Couple de variables aléatoires discrètes

Exercice 1 (* Rai, Cal). Soit $Y \sim \mathcal{U}(\llbracket a; b \rrbracket)$ pour $(a, b) \in \mathbb{Z}^2$ avec $a \leq b$.

- 1. Proposer λ tel que $X=Y-\lambda$ soit une loi uniforme sur $[\![1\,;n]\!]$ pour un n approprié.
- 2. En déduire $\mathbb{E}(Y)$ et $\mathbb{V}(Y)$.
- 3. Déterminer Cov(X, Y).

Exercice 2 (* Rai, Cal). Soient Y une variable aléatoire telle que $\mathbb{P}(Y=1)=\mathbb{P}(Y=-1)=\frac{1}{4}$ et $\mathbb{P}(Y=0)=\frac{1}{2}$ et X une variable aléatoire indépendante de Y admettant une variance. On pose Z=X+Y

- 1. Exprimer $\mathbb{E}(Z)$ et $\mathbb{V}(Z)$ en fonction de $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 2. Si $X \sim \mathcal{G}(p)$ avec $p \in [0; 1[$ déterminer la loi de Z.
- 3. Toujours dans ce cas, déterminer la probabilité que Z soit paire.

Exercice 3. Soit X et Y deux variables aléatoires indépendantes et suivant une loi uniforme sur [1; n], on pose Z = X + Y,

- 1. Calculer $\mathbb{E}(Z)$ et $\mathbb{V}(Z)$.
- 2. Déterminer la loi de Z.
- 3. Calculer Cov(X,Y) et Cov(X,Z). Que peut-on en déduire pour X et Z?

Exercice 4. On dispose de n boîtes numérotés de 1 à n tel que la boîte numéro k contiennent k boules numérotés de 1 à k. On choisit une boîte de façon équiprobable puis une boule dans cette boîte. On note X le numéro de la boîte et Y le numéro de la boule.

- 1. Déterminer la loi conjointe du couple (X, Y).
- 2. En déduire la seconde loi marginale.
- 3. Déterminer $\mathbb{E}(Y)$.

Exercice 5. Si $X \sim \mathcal{U}(\llbracket 2; 10 \rrbracket)$ et $Y \sim \mathcal{U}(\llbracket 0; 5 \rrbracket)$ sont indépendantes, déterminer la loi de X + Y.

Exercice 6. Soit $Y \sim \mathcal{P}(\lambda)$ et X une variable aléatoire à valeur dans \mathbb{N} telle pour tout $n \in \mathbb{N}$, la loi conditionnelle de X sachant (Y = n) est la loi binomiale $\mathcal{B}(n,p)$

1. Déterminer la loi du couple (X, Y)

- 2. En déduire la loi de X.
- 3. Soit $m \in \mathbb{N}$, déterminer la loi de Y sachant (X = m).

Exercice 7. Dans un restaurant, des clients prennent une entrée avec une probabilité $p \in \]0,1[$ ou un dessert une probabilité q=1-p et personne ne prend un dessert et une entrée. On note X le nombre de clients prenant un dessert et Y le nombre de clients prenant une entrée. On suppose de plus que le nombre de clients par jour suit une loi de Poisson de paramètre $\lambda \geqslant 0$.

- 1. Déterminer la loi du couple (X,Y) et en déduire les lois marginales de X et Y.
- 2. X et Y sont elles indépendantes?
- 3. Calculer $\mathbb{E}(XY)$ et Cov(X,Y).

Exercice 8. La mémoire d'un ordinateurs est composée de bits valant 0 ou 1. Un bit est un faux 0 s'il est à 0 alors qu'il devrait être à 1, c'est un faux 1 s'il est à 1 alors qu'il devrait être à 0. Cette situation survient car sur la quantité (quelques milliards) de bits, certains sont défectueux. On suppose que sur une journée, le nombre de faux 0 (resp. le nombre de faux 1) suit une loi de Poisson de paramètre λ_0 (resp. λ_1).

- 1. Quelle est la loi du nombre total d'erreurs?
- 2. Pour un entier n, sachant qu'il y n erreurs, quelle est la loi du nombre de faux 0?

Exercice 9 (** Rai, Rec ©). 1. Soit $(n,m) \in (\mathbb{N}^*)^2$ et $\ell \leq n+m$ démontrer que $\binom{n+m}{\ell} = \sum_{i=0}^{\ell} \binom{n}{i} \binom{m}{\ell-i}$

- 2. Soit $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$ avec X et Y indépendantes et $p \in [0;1]$, démontrer que $X + Y \sim \mathcal{B}(n+m,p)$.
- 3. Démontrer, par récurrence, que si pour tout $i \in [1; n]$, $X_i \sim \mathcal{B}(m_i, p)$ avec $m_i \in \mathbb{N}^*$ et X_1, \ldots, X_n indépendantes, alors $\sum_{k=1}^n X_k \sim \mathcal{B}\left(\sum_{i=1}^n m_i, p\right)$.
- 4. On se propose de redémontrer le résultat de la question 2 d'une autre méthode : si $X = \sum_{i=1}^{n} X_i$ et $Y = \sum_{i=n+1}^{n+m} X_i$ avec X_1, \dots, X_{n+m} des variables aléatoires indépendantes toute de Bernoulli de paramètre p, que comptent X, Y et X + Y?

Exercice 10. Soit (X,Y) un couple de variables aléatoires suivant une loi uniforme sur $[0;n]^2$:

$$\forall (i,j) \in [0;n]^2$$
 $\mathbb{P}(X=i,Y=j) = \frac{1}{(n+1)^2}$

- 1. Déterminer les lois de X et de Y.
- 2. Déterminer la loi de X + Y.
- 3. X et Y sont-elles indépendantes?

Exercice 11. Soient X et Y deux variables aléatoires indépendantes suivant toutes les deux une loi géométrique de paramètre $p \in \]0;1[$. Soit $\omega \in \Omega$, on pose $M(\omega) = \begin{pmatrix} X(\omega) & Y(\omega) \\ Y(\omega) & X(\omega) \end{pmatrix}$. Calculer la probabilité que M soit inversible.

Exercice 12. Soit X et Y indépendantes et suivant une loi géométrique de paramètre $p \in]0;1[$.

- 1. Soit $r \in \mathbb{N}^*$, calculer $\mathbb{P}(X = rY)$.
- 2. Soit $Ma = \max(X, Y)$ et $Mi = \min(X, Y)$, déterminer la loi du couple (Ma, Mi).
- 3. Déterminer les lois de Ma et de Mi.

Exercice 13. Soient X et Y deux variables aléatoires indépendantes suivant toutes deux la loi géométrique sur \mathbb{N} de paramètre $p \in]0,1[$. On note : U=|X-Y| et $V=\min(X,Y)$.

- 1. Déterminer la loi du couple (U, V).
- 2. En déduire la loi de U et celle de V.
- 3. Les variables aléatoires U et V sont-elles indépendantes?

Exercice 14. Soit $p \in]0;1[$ et $N \in \mathbb{N}\setminus\{0,1\}$. On dispose de N pièces de monnaie non équilibrées, chacune des pièces amenant un Pile avec probabilité p. On lance les N pièces de monnaie. Un joueur, yeux bandés, qui n'a pas assisté au lancer, choisit au hasard n pièces parmi les N (avec $n \in [1; N-1]$). Il gagne celles choisies qui sont tombées sur Pile. Soient X le nombre de Piles obtenues parmi les N pièces, et Y le nombre de pièces gagnées par le joueur.

- 1. Déterminer la loi de X.
- 2. Justifier que $Y(\Omega) = [0; n]$.

- 3. Déterminer, pour tout $k \in \llbracket 0; N \rrbracket$, et $j \in \llbracket 0; n \rrbracket$, la valeur de $\mathbb{P}_{(X=k)}(Y=j)$.
- 4. En déduire la loi du couple (X,Y). On pourra montrer que

$$\binom{k}{j}\binom{N-k}{n-j}\binom{N}{k} = \binom{n}{j}\binom{N-n}{k-j}\binom{N}{n}.$$

5. Déterminer alors la loi de Y et justifier que Y suit une loi usuelle.

Exercice 15. On dispose de 3 boules numérotées de 1 à 3, réparties dans deux urnes \mathcal{U} et \mathcal{V} . On considère l'expérience \mathcal{E} suivante :

- On choisit un nombre entier de manière uniforme dans $\{1, 2, 3\}$.
- Si on a choisit le nombre k, la boule numérotée k est changée d'urne avec probabilité $\frac{1}{3}$ et maintenue dans son urne avec probabilité $\frac{2}{3}$.

On suppose qu'au départ toutes les boules sont dans l'urne \mathcal{U} et on effectue de manière répétée cette expérience. Pour tout entier $n \in \mathbb{N}$ on désigne par X_n le nombre de boules dans l'urne \mathcal{U} après n réalisations de \mathcal{E} .

- 1. Donner les lois de X_0 et X_1 .
- 2. Déterminer $X_2(\Omega)$ puis pour tout $r \in \{1, 2, 3\}$ et $s \in \{2, 3\}$ déterminer $\mathbb{P}_{(X_1=s)}(X_2=r)$.
- 3. Donner la loi du couple (X_1, X_2) .
- 4. Déterminer la loi de X_2 .
- 5. Les variables aléatoires X_1 et X_2 sont elles indépendantes?
- 6. Écrire une fonction Python qui prend en entrée deux listes U et V contenant les entiers 1,2 et 3 (répartis sur les deux listes) et qui renvoie la composition des urnes au tour suivant.
- 7. Écrire une fonction prenant en entrée un entier n et qui renvoie la composition des urnes après n étapes.