Chapitre 5

Polynômes

Le but de ce chapitre est de revoir les polynômes vu en BCPST1. Une nouveauté sera d'écrire les polynômes à l'aide de X, un certain polynôme.

Table des matières

1	Définition et écriture d'un polynôme	2
2	Degré et opérations des polynômes	2
3	Racines et factorisation de polynômes	4
4	Dérivée d'un polynôme (pas vraiment au programme)	5

Dans ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Si $f: \mathbb{K} \to \mathbb{K}$, $g: \mathbb{K} \to \mathbb{K}$, $\lambda \in \mathbb{K}$, $n \in \mathbb{N}^*$, alors on rappelle que l'on définit l'addition de fonctions, le produit de fonctions, la multiplication d'une fonction par un scalaire et la puissance d'une fonction par :

$$f + g \colon \begin{cases} \mathbb{K} \longrightarrow \mathbb{K} \\ x \longmapsto f(x) + g(x) \end{cases} \qquad f \times g \colon \begin{cases} \mathbb{K} \longrightarrow \mathbb{K} \\ x \longmapsto f(x) \times g(x) \end{cases} \qquad \lambda \cdot f \colon \begin{cases} \mathbb{K} \longrightarrow \mathbb{K} \\ x \longmapsto \lambda \times f(x) \end{cases} \qquad f^n = \underbrace{f \times f \cdots \times f}_{n \text{ fois}}$$

Par convention, pour n = 0, $f^n : x \mapsto 1$. On rappelle aussi que «f = g» équivaut à «pour tout $x \in \mathbb{K}$, f(x) = g(x)».

Définition et écriture d'un polynôme 1

Définition d'un polynôme

Soit $P: \mathbb{K} \to \mathbb{K}$. On dit que P est un **polynôme réel** si $\mathbb{K} = \mathbb{R}$ et **polynôme complexe** si $\mathbb{K} = \mathbb{C}$, s'il existe $n \in \mathbb{N}$ et $(a_0, a_1, \dots, a_n) \in \mathbb{K}^{n+1}$ tel que $P: x \mapsto \sum_{k=0}^n a_k x^k$. Les scalaires a_k sont appelés **coefficients** du polynôme P.

• Si tous les coefficients d'un polynôme sont nuls, on dit que c'est le **polynôme nul**, noté 0.

- On décide de noter $X: x \mapsto x$, c'est bien un polynôme : il suffit de poser $n=1, a_0=0$ et $a_1=1$.
- Le n dépend du polynôme. Si $Q: x \mapsto 2 + 3x$, alors on peut poser n = 1, $a_1 = 2$ et $a_2 = 3$, mais comme $Q: x \mapsto 2 + 3x + 0x^2 + 0x^3$, ce n n'est pas unique, on peut aussi poser m = 3 et $a_0 = 2$, $a_1 = 3$, $a_2 = a_4 = 0$. Dans l'écriture du polynôme $P: x \mapsto \sum_{k=0}^{n} a_k x^k$, on peut remplacer n par m avec m > n et poser $a_k = 0$ pour k > n.

Proposition nº 1 : écriture d'un polynôme quel
conque à l'aide du polynôme \boldsymbol{X}

Soit $P\colon x\mapsto \sum\limits_{k=0}^n a_kx^k$ un polynôme, on a alors l'égalité suivante : $P=\sum\limits_{k=0}^n a_kX^k.$

Définition des ensembles $\mathbb{K}[X]$

On note $\mathbb{R}[X]$ l'ensemble des polynômes réels et $\mathbb{C}[X]$ l'ensemble des polynômes complexes.

Proposition n° 2 : unicité de l'écriture d'un polynôme

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$ et $Q = \sum_{k=0}^{m} b_k X^k \in \mathbb{K}[X]$, (quitte à rajouter des coefficients nuls, on suppose n = m). 1. P est le polynôme nul ssi pour tout $x \in \mathbb{K}$, P(x) = 0. 2. Pour tout $k \in [0; n]$, $a_k = b_k$ ssi P = Q.

Degré et opérations des polynômes

Définition du degré d'un polynôme, du coefficient dominant, d'un polynôme unitaire

- Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme non nul. Notons $d = \max\{k \in \llbracket 0; n \rrbracket \mid a_k \neq 0\}$, de sorte que $P = \sum_{k=0}^{d} a_k X^k$ et $a_d \neq 0$. L'entier d est appelé **degré** de P et est noté $d^{\circ}P = d$.
- On pose, par convention, $d^{\circ}0 = -\infty$.
- On appelle coefficient dominant de P le coefficient a_d . On dit que P est unitaire si $a_d = 1$.
- On dit que P est un polynôme constant si $d^{\circ}P \leq 0$, dans ce cas, $P = a_0$.
- Les polynômes λX^n , avec $\lambda \neq 0$, sont appelés **monômes**.
- On note $\mathbb{K}_n[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} dont le de degré est inférieur ou égale à n.

Exemples 1. $d^{\circ}0 =$

 $d^{\circ}3 =$

 $d^{\circ}X + 2 = d^{\circ}X^{n} = d^{\circ}(aX^{2} + bX + c) =$

igwedge Attention à ne pas confondre degré n et somme dont le dernier terme est X^n

L'écriture $P = \sum_{k=0}^{n} a_k X^k$ n'implique pas $d^{\circ}P = n$ seulement que $d^{\circ}P \leqslant n$. De plus, $a_n \neq 0$ ssi $d^{\circ}P = n$.

Exemples 2. Si $P = 2X^2 + 3X$, $Q = X^3 - 2X$ et $R = -2X^2 + 2$, calculer P + Q, P + R, $P \times Q$ et $P \circ Q$.

Proposition nº 3 : formules pour les opérations sur les polynômes

Soient $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$, $\tilde{P} = \sum_{k=0}^{p} \tilde{a}_k X^k$, $Q = \sum_{k=0}^{q} b_k X^k \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. Alors P + Q, λP , $P \times Q$ et $P \circ Q = P(Q)$ sont encore des polynômes donnés par les formules suivantes :

1.
$$P + \tilde{P} = \sum_{k=0}^{p} (a_k + \tilde{a}_k) X^k$$

$$2. \quad \lambda P = \sum_{k=0}^{p} (\lambda a_k) X^k$$

3.
$$P \times Q = \sum_{k=0}^{p+q} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) X^k$$

4.
$$P \circ Q = P(Q) = \sum_{k=0}^{p} a_k Q^k$$

• Pour la somme de deux polynômes, on a pris les mêmes bornes (quitte à rajouter des zéros). Remarques 2.

- En revanche, ce n'est pas nécessaire pour le produit de deux polynômes.
- Attention: P(X+1), P(X) et P(X-1) désignent souvent des composées (et non des produits) de P respectivement avec X + 1, X et X - 1, de plus, $P \circ X = P(X) = X$.

Proposition nº 4 : propriétés des opérations sur les polynômes

Soient $(P, Q, R) \in \mathbb{K}[X]^3$, alors :

1.
$$P + Q = Q + P$$
 (commutativité)

2.
$$P \times Q = Q \times P$$
 (commutativité)

3.
$$(P+Q) + R = P + (Q+R)$$
 (associated)

4.
$$(P \times Q) \times R = P \times (Q \times R)$$
 (associativitė

7.
$$P + (-1) \times P = 0$$
 (existence de l'opposé)

1.
$$P+Q=Q+P$$
 (commutativité) 2. $P\times Q=Q\times P$ (commutativité) 3. $(P+Q)+R=P+(Q+R)$ (associativité) 4. $(P\times Q)\times R=P\times (Q\times R)$ (associativité) 5. $0+P=P$ (0 neutre de l'addition) 6. $1\times P=P$ (1 neutre de la multiplication) 7. $P+(-1)\times P=0$ (existence de l'opposé) 8. $P\times (Q+R)=P\times Q+P\times R$ (distributivité)

9.
$$(P+Q)^n = \sum_{k=0}^n \binom{n}{k} P^k Q^{n-k}$$
 (binôme de Newton) $10. P^n - Q^n = (P-Q) \sum_{k=0}^{n-1} P^k Q^{n-1-k}$

$$10. P^{n} - Q^{n} = (P - Q) \sum_{k=0}^{n-1} P^{k} Q^{n-1-k}$$

Exemple 3. Grâce à $(1+X)^{2n}$, démontrer que $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$.

Exemples 4. Si $P = 2X^2 + 3X$, $Q = X^3 - 2X$ et $R = -2X^2 + 2$, que valent les degrés de P + Q, P + R, PQ et $P \circ Q$?

Proposition n° 5 : propriétés sur le degré et intégrité

Soient $(P,Q) \in \mathbb{K}[X]^2$, alors :

1.
$$d^{\circ}(P+Q) \leqslant \max(d^{\circ}P, d^{\circ}Q)$$

2. Si
$$d^{\circ}P\neq d^{\circ}Q,$$
 alors $d^{\circ}(P+Q)=\max(d^{\circ}P,d^{\circ}Q)$

3.
$$d^{\circ}(PQ) = d^{\circ}P + d^{\circ}Q$$

4. Si
$$\lambda \in \mathbb{K}^*$$
 alors $d^{\circ}(\lambda P) = d^{\circ}P$

5. Si
$$Q$$
 non constant, $d^{\circ}(P\circ Q)=d^{\circ}P\times d^{\circ}Q$

6. Si
$$PQ = 0$$
, alors $P = 0$ ou $Q = 0$ (intégrité)

Péril imminent au degré de la somme

En général, le degré de la somme n'est pas égale à la somme des degrés ni au maximum des degrés.

3 Racines et factorisation de polynômes

Définition d'une racine d'un polynôme

Soient P un polynôme et $x \in \mathbb{K}$, on dit que x est une racine de P si P(x) = 0.

Exemple 5. Est-ce que 0, 1 et 2 sont racines de $P = X^3 + X^2 - X - 1$?

Attention X et x ce n'est pas la même chose!

Chercher les racines de $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$, c'est résoudre l'équation P(x) = 0. Ce n'est pas la même chose que résoudre l'équation P(X) = 0: P(X) = 0 ssi pour tout $k \in [0; n]$, $a_k = 0$ d'après la proposition 2.

Proposition nº 6 : caractérisation des racines par la factorisation

Soient $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $(x_1, x_2, \dots, x_r) \in \mathbb{K}^r$ avec les x_i deux à deux distincts.

- 1. Le polynôme P admet a comme racine si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que P = (X a)Q.
- 2. Le polynôme P admet x_1, x_2, \ldots, x_r comme racines ssi il existe $Q \in \mathbb{K}[X]$ tel que $P = \left(\prod_{i=1}^r (X x_i)\right)Q$

Proposition n° 7 : le conjugué d'une racine d'un polynôme à coefficients réels est encore racine Soit $P \in \mathbb{R}[X]$ et $z \in \mathbb{C} \setminus \mathbb{R}$ une racine de P, alors \overline{z} est aussi racine de P.

1. Si $P = aX^2 + bX + c \in \mathbb{R}[X]$ un polynôme du second degré dont le discriminant est strictement négatif, quelles sont ses racines?

2. Quelles sont les racines de $Q = X^2 - (2 + i)X + 2i$?

Proposition nº 8: un polynôme non nul admet un nombre fini de racines majoré par son degré

- 1. Si $P \in \mathbb{K}[X] \setminus \{0\}$, P a au plus $d \cap P$ racines. 2. Si $P \in \mathbb{K}_n[X]$ a au moins n+1 racines, alors P=0.
- 3. Si $P \in \mathbb{K}[X]$ a une infinité de racines, alors P = 0.

Définition de la multiplicité d'une racine

Soit $P \in \mathbb{K}[X]$ non nul. On dit que la **multiplicité** (ou d'**ordre**) de $a \in \mathbb{K}$ dans P vaut $m \in \mathbb{N}$ s'il existe $Q \in \mathbb{K}[X]$ tel que $P = (X - a)^m Q$ avec $Q(a) \neq 0$.

Remarques 3. Soit $P \in \mathbb{K}[X]$ non nul.

- 1. Si m = 0, alors a n'est pas racine de P.
- 3. Si m=2, on dit que a est une racine **double** de P.
- 2. Si m = 1, on dit que a est une racine **simple** de P.
- 4. Si $P = (X a)^m Q$ avec $Q \in \mathbb{K}[X]$, la multiplicité de a est supérieure ou égale à m.

Exemple 7. Donner le degré, le coefficient dominant, les racines et leur multiplicités de $P = 3(X-1)^4(X-2)^2$.

Théorème n° 1 de d'Alembert-Gauss (théorème fondamental de l'algèbre)

(admis)

Soit $P \in \mathbb{C}[X]$ un polynôme non constant, alors P admet au moins une racine complexe.

Théorème n° 2 : factorisation d'un polynôme dans $\mathbb{C}[X]$

Si $P \in \mathbb{C}[X]$ est non constant, alors il se factorise $P = \lambda \prod_{i=1}^{r} (X - z_i)^{m_i}$ avec $\lambda \in \mathbb{C}^*$, m_i des entiers naturels non nuls et les z_i des complexes deux à deux distincts. Cette décomposition est unique à l'ordre des facteurs près : λ est le coefficient dominant, les z_i sont exactement les racines de P et m_i est la multiplicité de z_i .

Racines n-ièmes et factorisation du polynôme $X^n - 1$

Soit $n \in \mathbb{N}^*$, on pose $P = X^n - 1$

- Démontrer que w_k = e^{i 2kπ}/_n, pour k ∈ Z, est une racine de P.
 Démontrer que les nombres complexes w_k, pour k ∈ [[0; n-1]], sont deux à deux distincts.
- 3. Factoriser $X^n 1$ dans $\mathbb{C}[X]$.

Remarque 4. Un polynôme à coefficients complexes de degré n a donc toujours exactement n racines complexes comptées avec multiplicité contrairement au nombre de racines réelles d'un polynôme à coefficients réels. Ainsi, les réels sont plus complexes que les complexes...

Exemple 9. Combien $P = (X^2 + 1)(X^2 - 6X + 9)$ admet-il de racines réelles? complexes?

Dérivée d'un polynôme (pas vraiment au programme)

Remarque 5. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$. Par somme de fonctions dérivables, $P: x \mapsto a_0 + \sum_{k=1}^{n} a_k x^k$ est dérivable sur \mathbb{R} de dérivée $P': x \mapsto 0 + \sum_{k=1}^{n} k a_k x^{k-1} = \sum_{j=0}^{n-1} (j+1) a_{j+1} x^j$, ainsi P' est un polynôme et $P' = \sum_{k=1}^{n} k a_k X^{k-1}$. Or, vous savez dériver des fonctions dont la variable est réelle mais pas complexe. La définition suivante va généraliser par métonymie :

Définition de la dérivée formelle d'un polynôme

Soit
$$P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$$
, on définit le polynôme dérivé de P par $P' = \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{j=0}^{n-1} (j+1) a_{j+1} X^j \in \mathbb{C}[X]$.

Proposition nº 9 : propriétés de la dérivation de polynômes

Soient $(P,Q) \in \mathbb{C}[X]^2$ et $\lambda \in \mathbb{C}$, alors :

1.
$$(\lambda P + Q)' = \lambda P' + Q'$$

$$2. (PQ)' = P'Q + PQ'$$

Proposition n° 10 : caractérisation d'une racine non simple à l'aide de la dérivée

Soit $P \in \mathbb{C}[X]$ un polynôme non nul et $\alpha \in \mathbb{C}$.

La multiplicité de α dans P est supérieure ou égale à 2 si et seulement si $P(\alpha) = P'(\alpha) = 0$. Le nombre α est racine simple de P si et seulement si $P(\alpha) = 0$ et $P'(\alpha) \neq 0$.