Forme algébrique et trigonométrique

Exercice 1 (* Cal). Soient $z_1 = 1 + i$, $z_2 = \sqrt{3} + i$ et $z_3 = \frac{z_1}{z_2}$.

- 1. Donner la forme algébrique de z_3 .
- 2. Calculer le module et un argument de z_1 et de z_2 .
- 3. En déduire le module et un argument de z_3 puis la valeur de $\cos\left(\frac{n}{12}\right)$.

Exercice 2 (\star Cal). Soit $\theta \in \mathbb{R}$, $a \in]-1;1[$, $n \in \mathbb{N}$. Déterminer la forme algébrique de :

1.
$$z_1 = (1 - 2i)e^{-i\theta}$$

2.
$$z_2 = \frac{e^{i2\theta}}{1-i}$$

3.
$$z_3 = (\sqrt{3} - i)^{2025}$$

4.
$$z_4 = \frac{1 + i \tan \theta}{1 - i \tan \theta}, \ \theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$

5.
$$z_5 = (1 + e^{i\theta})^n$$

6.
$$z_6 = \frac{1}{1 - ae^{i\theta}}$$

Exercice 3 (* Cal, Rai ©). Pour $z \in \mathbb{C} \setminus \{-i\}$, on pose $f(z) = \frac{1+iz}{1-iz}$.

1. Déterminer les z tels que

1.
$$f(z) \in \mathbb{R}$$

2.
$$f(z) \in i\mathbb{R}$$
 3. $|f(z)| = 1$

3.
$$|f(z)| = 1$$

2. Interpréter géométriquement les ensembles ci-dessus.

Exercice 4 (* Cal). Soient trois nombres complexes : $z_1 = -3 + i\sqrt{3}$, $z_2 = \sqrt{2} + i\sqrt{6}$ et $z_3 = \sqrt{8} - i\sqrt{8}$. On pose $Z = \frac{z_1^3 z_3^4}{z_2^6}$.

- 1. Ecrire z_1 , z_2 et z_3 sous forme trigonométrique.
- 2. En déduire une forme trigonométrique de Z.
- 3. Calculer la forme algébrique de Z.

Exercice 5 (* Rai). Pour quelles valeurs de $n \in \mathbb{N}$, le complexe $\left(\frac{(\sqrt{3}-i)^7}{(1-i)^5}\right)^n$ est-il un réel positif?

Exercice 6 (** Cal, Rai ©). Trouver les modules et arguments de (préciser les conditions pour $\theta \in \mathbb{R}$)

1.
$$z = e^{i\theta} + e^{i3\theta}$$

2.
$$z = (1 + i)^n$$

3.
$$z = 1 - e^{i\theta}$$

4.
$$z = 1 + i \tan \theta$$

5.
$$z = \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta}$$

6.
$$z = e^{e^{i\theta}}$$

Exercice 7 (** Rai ©). Montrer que pour $\alpha \in \mathbb{R}$, $\arctan(\alpha)$ est un argument de $1 + i\alpha$.

Exercice 8 (* Cal ©). Montrer que pour tout $(a,b) \in \mathbb{C}^2$, $|a|^2 + |b|^2 =$ $\frac{1}{2}(|a-b|^2+|a+b|^2).$

Exercice 9 ($^{\delta}_{\star\star}$ Rai, Rec $^{\circ}$). 1. Soit $(z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$, montrer que $\left|\sum_{k=1}^n z_k\right| \leqslant \sum_{k=1}^n |z_k|.$

- 2. Montrer que l'inégalité précédente est une égalité si et seulement si $\exists i \in \llbracket 1; n \rrbracket \quad \exists (\lambda_1, \lambda_2, \dots, \lambda_n) \in (\mathbb{R}^+)^n \quad \forall j \in \llbracket 1; n \rrbracket$
- 3. Interpréter graphiquement cette condition.

Exercice 10 (* Rai ©). On dit que $n \in \mathbb{N}$ est somme de deux carrés si :

$$\exists (a,b) \in \mathbb{N}^2 \qquad n = a^2 + b^2$$

Soit n_1 et n_2 deux entiers qui sont sommes de deux carrés : $n_1 = a^2 + b^2$ et $n_2 = c^2 + d^2$. Posons $z_1 = a + ib$, $z_2 = c + id$. Comment écrire n_1 et n_2 en fonction de z_1 et z_2 ? Démontrer n_1n_2 est somme de deux carrés.

Exercice 11 (** Rai, Rec \mathbb{O}). Trouver toutes les fonctions $f: \mathbb{C} \to \mathbb{C}$ telles que pour tout $x \in \mathbb{R}$, f(x) = x, pour tout $(z, z') \in \mathbb{C}^2$, f(z + z') =f(z) + f(z') et f(zz') = f(z)f(z').

Exercice 12 (* Cal ©). Démontrer que pour $t \in \mathbb{R}$, $|e^{it} - 1| \leq |t|$.

Trigonométrie

Exercice 13 (* Cal). Résoudre les équations ou les inéquations suivantes :

$$1. \sin(x) = \frac{\sqrt{3}}{2}$$

$$2. \cos(x) \leqslant \frac{\sqrt{2}}{2}$$

3.
$$\begin{cases} \sin(x) &= \frac{\sqrt{3}}{2} \\ \cos(x) &= -\frac{1}{2} \end{cases}$$

4.
$$\cos^4(x) + \sin^4(x) = 1$$

Exercice 14 (\star Cal). Linéariser $\cos^3(\theta)$, $\sin^2(\theta)\cos^2(\theta)$ et $\sin^4(\theta)$, $\cos^4(\theta)$.

Exercice 15 (* Cal). Exprimer $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de puissances de $\cos(\theta)$ et de $\sin(\theta)$.

Exercice 16 (* Cal). Déterminer une primitive de $x \mapsto \sin^5(x)$.

Exercice 17 (* Cal). 1. Écrire $\sqrt{3}\cos(x) + \sin(x)$ sous la forme $A\cos(x-\varphi)$.

- 2. Résoudre sin(x) + cos(x) = 0
- 3. Résoudre l'inéquation $\cos(x) \sqrt{3}\sin(x) < 1$

Exercice 18 ($\oint \star \star$ Cal). Soit $(\theta, \varphi) \in \mathbb{R}^2$, calculer $\sum_{k=0}^n \cos(k\theta + \varphi)$

Équations algébriques

Exercice 19 (6 Cal ©). 1. On pose $j = e^{i\frac{2\pi}{3}}$, montrer que 1, j et j^{2} sont les trois racines de $X^{3} - 1$.

2. Calculer \overline{j} , $1 \times j \times j^2$, $1 + j + j^2$ et j(j + 1).

Exercice 20 (\star Cal). Déterminer les racines carrées de 1+6i, 24i-7 et de -5+12i. En déduire la factorisation de $X^2+5-12i$.

Exercice 21 (** Cal, Rec ©). Dans cet exercice, on note $w = e^{i\frac{2\pi}{5}}$.

- 1. Calculer w^5 , $1 + w + w^2 + w^3 + w^4$, $a = w + w^4$ et $b = w^2 + w^3$ sous forme algébrique.
- 2. Calculer explicitement a+b et ab. De quelle équation les complexes a et b sont-ils solutions?
- 3. Résoudre cette équation.
- 4. En déduire $\cos\left(\frac{2\pi}{5}\right)$ puis $\sin\left(\frac{2\pi}{5}\right)$.

Exercice 22 (** Rec, Rai, Cal). Déterminer les racines de X^3 – (4i + 2) X^2 + (6i – 4)X + 4, Commencer à chercher une racine imaginaire pure.

Exercice 23 (* Cal, Rai ©). Résoudre, dans \mathbb{C} , $\begin{cases} z+z' = 5+2i \\ zz' = 5+5i \end{cases}$

Exercice 24 (* * * Rai, Rec). Posons $\omega = \frac{4+3\mathrm{i}}{5}$. Montrer que $|\omega| = 1$, que $\omega^n = \frac{a_n + \mathrm{i}b_n}{5^n}$, avec a_n et b_n deux entiers définis par récurrence. En déduire que pour tout $n \in \mathbb{N}^*$, $\omega^n \neq 1$.

Polynômes, Degré

Exercice 25 (* Cal, Rai ©). Soit $n \in \mathbb{N}^*$, déterminer les couples $(a, b) \in \mathbb{R}^2$ tels qu'il existe $Q \in \mathbb{R}[X]$ tel que $aX^{n+1} + bX^n + 1 = (X-2)^2Q$.

Exercice 26 ($f \star \text{ Cal, Rai, Rec } \mathbb{O}$). Soit $(a, b) \in (\mathbb{N}^*)^2$.

- 1. Montrer qu'il existe $Q \in \mathbb{R}[X] X^a 1 = (X 1)Q$
- 2. Montrer que si a=bq avec $q\in\mathbb{N},$ alors, il existe $Q\in\mathbb{R}[X]$ tel que $X^a-1=(X^b-1)\times Q.$

Exercice 27 (* Rai ©). Déterminer tous les couples $(P,Q) \in \mathbb{K}[X]^2$ tels que $Q^2 = XP^2$.

Exercice 28 (* Rai). Démontrer qu'il existe un unique $P \in \mathbb{R}[X]$ tel que pour tout $n \in \mathbb{N}$, $P(n) = 2n^2 - 3n + 8$.

Exercice 29 (** Rai). Est-ce qu'il existe $P \in \mathbb{R}[X]$ tel que pour tout $n \in \mathbb{N}^*$, P(n) = 1/n?

Exercice 30 (* Rai ©). Déterminer tous les polynômes $P \in \mathbb{K}[X]$ tels que $P \circ P = P$.

Exercice 31 (* * * Rai, Rec). Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels qu'il existe $Q \in \mathbb{C}[X]$ tel que P = QP'

Exercice 32 (* Rai). Soit $(n,m) \in \mathbb{N}^2$ et $\ell \in [0; n+m]$, à l'aide du polynôme $(1+X)^{n+m}$, démontrer que $\binom{n+m}{\ell} = \sum_{i=0}^{n} \binom{n}{i} \binom{m}{\ell-i}$.

Racines et factorisation d'un polynôme

Exercice 33 ($f \star \star$ Rai, Com). 1. Soit $P \in \mathbb{R}[X]$ un polynôme non constant, donner un équivalent de P(x) quand $x \to +\infty$ puis un quand $x \to -\infty$.

- 2. Soit $P \in \mathbb{R}[X]$ de degré impair, démontrer que P admet au moins une racine réelle.
- 3. Pour tout $n \in \mathbb{N}^*$, donner un exemple de polynôme de degré 2n n'ayant pas de racines réelles.

Exercice 34 (** Cal, Rai). 1. Soit $P = aX^2 + bX + c \in \mathbb{C}[X]$ avec $a \neq 0$, en utilisant la forme factorisée de P, déterminer une expression du produit et de la somme des deux racines complexes (éventuellement égales) en fonctions de a, b et c.

- 2. Soit $P = aX^3 + bX^2 + cX + d \in \mathbb{C}[X]$ avec $a \neq 0$, en utilisant la forme factorisée de P, déterminer une expression du produit et de la somme des trois racines complexes en fonctions de a, b et d.
- 3. Soit $P \in \mathbb{C}[X]$ de degré n, donner sans preuve, l'expression du produit et de la somme des n racines complexes comptées avec multiplicité.

On pourra librement utiliser le résultat de l'exercice 34 dans la suite.

Exercice 35 (* Rai). Trouver le ou les polynômes $P \in \mathbb{R}[X]$ de degré 3 tel que 1 est racine simple, -2 racine double et P(3) = 8.

Exercice 36 (* Cal, cou). Soit $P = 2X^3 - 16X^2 + 46X - 56$. On note x_1, x_2 et x_3 les racines complexes de P. Déterminer les trois racines de P sachant que la somme de deux des racines est égale à la troisième.

Exercice 37 (* Rai ©). Soit $P \in \mathbb{C}[X]$ tel que $d^{\circ}P \geq 1$. Démontrer que $P : \begin{cases} \mathbb{C} \longrightarrow \mathbb{C} \\ x \longmapsto P(x) \end{cases}$ est surjective.

Exercice 38 (* Rai). Déterminer les $a \in \mathbb{C}$ tels que $P = X^3 - X^2 + a$ ait une racine double.

Exercice 39 (* Rai ©). Déterminer tous les polynômes $P \in \mathbb{R}_4[X]$ tels que $P(0)^2 + P(-3)^2 + P(5)^4 + P(-\pi)^6 + P(42)^{42} = 0$.

Exercice 40 (** Rec \mathbb{O}). Soit $(P,Q) \in \mathbb{C}[X]^2$.

- 1. Si pour tout $n \in \mathbb{N}$, P(n) = Q(n), montrer que P = Q.
- 2. Si pour tout $x \in \mathbb{R}$, $P(\sin(x)) = Q(\sin(x))$, montrer que P = Q.
- 3. Si $x \mapsto P(x)$ est périodique, montrer que P est constant.

Exercice 41 (** Rai, Rec ©). Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que (X+3)P(X) = XP(X+1).

Exercice 42 (* Rai ©). Soient $n \in \mathbb{N}^*$ et $P_n = \sum_{k=0}^n \frac{X^k}{k!} \in \mathbb{C}[X]$. Montrer que les racines complexes de P_n sont simples.

Exercice 43 (* Cal ©). 1. Démontrer qu'il existe un unique triplet $(a,b,c) \in \mathbb{R}^3$ tel que pour tout $x \in \mathbb{R} \setminus \{0,-1,-2\}$, $\frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$.

- 2. En déduire que la série $\sum_{n\geqslant 1} \frac{1}{n(n+1)(n+2)}$ converge et calculer sa somme.
- 3. En déduire également une primitive de $x \mapsto \frac{1}{x(x+1)(x+2)}$ sur \mathbb{R}_+^* .

Problèmes

Exercice 44 ($f \star \star$ Rai, Rec). Soit $n \in \mathbb{N}$ et $x \in [-1; 1]$ on pose $f_n(x) = \cos(n \arccos(x))$.

- 1. Rappeler tout ce que vous savez sur la fonction arccos.
- 2. Pour $x \in [-1; 1]$, exprimer $f_{n+1}(x) + f_{n-1}(x)$ en fonction de $f_n(x)$.
- 3. Montrer qu'il existe un unique polynôme T_n telle que pour tout $x \in [-1;1]$, $T_n(x) = f_n(x)$.
- 4. Calculer f_0 , f_1 , f_2 et f_3 . Que valent T_0 , T_1 , T_2 et T_3 ?
- 5. Déterminer la valeur de T_n , le degré de T_n , son coefficient dominant et les racines de T_n .

Exercice 45 (** Rai, Rec ©). Soit $a \in \mathbb{N}$ et $P_a = X^3 - X(a^2 + 2a) + 2$. On cherche a tel que P_a possède trois racines dans \mathbb{Z} . On suppose que a existe. Soient r_1 , r_2 et r_3 les 3 racines de P_a avec $r_1 \leqslant r_2 \leqslant r_3$.

- 1. Que valent $r_1 + r_2 + r_3$ et $r_1r_2r_3$?
- 2. Montrer que $r_1 < 0$.
- 3. En déduire que $r_1 < 0 < r_2 \le r_3$ puis les valeurs de $r_1, r_2,$ et $r_3.$
- 4. Donner la valeur de $P_a'(r_2)$. En déduire la valeur de a.
- 5. Réciproquement, montrer que la valeur de a trouvée convient.

Exercice 46 (* * * Rai, Rec ©). Soit $n \in \mathbb{N}^*$, on pose $P_n = \frac{1}{2i}[(X+i)^n - (X-i)^n]$.

- 1. Calculer P_1 , P_2 et P_3
- 2. Montrer que $P_n \in \mathbb{R}[X]$.
- 3. Déterminer le degré et le coefficient dominant de P_n .
- 4. La fonction P_n est-elle paire? impaire?
- 5. Trouver les racines de P_n (on utilisera la fonction $\cot a = \frac{\cos}{\sin}$) (on pourra librement utiliser le résultat de l'exercice du cours sur les racines de $X^n 1$).
- 6. En déduire la factorisation de P_n en facteurs irréductibles de $\mathbb{C}[X]$.
- 7. Soit $S \in \mathbb{R}[X]$, montrer que la fonction S est paire si et seulement si on peut décomposer S comme $S = \sum_{k=0}^{N} a_k X^{2k}$ avec $N \in \mathbb{N}$ et a_k des réels.
- 8. Montrer que pour $n \in \mathbb{N}$, il existe $R_n \in \mathbb{R}[X]$ tel que $P_{2n+1} = R_n(X^2)$.
- 9. Déterminer $d=d^{\circ}R_n$ et les coefficients de R_n devant X^d et devant X^{d-1} ?
- 10. Déterminer les racines de R_n . Factoriser R_n dans $\mathbb{R}_n[X]$.
- 11. En déduire que $\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) = \frac{n(2n-1)}{3}$
- 12. Montrer, grâce à une étude de fonctions, que pour tout $\theta \in \left]0; \frac{\pi}{2}\right[$, $0 < \sin(\theta) \leqslant \theta \leqslant \tan(\theta)$

On pose pour $k \in \mathbb{N}$, $\theta_k = \frac{k\pi}{2n+1}$ et

13. En déduire que pour tout $p \in [[1; n]]$

$$\cot^2(\theta_p) \le \frac{1}{{\theta_p}^2} \le 1 + \cot^2(\theta_p)$$

14. Encadrer $\sum_{k=1}^{n} \frac{1}{k^2}$, en déduire la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.