
Variables aléatoires réelles discrètes
Chapitre 3
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Dans tout ce chapitre, on fixe un univers Ω, T une tribu sur Ω et P une probabilité définie sur T . On rappelle qu’un
ensemble E est fini s’il existe n P N tel que E “ txk | k P rr 1 ; n ssu avec les xk deux à deux distincts, n est alors le nombre
d’éléments de E : n “ #E “ CardE. Un ensemble E est dit dénombrable si E “ txk | k P Nu avec les xk deux à deux
distincts. Si E est fini ou dénombrable, on dit que E est au plus dénombrable. Soit X : Ω Ñ R une variable aléatoire.

1 Loi d’une variable aléatoire
Exemples 1. 1. On lance deux dés à quatre faces et on note X1 : somme des résultats obtenus.

2. On lance une infinité de fois une pièce équilibrée et on note X2 la première fois où on a obtenu pile.

L’ensemble XpΩq “ tXpωq | ω P Ωu est appelé univers image.

Définition définition de l’univers image

Exemples 2. Déterminer l’univers image des VA de l’exemple 1 puis déterminer les évènements pX1 “ 7q et pX2 “ 3q.

On dit que X est finie (resp. infinie) si XpΩq est fini (resp. infini). On dit que X : Ω Ñ R est variable aléatoire discrète si
XpΩq est au plus dénombrable. À partir de maintenant X : Ω Ñ R est une variable réelle discrète finie ou infinie.

Si X est finie avec XpΩq “ txk | k P rr 1 ; n ssu, alors pX “ x1q, . . . , pX “ xnq forment un SCE appelé SCE des
valeurs possibles de X. En particulier,

n
ř

i“1
PpX “ xiq “ 1. Pour B un évènement, PpBq “

n
ř

i“1
PpB X pX “ xiqq

Proposition no 1 : système complet d’événements associé à une variable aléatoire finie

Si X est infinie avec XpΩq “ txk | k P Nu, alors les évènements pX “ xkq, pour k P N, forment un SCE appelé

SCE des valeurs possibles de X. En particulier,
`8
ř

n“0
PpX “ xnq “ 1. Pour B P T , PpBq “

`8
ř

i“0
PpB X pX “ xiqq

Proposition no 2 : système complet d’événements associé à une variable aléatoire infinie

Soit X une variable aléatoire réelle discrète. La loi de X est la fonction qui, à x P XpΩq, associe PpX “ xq.

Définition de la loi de probabilité

Remarque 1. Trouver la loi de probabilité de X revient à déterminer XpΩq puis la valeur de PpX “ xq pour tout
x P XpΩq.

Exemples 3. Déterminer la loi de probabilité de X1 et X2 de l’exemple 1.

Remarque 2. Soient pxnqnPN une famille de réels deux à deux distincts et ppnqnPN une suite de réels positifs tels que
ř

pn

converge et
`8
ř

n“0
pn “ 1. Alors, il existe une variable aléatoire réelle et discrète X telle que, pour tout n P N, PpX “ xnq “ pn

.

Exemple 4. Ainsi, il existe une variable aléatoire X définie sur Ω tel que pour tout n P N˚, PpX “ nq “
1
2n

sans avoir à
définir X ou Ω. D’ailleurs, souvent, cela ne nous importera peu.

Si XpΩq “ Y pΩq et que pour tout x P XpΩq, PpX “ xq “ PpY “ xq, alors on dit que X et Y ont la même loi.

Définition de deux variables aléatoires de même loi
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Exemple 5. Soit X une variable aléatoire telle que PpX “ 1q “ PpX “ ´1q “ 1{2 (on dit que X est une VA de
Rademacher), quelle est la loi de Y “ ´X ?

Si X et Y ont même loi, cela ne signifie pas que X “ Y

Attention : avoir la même loi ne veut pas dire être égales

Exemple 6. Considérons un dé à 6 faces : une face porte le numéro 1, deux faces portent le numéro 2 et trois faces
portent le numéro 3, on lance le dé et on note X le nombre obtenu, déterminer la fonction de répartition de X.

Si XpΩq “ txk | k P Iu avec I “ rr 0 ; n ss ou I “ N et les xn rangés par ordre strictement croissant. Soit n P I et
x P r xn ; xn`1 r, FXpxq “

n
ř

k“0
PpX “ xkq et PpX “ xnq “ FXpxnq ´ FXpxn´1q (sauf pour n “ 0).

Proposition no 3 : lien entre fonction de répartition et loi de X

‚
x0

‚
x1

‚
x2

‚

‚

‚

‚PpX “ x0q

‚PpX “ x0q ` PpX “ x1q

‚PpX “ x0q ` PpX “ x1q ` PpX “ x2q “ 1

Fonction de répartition d’une variable aléatoire prenant trois valeurs. La fonction de répartition présente trois
discontinuités, au point xi la hauteur de la discontinuité vaut PpX “ xiq.

2 Indépendance de variables aléatoires

‚ Les variables aléatoires X et Y sont indépendantes ssi pour tout px, yq P XpΩq ˆ Y pΩq, on a PppX “

xq X pY “ yqq “ PpX “ xq ˆ PpY “ yq

‚ X0, . . . , Xn sont des variables aléatoires indépendantes si et seulement si :

@ px1, x2, . . . , xnq P X0pΩq ˆ . . . ˆ XnpΩq P

˜

n
č

i“0
pXi “ xiq

¸

“

n
ź

i“0
PpXi “ xiq

‚ Les variables aléatoires pXnqnPN sont indépendantes si et seulement si

@n P N @ px1, x2, . . . , xnq P X0pΩq ˆ . . . ˆ XnpΩq P

˜

n
č

i“0
pXi “ xiq

¸

“

n
ź

i“0
PpXi “ xiq

Proposition no 4 : caractérisation de l’indépendance de variables aléatoires discrètes

Remarque 3. L’indépendance de n variables aléatoires sert à modéliser la répétition d’expériences où les résultats
précédents n’ont pas de conséquences sur les expériences à venir. Par exemple, si Xk représente la valeur du dé lors du
k-ième lancer, alors il paraît raisonnable de supposer que X1, X2, . . . , Xn sont indépendantes.

Remarque 4. Si X1, . . . , Xn sont indépendantes et i ‰ j alors Xi et Xj sont indépendantes (indépendance deux à deux).
Plus généralement si X1, . . . , Xn sont indépendantes, alors toute sous-famille est indépendante.

Si X, Y et Z sont telles que X et Y sont indépendantes, X et Z aussi et Y et Z également, cela n’implique pas
que X, Y et Z sont indépendantes. De même, avec plus de trois variables aléatoires.

Péril imminent la réciproque est fausse
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Exemple 7. Soit X tel que PpX “ 1q “ PpX “ ´1q “
1
2 , Y indépendante de X de même loi, on pose Z “ XY , alors X

et Y sont indépendantes, X et Z sont indépendantes, et Y et Z sont indépendantes. Cependant, X, Y et Z ne sont pas
indépendantes.

Soit X1, . . . , Xn n VA indépendantes, de même loi : Xi „ Bppq, alors X “ X1 ` . . . ` Xn „ Bpn, pq.
Exemple fondamental : somme de n variables aléatoires de Bernoulli

Soit pX1, X2, . . . , Xnq une famille de variables aléatoires indépendantes., soit f : Rm Ñ R et g : Rn´m Ñ R, alors
les variables aléatoires fpX1, X2, . . . , Xmq et gpXm`1, Xm`2, . . . , Xnq sont indépendantes.

Théorème no 1 : lemme des coalitions (admis)

Remarque 5. On peut faire plus de deux coalitions : les variables aléatoires fpX1, . . . , X4q, gpX5, . . . , X8q, hpX9, X10q,
..., mpX20, . . . , X25q sont indépendantes. De même, u1pX1q, u2pX2q, . . . , unpXnq sont indépendantes.

3 Espérance et Variance

3.1 Espérance

‚ Si X est une variable aléatoire fini, alors XpΩq “ txk | k P rr 1 ; n ssu On appelle espérance de X :
EpXq “

ř

xPXpΩq

xPpX “ xq “
n
ř

k“1
xkPpX “ xkq

‚ Si X est une variable aléatoire discrète infini, alors XpΩq “ txk | k P Nu. Si la série
ř

xkPpX “ xkq converge

absolument, alors on appelle espérance de X : EpXq “
ř

xPXpΩq

xPpX “ xq “
`8
ř

k“0
xkPpX “ xkq

Définition de l’espérance d’une variable aléatoire

Remarques 6. ‚ On dit que X est centrée si X admet une espérance et si EpXq “ 0.
‚ EpXq est une moyenne pondérée (par les probabilités) des valeurs prises par X.
‚ EpXq ne dépend que de la loi de X, si X et X 1 ont la même loi, alors EpXq “ EpX 1q.
‚ Dans le cas, où X est infinie, d’après un résultat admis au chapitre séries, la convergence absolue permet que la

somme infinie ne dépendent pas du choix de la numérotation des éléments de XpΩq.
‚ On dit que X admet un moment d’ordre k si Xk admet une espérance.

Exemples 8. ‚ On note lance un dé une infinité de fois et on note X le rang du premier 4. Déterminer si X admet
une espérance et calculer-là le cas échéant.

‚ Justifier qu’il existe Y une variable aléatoire telle que, pour tout k P N˚, PpY “ kq “
π2

6n2 , Y admet-elle une
espérance ?

Soient X et Y deux variables aléatoires admettant des espérances et λ P R alors :
1. Linéarité de l’espérance : λX ` Y admet une espérance et EpλX ` Y q “ λEpXq ` EpY q

2. Espérance d’une variable aléatoire constante : Epλq “ λ

3. Positivité de l’espérance : si X ě 0 (pour tout ω P Ω, Xpωq ě 0), alors EpXq ě 0
4. Croissance de l’espérance : si X ď Y (@ω P Ω, Xpωq ď Y pωq) alors, EpXq ď EpY q

Proposition no 5 : propriétés de l’espérance
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Exemple 9. Si X „ Bpn, pq, alors EpXq “ np

Soient X une VA infinie, avec XpΩq “ txk | k P Nu (avec les xk deux à deux distincts) et ϕ : XpΩq Ñ R. Alors
ϕpXq admet une espérance ssi

ř

ϕpxnqPpX “ xnq converge absolument et alors :

EpϕpXqq “
ÿ

xPXpΩq

ϕpxqPpX “ xq “

`8
ÿ

n“0
ϕpxnqPpX “ xnq

Théorème no 2 formule de transfert (admis)

Remarque 7. Ce théorème permet de calculer EpfpXqq sans connaître la loi de fpXq seulement celle de X.

Exemples 10.
Si X „ U prr 1 ; n ssq calculer EpX2q1. Si X „ U prr 1 ; n ssq calculer Ep3Xq2. Si X „ Bpn, pq, calculer EpX2q3.
Si X suit la loi trouvé à l’exemple 8, calculer EpX2q4.

Soient a ą 0 et X une variable aléatoire positive admettant une espérance. Alors PpX ě aq ď
EpXq

a

Proposition no 6 : inégalité de Markov

Exemple 11. Si dans une classe, la moyenne au DS est 6, alors que peut-on dire de la probabilité d’avoir une note
supérieure ou égale à 18 ?

‚ Si X et Y deux VA indépendantes admettent des espérances, alors XY aussi et EpXY q “ EpXqEpY q

‚ Si X1, . . . , Xn sont indépendantes admettent des espérances, alors
n

ś

i“1
Xi aussi et E

ˆ

n
ś

i“1
Xi

˙

“
n

ś

i“1
EpXiq

Proposition no 7 : espérance du produit de variables aléatoires indépendantes (admise)

Si EpXY q “ EpXqEpY q, ça ne prouve pas forcément que X et Y sont indépendantes.

Péril imminent : la réciproque est fausse

Exemple 12. X „ U prr ´1 ; 1 ssq et Y “ 1 ´ X2

3.2 Variance

‚ Soit X une variable aléatoire réelle finie, on appelle variance de X : VpXq “ EppX ´ EpXqq2q

On appelle écart-type de X le réel : σpXq “
a

VpXq

‚ Soit X une variable aléatoire réelle discrète infinie, si X et pX ´ EpXqq2 admettent chacune une espérance,
on appelle variance de X le réel positif VpXq “ EppX ´ EpXqq2q

On appelle écart-type de X le réel positif σpXq “
a

VpXq

Définition de la variance et de l’écart-type

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, Cours 5

loic.devilliers@proton.me


Remarques 8. ‚ La variance mesure la moyenne des carrés des écarts de X par rapport à EpXq.
‚ Par la formule de transfert, si la série

ř

xPXpΩq

px ´ EpXqq2PpX “ xq converge, VpXq “
ř

xPXpΩq

px ´ EpXqq2PpX “ xq.

‚ La variance ne dépend que de la loi de X : si X et X 1 ont même loi VpXq “ VpX 1q.
‚ Si X admet une espérance et une variance avec EpXq “ 0 et VpXq “ 1, on dit que X est centrée réduite.

Soient X, Y deux variables aléatoires telles que X admet une variance et pa, bq P R2, alors :
1. VpXq ě 0
2. aX ` b a une variance et VpaX ` bq “ a2VpXq (la variance est quadratique)
3. Y a une variance ssi Y a un moment d’ordre 2, alors VpY q “ EpY 2q ´ pEpY qq2 (formule de König-Huygens)
4. Si VpXq ą 0, alors X˚ “

X´EpXq

σpXq
est centrée réduite, X˚ est appelée variable centrée réduite associée à X.

Proposition no 8 : propriétés de la variance

Si X „ U prr 1 ; n ssq, alors VpXq “
n2 ´ 1

121. Si X „ Bppq, alors VpXq “ pp1 ´ pq2.
Si X „ Bpn, pq, alors VpXq “ npp1 ´ pq3.

Exemples de variances des lois usuelles à connaître :

Soient X une variable aléatoire admettant une variance et a ą 0, alors Pp|X ´ EpXq| ě aq ď
VpXq

a2

Théorème no 3 : inégalité de Bienaymé-Tchebychev

Exemple 13. Supposons qu’on ait dé dont la probabilité d’obtention un six est notée p. Pour approximer p, on lance ce
dé n fois et on note F la fréquence du six. Pour quelle valeur de n la probabilité pour que F soit une approximation de p
à 0.01 près est-elle supérieure à 0.9 ?

Remarque 9. Sur l’exemple 13, on a implicitement montré que la probabilité d’un évènement est la limite de la fréquence
de cet évènement lorsque l’on répète l’expérience un «grand» nombre de fois. Cela est conforme à l’intuition : dire qu’un
dé est équilibré indique que, si on le lance un très grand nombre de fois, alors la fréquence d’une face doit être proche 1{6.
Cela permet de relier la probabilité d’un évènement (définie comme l’image de cette évènement par une certaine fonction P
vérifiant certaines propriétés) à cette notion intuitive. Or, depuis le début de ce cours, on avait soigneusement évité de
faire un tel rapprochement.

4 Lois usuelles

4.1 Rappels sur les lois de première année

On dit que X suit une loi uniforme sur un ensemble fini E si, pour tout e P E, PpX “ eq “
1

CardE
. On note

X „ U pEq.

Définition de la loi uniforme (modélise le tirage au hasard de façon équitable)

Exemple 14. Si X „ U prr 1 ; n ssq, alors pour tout k P rr 1 ; n ss, PpX “ kq “
1
n

On dit que X suit la loi de Bernoulli de paramètre p P r 0 ; 1 s si
"

PpX “ 1q “ p
PpX “ 0q “ 1 ´ p

. On note X „ Bppq.

Définition de la loi de Bernoulli (modélise une expérience à 2 issues)
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On dit que X suit une loi binomiale de paramètres n P N˚ et p P r 0 ; 1 s si, pour tout k P rr 0 ; n ss, PpX “ kq “
ˆ

n
k

˙

pkp1 ´ pqn´k. On note X „ Bpn, pq.

Définition d’une loi binomiale (compte les succès dans n VA de Bernoulli indépendantes)

Remarque 10. Si une variable X compte le nombre de succès de n VA de Bernoulli indépendantes et de paramètre p,
alors X „ Bpn, pq où p est la probabilité de succès à chaque expérience.

Exemple 15. Soit une urne qui contient 10 billes blanches, 3 rouges et 12 noires. On tire au hasard, successivement et
avec remise, 7 boules. On note X la VA qui compte le nombre de boules rouges obtenues. Quelle est la loi de X ?

4.2 Loi géométrique

On dit qu’une variable aléatoire X suit une loi géométrique de paramètre p P s 0 ; 1 r, si XpΩq “ N˚ et si pour tout
n P N˚, PpX “ nq “ p1 ´ pqn´1p. On note alors X „ G ppq.

Définition d’une loi géométrique

Soit pXnqnPN˚ une suite de variables de Bernoulli de paramètre p indépendantes. On note T le rang du premier
succès : T “ min tn P N˚ | Xn “ 1u, alors T est bien définie presque sûrement et T „ G ppq.

Proposition no 9 : interprétation d’une loi géométrique

Remarque 11. Ainsi, une variable aléatoire géométrique de paramètre p renvoie le rang du premier succès dans une suite
d’expériences identiques et indépendantes ayant une probabilité de succès valant p.

Soit X „ G ppq avec p P s 0 ; 1 r, alors :
X admet une espérance et EpXq “

1
p

1. X admet une variance et VpXq “
1 ´ p

p22.

Pour tout k P N˚, PpX ą kq “ p1 ´ pqk3. @pn, mq P pN˚q2, PpX ą n`m|X ą nq “ PpX ą mq4.

Proposition no 10 : propriétés d’une loi géométrique

Remarque 12. La dernière propriété affirme qu’une loi géométrique est sans mémoire.

4.3 Loi de Poisson

On dit que X suit une loi de Poisson de paramètre λ ě 0, si XpΩq “ N et si pour tout n P N, PpX “ nq “ e ´λ λn

n! .
On note X „ Ppλq.

Définition d’une loi de Poisson

Si X „ Ppλq, alors X admet une espérance et une variance et EpXq “ VpXq “ λ.
Proposition no 11 : espérance et variance d’une loi de Poisson
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5 Tableau récapitulatif des lois usuelles
Les caractéristiques de ce tableau doivent être absolument connues par cœur pour ces variables aléatoires. Les quatre premières sont des variables aléatoires réelles
discrètes finies, les deux suivantes sont des variables aléatoires discrètes infinies. Enfin, les quatre dernières sont des variables à densité et seront vu dans un prochain
chapitre.

Nom de la loi Paramètre Univers image Loi de probabilité Espérance Variance Interprétation
Constante a P R tau PpX “ aq “ 1 a 0 Constante
Bernoulli p P r 0 ; 1 s t0, 1u PpX “ 1q “ p

PpX “ 0q “ 1 ´ p
p pp1 ´ pq Succès vs échec

Binomiale pn, pq P N˚ ˆ r 0 ; 1 s rr 0 ; n ss PpX “ kq “

ˆ

n
k

˙

pkp1 ´ pqn´k

pour k P rr 0 ; n ss

np npp1 ´ pq Nombre de succès dans n Va de
Bernoulli de paramètre p indé-
pendantes

Uniforme n rr 1 ; n ss PpX “ kq “
1
n

pour k P rr 1 ; n ss
n ` 1

2
n2 ´ 1

12 Tirage équitable

Géométrique p P s 0 ; 1 r N˚ PpX “ kq “ pp1 ´ pqk´1 pour k P N˚
1
p

1 ´ p

p2 Donne le premier succès dans
une suite de Va indépendantes de
Bernoulli de paramètre p

Poisson λ ě 0 N PpX “ kq “
λk

k! e ´λ pour k P N λ λ Désintégration radioactive, ar-
rivé dans une file d’attente, évè-
nements rares etc.

Nom de la loi Paramètre Univers image Densité Fonction de répartition Espérance Variance

Uniforme a ă b s a ; b r t ÞÑ
1s a ; b rptq

b ´ a
x ÞÑ

x ´ a

b ´ a
1r a ; b spxq ` 1s b ; `8 rpxq

a ` b

2
pb ´ aq2

12

Exponentielle λ ą 0 R` t ÞÑ λe ´λt1R`
ptq x ÞÑ p1 ´ e ´λxq1R`

pxq
1
λ

1
λ2

Normale centrée réduite R t ÞÑ
1

?
2π

e ´ t2
2 Φ: x ÞÑ

ż x

´8

e ´ t2
2

?
2π

dt 0 1

Normale µ P R, σ ą 0 R t ÞÑ
1

σ
?

2π
e ´

pt´µq2

2σ2 x ÞÑ

ż x

´8

1
σ

?
2π

e ´
pt´µq2

2σ2 dt µ σ2
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