 1}\frac{\sin(n\theta)}{\sqrt{n}}$ converge.