
Séries numériques
Chapitre 1

Prérequis :
‚ Sommes
‚ Suites

Objectifs :
‚ Donner un sens à une «somme infinie» lorsque c’est possible.
‚ Déterminer si c’est possible.
‚ Le cas échéant, calculer cette somme si c’est possible.

Ce polycopié contient plusieurs animations, il est donc conseillé d’utiliser un lecteur de pdf capable de lire les
animations (comme Adobe Reader, Foxit PDF Reader, Okular ou autres).

Attention : utiliser un lecteur de pdf adapté
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Dans tout ce chapitre, punqnPN P RN désigne une suite réelle.

1 Généralités sur les séries

On note pour tout n P N, Sn “
nř

k“0
uk. On appelle série de terme général un la suite pSnqnPN. Le terme Sn est la

somme partielle d’indice n de cette série. On note
ř

un “ pSnqn la série de terme général un.

Définition d’une série

Remarque 1. S0 “ u0, S1 “ u0 ` u1, S2 “ u0 ` u1 ` u2 etc.

On dit
ř

un converge (respectivement diverge) lorsque la suite pSnqnPN converge (respectivement diverge).

Si la série
ř

un converge, on appelle somme (infinie) de la série
ř

un la limite de pSnqn, notée
`8ř
k“0

uk

`8ÿ

k“0
uk “ lim

nÑ`8 Sn “ lim
nÑ`8

nÿ

k“0
uk

Définition de la convergence ou de la divergence d’une série et somme

Soit q P R. On s’intéresse à la série géométrique
ř

qn.

‚ @n P N si q ‰ 1, Sn “
nř

k“0
qk “ 1 ´ qn`1

1 ´ q
si q “ 1, Sn “ n ` 1

‚ si |q| ă 1, alors
ř

qn est convergente et
`8ř
n“0

qn “ 1
1 ´ q

.

‚ si |q| ě 1, alors
ř

qn diverge.

Exemple des séries géométriques

Figure 1 – Les séries géométriques (avec q “ 1{2) : piece of cake

On s’assure que q ‰ 1 avant d’écrire 1 ´ qn`1

1 ´ q
ou 1

1 ´ q
, sous peine d’avoir des problèmes judiciaires.

Péril imminent : la série géométrique de raison 1

La suite punqn et le nombre un ne doivent pas être confondus. De même, la série
ř

un, le réel
nř

k“0
uk et le réel

`8ř
k“0

uk

(qui n’existe qu’après avoir montré que la série converge) ne doivent pas être confondus.

Attention à ne pas confondre série, somme partielle et somme
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Remarque 2. Si punqněn0 est une suite définie à partir de n0, on définit de même
ř

něn0

un, par
˜

nř
k“n0

uk

¸

něn0

, et en

cas de convergence, on note
`8ř

k“n0

uk “ lim
nÑ`8

nř
k“n0

uk.

Exemple 1. Si q P R, alors
ř

něn0

qn converge ssi |q| ă 1 et dans ce cas
`8ř

n“n0

qn “ qn0

1 ´ q
.

La série
ř

ně1
1{n, appelée série harmonique, diverge, alors que 1{n ÝÝÝÑ

nÑ8 0.

Exemple de série divergente : la série harmonique

Soient des séries convergentes
ř

un,
ř

vn et λ P R, alors
ř

λun ` vn converge et

`8ÿ

n“0
pλun ` vnq “ λ

`8ÿ

n“0
un `

`8ÿ

n“0
vn

Proposition no 1 : espace vectoriel des séries convergentes et linéarité de la somme

Démonstration de la proposition no 1 : Supposons que
ř

un et
ř

vn converge, alors

nÿ

k“0

λuk ` vk “ λ
nÿ

k“0

uk `

nÿ

k“0

vk ÝÝÝÑ
nÑ8

λ

`8ÿ

k“0

uk `

`8ÿ

k“0

vk

Ceci prouve que
ř

λuk ` vk est une série convergente et que

`8ÿ

n“0

λun ` vn “ λ

`8ÿ

n“0

un `

`8ÿ

n“0

vn

Remarque 3. Si
ř

un converge et
ř

vn diverge, alors
ř

un ` vn diverge.
Si

ř
un diverge et

ř
vn diverge, alors on ne peut rien dire de

ř
un ` vn.

Si la série
ř

un converge, alors un ÝÝÝÑ
nÑ8 0.

Proposition no 2 : condition nécessaire de convergence (hors programme)

Remarque 4. Par contraposée, si un
�
��ÝÝÝÑ

nÑ8 0, alors la série
ř

un diverge, on dit que
ř

un diverge grossièrement.

Démonstration de la proposition no 2 : Supposons que
ř

un converge, alors Sn “
nř

k“0
uk ÝÝÝÑ

nÑ8

`8ř
k“0

uk. Or pSn´1qně1 est

une suite extraite de pSnqn donc converge aussi vers
`8ř
k“0

uk. Ainsi, en faisant la différence des deux suites, Sn ´ Sn´1 ÝÝÝÑ
nÑ8

0. Or

Sn ´ Sn´1 “
nř

k“0
uk ´

n´1ř
k“0

uk “ un, ainsi punqn est nécessairement une suite qui tend vers 0. ■

Exemples 2. Si |q| ě 1, alors
ř

qn diverge grossièrement tout comme
ř

n,
ř n ` cospnq

n
,

řp´1qn.

Si un ÝÝÝÑ
nÑ8 0, cela ne prouve pas que

ř
un converge (cf.

ř
1{n).

Péril imminent la réciproque est fausse
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Si, pour tout n P N, un “ vn`1 ´ vn, alors
nř

k“0
uk “ vn`1 ´ v0, on peut ainsi savoir si

ř
un converge ou diverge.

Convergence des séries télescopiques

Exemple 3. La série
ř

ně1

1
npn ` 1q est convergente et sa somme vaut 1.

Pour tout x P R, la série
ř xn

n! converge et
`8ř
k“0

xk

k! “ e x.

Exemple : l’exponentielle (admis)

Figure 2 – Convergence de
ř xn

n! vers e x.

Soit q P R. Les séries
ř

ně1
nqn´1 et

ř
ně2

npn ´ 1qqn´2 convergent si |q| ă 1 et divergent si |q| ě 1.

De plus, si |q| ă 1,
`8ř
n“1

nqn´1 “ 1
p1 ´ qq2 et

`8ř
n“2

npn ´ 1qqn´2 “ 2
p1 ´ qq3 .

Exemple : séries géométriques dérivées

2 Comparaison des séries à termes positifs

Soient
ř

un,
ř

vn deux séries à termes positifs telles que : Dn0 P N @n ě n0 0 ď un ď vn

1. Si la série
ř

vn converge, alors la série
ř

un converge et
`8ř

n“n0

un ď
`8ř

n“n0

vn

2. Si la série
ř

un diverge, alors la série
ř

vn diverge.

Proposition no 3 : comparaison de deux séries à termes positifs

Démonstration de la proposition no 3 : Supposons que
ř

vn converge, alors pour tout entier n ě n0, on a Sn

nř
k“n0

uk ď
nř

k“n0

vk ď

`8ř
k“n0

vk P R. Ceci montre que
˜

nř
k“n0

uk

¸

n

est une suite majorée, comme Sn`1 ´ Sn “ un ě 0, pSnqn est une suite croissante, d’après

le théorème de la limite monotone, pSnqn converge. Cela montre que
ř

un converge. De plus, comme les inégalités larges passent à
la limite, on obtient que

`8ÿ

k“n0

uk “ lim
nÑ`8

nÿ

k“n0

uk ď

`8ÿ

k“n0

vk

Le second point n’étant que la contraposée du premier. ■

Exemples 4. Étude de la nature des séries
ř 1

n2 ` 11n ` 3 et
ř lnpnq

n
.
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Soient
ř

un,
ř

vn deux séries à termes strictement positifs telles que un „̀8 vn. Alors
ř

vn et
ř

un ont même
nature.

Proposition no 4 : séries dont les termes sont équivalents

La série
ř 1

n2 converge et
`8ř
k“1

1
k2 “ π2

6 (cette valeur n’est pas à connaître).

Exemple : série de Riemann de paramètre 2

Si un „ vn, en général
nř

k“0
uk ȷ

nř
k“0

vk et
`8ř
k“0

uk ‰
`8ř
k“0

vk (en effet, les sommations d’équivalents sont interdites).

Attention les sommes ne sont pas équivalentes

Exemple 5. Étude de la nature de la série
ř 1

n ` lnpnq .

3 Séries absolument convergentes

On dit qu’une série
ř

un converge absolument si la série
ř |un| converge.

Définition d’une série absolument convergente

Exemple 6. La série
ř cospnq

n2 est absolument convergente.

Remarques 5. ‚ Pour étudier la convergence absolue, on utilise les outils vus précédemment à la série
ř |un|.

‚ Soit
ř

un une série à termes positifs,
ř

un converge si et seulement si elle converge absolument.

Si la série
ř

un converge absolument, alors elle converge, de plus :
ˇ̌
ˇ̌ `8ř
n“0

un

ˇ̌
ˇ̌ ď

`8ř
n“0

|un|
Théorème no 1 : la convergence absolue implique la convergence

Démonstration du théorème no 1 :
‚ Commençons par le cas K “ R, supposons que

ř
un converge absolument et soit à valeurs dans R. Pour tout n P N,

´|un| ď un ď |un|, ainsi 0 ď un ` |un| ď 2|un|. Posons vn “ un ` |un|, par hypothèse
ř

|un| converge, donc
ř

2|un| aussi.
Par comparaison de séries à termes positifs, on peut en déduit que

ř
vn converge. De plus, un “ vn ´ |un|, ainsi commeř

vn converge et
ř

|un| converge. On peut en conclure que
ř

un converge.
‚ Soit

ř
un une série absolument convergente complexe. Soit n P N, d’après l’inégalité triangulaire, on a que

@n P N

ˇ̌
ˇ̌
ˇ

nÿ

k“0

uk

ˇ̌
ˇ̌
ˇ ď

nÿ

k“0

|uk|

Or, nous savons que lim
nÑ`8

nř
k“0

uk “
`8ř
k“0

uk, de plus x ÞÑ |x| est continue, on peut donc dire que 1

lim
nÑ`8

ˇ̌
ˇ̌
ˇ

nÿ

k“0

uk

ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

`8ÿ

k“0

uk

ˇ̌
ˇ̌
ˇ

De plus, comme
ř

|uk| est une série à termes positifs, on en déduit que

@n P N

ˇ̌
ˇ̌
ˇ

nÿ

k“0

uk

ˇ̌
ˇ̌
ˇ ď

nÿ

k“0

|uk| ď

`8ÿ

k“0

|uk|

1. Rappelons que si pxnqn est une suite convergente vers a et que f est continue en a, alors pfpxnqqn tend vers fpaq.
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Comme les inégalités larges passent à la limite, on obtient
ˇ̌
ˇ̌
ˇ

`8ÿ

k“0

uk

ˇ̌
ˇ̌
ˇ ď

`8ÿ

k“0

|uk| ■

Remarque 6. La réciproque est fausse pour une série de signe quelconque.

Exemple 7. Posons un “ p´1qn

2n ` p´1qn
, alors

ř
un converge, mais ne converge pas absolument.

Soient une série
ř

un absolument convergente et σ : N Ñ N une bijection, alors
ř

uσpnq converge absolument et
`8ř
n“0

un “
`8ř
n“0

uσpnq

Théorème no 2 : invariance de la somme par permutation (admis)

4 Complément hors programme

Soit
ř

pn une série à termes strictement positifs convergente et
ř

un une série quelconque.
Si un

pn
, alors

ř
un converge absolument donc converge.

Théorème no 3 : O d’une série SATP convergente (hors programme)

Démonstration du théorème no 3 : Supposons que un

pn
ÝÝÝÑ
nÑ8

0, en prenant la définition de la limite avec ε “ 1 ą 0, cela veut

dire qu’il existe n0 P N tel que pour tout n ě n0,
ˇ̌
ˇ̌ un

pn

ˇ̌
ˇ̌ ď 1, ainsi, |un| ď pn, comme

ř
pn converge, on en déduit par comparaison

de suites positives,
ř

|un| converge. Ainsi
ř

un converge absolument donc converge. ■

Remarque 7. Ce théorème est hors programme, dans les faits si un

pn
ÝÝÝÑ
nÑ8 0 avec

ř
pn une série à termes positifs et

convergente, alors on démontre que
ř

un converge absolument en calquant la preuve.

Exemple 8. Montrer que
ř

e ´?
n converge.
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5 Cartes mentales

CVG de
ř

un ? punqn

quelconque

un “

vn`1 ´ vn

Série géo-
métrique

(+dérivées)

Linéarité

ř
pn

SATP
CVG et

un “ Oppnq

CVG
absolue

punq positive

ď, ě, „

ř 1
n

DVG,
ř 1

n2 CVG

Comparaison
Série-

Intégrale

un
�
��ÝÝÝÑ

nÑ8
0

ř
un DVG

`8ř
n“0

un “ ? Série géo-
métrique

Linéarité

ř
vn`1 ´ vn

Décomposition
éléments
simples

Dérivation
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