
Espaces vectoriels
Chapitre 6

Objectifs :
Définir la notion d’espaces vectoriels. À la façon de monsieur Jourdain, vous utilisiez déjà des exemples espaces vectoriels
sans le savoir. L’étude de la notion d’espace vectoriel permet d’étudier tous ces exemples en même temps.
Prérequis :

‚ Ensembles et applications
‚ Systèmes linéaires
‚ Matrices
‚ Polynômes
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Dans tout ce qui suit, K désigne R ou C et n un entier non nul.

1 Définition des espaces vectoriels
Avant de donner la définition d’un espace vectoriel, regardons quelques exemples :

1. Soient x “ px1, x2, . . . , xnq P Rn et y “ py1, y2, . . . , ynq P Rn, on les somme : x ` y “ px1 ` y1, . . . , xn ` ynq. On
multiplie aussi x par λ P R : λ ¨ x “ pλx1, λx2, . . . , λxnq

x⃗
y⃗

ÝÝÝÑx ` y

(a) p1, 1q ` p0, 1q “ p1, 2q

ÝÝÑ2 ¨ x

x⃗

(b) 2 ¨ p1, 1q “ p2, 2q

x⃗
y⃗

(c) x⃗ ` y⃗ “ y⃗ ` x⃗

x⃗

x⃗ ` 0⃗

‚0⃗
(d) x⃗ ` 0⃗ “ x⃗

x⃗

y⃗

‚
ÝÝÝÑx ` y

(e) Il existe y⃗ tel que x⃗`y⃗ “

0⃗

Figure 1 – Les vecteurs de R2 représentés avec des flèches. Et quelques propriétés sur les vecteurs.

2. De même, étant donnés deux polynômes P et Q P KrXs et λ P K, on obtient P ` Q P KrXs et λP P KrXs.

3. Soient deux fonctions pf, gq P pRIq2 et λ P R, on pose f ` g :
#

I ÝÑ R

x ÞÝÑ fpxq ` gpxq
P RI et λf :

#

I ÝÑ R

x ÞÝÑ λfpxq
P RI

4. Soient pA, Bq P Mn,ppKq2 et λ P K, alors A ` B P Mn,ppKq et λA P Mn,ppKq.

Remarque 1. Dans la suite, la notion d’espace vectoriel généralise ces exemples. Ainsi, Rn, KrXs, F pI,Rq, Mn,ppKq

etc. seront des espaces vectoriels, les éléments de ces ensembles seront appelés des vecteurs.

On appelle K-espace vectoriel un ensemble E muni de deux opérations ` et ¨ vérifiant :
1. L’addition dite interne, pour tout px, yq P E2 x ` y P E vérifiant :

(a) @px, yq P E2 x ` y “ y ` x (l’addition de vecteurs est commutative)
(b) @px, y, zq P E3 px ` yq ` z “ x ` py ` zq (l’addition de vecteurs est associative)
(c) D0E P E @x P E x ` 0E “ x (il existe un vecteur nul noté 0E)
(d) @x P E Dy P E x ` y “ 0E (tout vecteur x admet un vecteur opposé y).

2. La multiplication dite externe, pour tout λ P K et x P E, λ ¨ x P E, vérifiant :
(a) @x P E 1 ¨ x “ x (multiplier un vecteur par 1 ne change pas le vecteur)
(b) @pλ, µq P K2 @x P E λ ¨ pµ ¨ xq “ pλ ˆ µq ¨ x (pseudo-associativité)
(c) @pλ, µq P K2 @x P E pλ ` µq ¨ x “ λ ¨ x ` µ ¨ x (pseudo-distributivité de ¨ par rapport à `)
(d) @λ P K @px, yq P E2 λ ¨ px ` yq “ λ ¨ x ` λ ¨ y (distributivité de ¨ par rapport `)

Les éléments de E sont alors appelés vecteurs de E, 0E est appelé vecteur nul de E.

Définition d’un espace vectoriel

Remarque 2. Voilà une définition particulièrement rebutante. L’important est surtout de comprendre ce que ça veut
dire. Que faites-vous avec des vecteurs ? Les additionner ensemble, et les multiplier par un scalaire. Cette définition n’est
que la formalisation de cette idée avec tout un tas d’exigences raisonnables, par exemple :

‚ Le point 1a exige seulement que lorsqu’on ajoute deux vecteurs l’ordre n’intervient pas.
‚ Le point 1c exige juste qu’il existe un vecteur nul.
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Les ensembles suivants sont des K-espaces vectoriels :
I. Kn (i.e. Rn est un R-espace vectoriel et Cn est un C-espace vectoriel)

II. KrXs

III. Mn,ppKq (l’ensemble des matrices de n lignes et p colonnes à coefficients dans K)
IV. KI “ F pI,Kq où I est un ensemble non vide (l’ensemble des applications de I dans K)

Exemples classiques d’espaces vectoriels

Remarques 3. ‚ Les vecteurs peuvent donc être des polynômes, des matrices, des suites, des fonctions etc.
‚ «Faut-il appliquer cette définition à chaque fois pour montrer qu’un machin est un espace vectoriel ?» Non, on ne

l’utilisera quasiment jamais. Dans la pratique, on montre que des ensembles sont bien des espaces vectoriels en
vérifiant quelque chose de bien plus simple que l’on va voir au plus vite.

Si on a deux vecteurs d’un espace vectoriel, on peut les additionner mais pas les multiplier entre eux.

Péril imminent : à l’impossible nul n’est tenu

À partir de maintenant E désignera toujours un K-espace vectoriel.

1. On a unicité du vecteur 0E au point 1c.
2. @pλ, xq P K ˆ E pλ “ 0 ou x “ 0Eq ðñ λ ¨ x “ 0E

3. Pour tout x P E, on a unicité du vecteur y au point 1d, de plus y “ p´1q ¨ x.

Proposition no 1 : premières propriétés d’un espace vectoriel

2 Sous-espaces vectoriels

Soit F Ă E, on dit que F est un sous-espace vectoriel de E si : 0E P F , @px, yq P F 2 @λ P K λx ` y P F

Définition d’un sous-espace vectoriel

Soit F un sous-espace vectoriel de E, alors F est lui-même un espace vectoriel.
Proposition no 2 : un sous-espace vectoriel est un espace vectoriel

Exemples 1. Montrer que F et F 1 sont des sous-espaces vectoriels de E dans les cas suivants :

E “ R3 et F “ tpx, y, zq P R3 | x ` y ` z “ 0u1. E “ M2pCq et F “

"ˆ

a b
b c

˙

| pa, b, cq P C3
*

2.

E quelconque et F “ t0Eu et F 1 “ E3. E “ KrXs et F “ KnrXs4.
E “ RR et F l’ensemble des solutions de y2 ` y “ 05. E “ MnpKq et F “ SnpKq.6.

Exemples 2. Les ensembles suivants sont-ils des sous-espaces vectoriels de R2 ?
D : la droite passant par les points p1, 2q et p0, 1q1. F “ tpx, sinpxqq | x P Ru2.

Remarque 4. Soient F un SEV de E, pe1, e2, . . . , enq P F n et pλ1, λ2, . . . , λnq P Kn, alors
n
ř

i“1
λiei P F .

Soient F et G deux sous-espaces vectoriels de E, alors F X G est alors un sous-espace vectoriel de E.
De même, si pFiqiPI est une famille de SEVs de E, alors

Ş

iPI

Fi est un SEV de E.

Proposition no 3 : intersection de sous-espaces vectoriels
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Exemple 3. On note F “
␣

px, y, yq tel que px, yq P R2( et G “
␣

px, y, zq P R3 | x ` 2y ` z “ 0
(

. Montrer que F et G sont
des sous-espaces vectoriels de R3, puis calculer leur intersection.

Par exemple, F “ tpx, 0q | x P Ru et G “ tp0, yq | y P Ru, F Y G est-il un SEV de R2 ?
Attention l’union de deux SEV de E n’est pas, en général, un SEV de E.

3 Combinaison linéaire, espace vectoriel engendré

Soit pe1, e2, . . . , enq une famille finie de vecteurs de E.
‚ Soit pλ1, λ2, . . . , λnq P Kn, on dit que

n
ř

i“1
λiei est une combinaison linéaire de la famille pe1, e2, . . . , enq.

‚ On appelle espace vectoriel engendré par pe1, e2, . . . , enq l’ensemble de toutes les combinaisons linéaires
de pe1, e2, . . . , enq. On note vect pe1, e2, . . . , enq cet ensemble :

vect pe1, e2, . . . , enq “

#

x P E | D pλ1, λ2, . . . , λnq P Kn, x “

n
ÿ

i“1
λiei

+

“

#

n
ÿ

i“1
λiei où pλ1, λ2, . . . , λnq P Kn

+

Définition d’une combinaison linéaire et de l’espace vectoriel engendré

Remarques 5. ‚ vectpe1, . . . , enq a été défini par compréhension et par paramétrage.
‚ x P vect pe1, e2, . . . , enq ssi il existe pλ1, λ2, . . . , λnq P Kn tel que x “

n
ř

k“1
λkek.

Exemples 4. ‚ Dans E “ R3, donner plusieurs combinaisons linéaires de u “ p1, 2, 3q et v “ p2, 2, 2q.
‚ Si e1 ‰ 0E , vectpe1q est une droite vectorielle de E.
‚ Si e1 et e2 sont non nuls et que e2 n’est pas colinéaire à e1, alors vectpe1, e2q est un plan vectoriel.
‚ Pour E “ RrXs, déterminer vectp1, Xq.

Soient pe1, e2, . . . , enq une famille finie de vecteurs de E et F “ vect pe1, e2, . . . , enq.
F est un SEV de E.1. Pour tout i P rr 1 ; n ss, ei P F .2.
F est le plus petit SEV de E (au sens de l’inclusion) à contenir tous les ei pour i P rr 1 ; n ss :
Si H est un sous-espace vectoriel qui contient tous les ei, alors F Ă H.

3.

Proposition no 4 : l’espace engendré est un espace vectoriel

Remarques 6. ‚ Soit i P rr 1 ; n ss, si ei P vectpe1, . . . , ei´1, ei`1, . . . , enq, alors ce vecteur ne sert à rien dans l’espace
vectoriel engendré : vect pe1, e2, . . . , epq “ vectpe1, . . . , ei´1, ei`1, . . . , epq.

‚ Pour montrer que F est un SEV de E, il suffit de trouver des ei P E tel que F “ vect pe1, e2, . . . , enq.

Exemples 5. 1. Montrer que F “

"ˆ

a b
b c

˙

, pa, b, cq P C3
*

est un sous-espace vectoriel de M2pCq.

2. Montrer que F “
␣

y P RR | y est deux fois dérivable et y2 ` y “ 0
(

est un sous-espace vectoriel de RR.

4 Propriétés des familles finies d’un espace vectoriel

4.1 Famille libre

Remarque 7. Soit F “ pe1, e2, . . . , enq une famille de E, si pour tout i P rr 1 ; n ss, λi “ 0, alors
n
ř

i“1
λiei “ 0E .

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, Cours 4

loic.devilliers@proton.me


Soit L “ pe1, e2, . . . , enq une famille finie de E, on dit que la famille L est libre, si il y a une seule façon d’écrire
le vecteur nul comme combinaison linéaire de vecteurs de L . Autrement dit si

@ pλ1, λ2, . . . , λnq P Kn

˜

n
ÿ

i“1
λiei “ 0E ùñ @i P rr 1 ; n ss λi “ 0

¸

Si L est libre, on dit aussi que les vecteurs e1, . . ., en sont linéairement indépendants, si L n’est pas libre, on
dit qu’elle est liée.

Définition d’une famille libre

Exemples 6. 1. Soit u “ p1, 2, 3q et v “ p1, 1, 1q et w “ p1, 1, 10q, montrer que F “ pu, v, wq est une famille libre
de R3.

2. La famille p1, iq est-elle libre dans C vu comme un R-EV ? Et vu comme C-EV ?
3. La famille F “ pp1, 1, 1q, p1, 0, 0q, p4, 1, 1qq n’est pas libre.

Remarques 8. 1. La famille F “ pe1, e2, . . . , enq est liée si et seulement si il existe i0 P rr 1 ; n ss tel que ei0 P

vectpe1, . . . , ei0´1, ei0`1, . . . , enq. Ainsi, une famille F est liée si et seulement si il existe un vecteur de F qui est une
combinaison linéaire des autres vecteurs de F .

2. Si F “ pe1, e2, . . . , enq et qu’il existe i P rr 1 ; n ss tel que ei “ 0E , alors la famille F est liée.
3. Si puq est une famille de un vecteur de E, alors puq est libre si et seulement si u ‰ 0E .
4. Si pu, vq est une famille de deux vecteurs de E, alors, pu, vq est libre si et seulement si u et v ne sont pas colinéaires.

Si pour tout i ‰ j, ei et ej sont non colinéaires, cela n’implique pas forcément que F “ pe1, e2, . . . , enq est
libre. En effet, la famille pp1, 1, 1q, p1, 0, 0q, p4, 1, 1qq est liée.

Attention cela ne se généralise pas à plus de deux vecteurs

Remarque 9. Une famille L “ pe1, e2, . . . , enq est libre si et seulement si pour tout x P vectpL q, il existe un unique
pλ1, λ2, . . . , λnq P Kn tel que x “

n
ř

i“1
λiei.

Exemple 7. Cela permet d’identifier : si ma⃗ “ F⃗ et a⃗ “ axx⃗ ` ay y⃗, F⃗ “ Fxx⃗ ` Fy y⃗, alors max “ Fx et may “ Fy.

Si L est une famille finie de polynômes non nuls de KrXs de degrés deux à deux distincts, alors L est libre.
Théorème no 1 : famille de polynômes de degrés deux à deux distincts est libre

4.2 Famille génératrice

Soit G “ pe1, e2, . . . , enq une famille de vecteurs de E. On dit G est génératrice de E (ou engendre E) si

@x P E D pλ1, λ2, . . . , λnq P Kn tel que x “

n
ÿ

i“1
λiei

Définition d’une famille génératrice

Exemples 8. 1. Montrer que F1 “ p1, X2 ` X, X ` 1q est une famille génératrice de R2rXs. Est-elle libre ?
2. Montrer que F2 “ pp1, 0, 0q, p0, 1, 0q, p0, 0, 1qq est une famille génératrice de R3. Est-elle libre ?
3. Montrer que F3 “ pE1,1, E1,2, E2,1, E2,2q est une famille génératrice de M2pKq (où Ea,b P M2pKq est la matrice

contenant que des 0, sauf un 1 à la ligne a et colonne b). Est-elle libre ?

Remarques 10. 1. La famille G est une famille génératrice de E si et seulement si E “ vectpG q.
2. La famille G est nécessairement génératrice de vectpG q.
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4.3 Bases

Soit B une famille finie de E. On dit que B est une base si B est à la fois libre et génératrice de E.

Définition d’une base

Ainsi, B “ pe1, e2, . . . , enq est une base de E ssi @x P E D! px1, x2, . . . , xnq P Kn x “
n
ř

k“1
xkek

On dit que les xk sont les coordonnées de x dans la base B.

Au programme de BCPST, les familles libres, génératrices et les bases sont toujours des familles finies.
Attention : il faut une famille finie

1. p1, X, . . . , Xnq est une base de KnrXs, appelée base canonique de KnrXs.
2. pe1, . . . , enq est une base de Kn, appelée base canonique de Kn, où ei “ p0, . . . , 0, 1, 0, . . . , 0q pour 1 ď i ď n.
3. pEa,bq1ďaďn

1ďbďp
est une base de Mn,ppKq, appelée base canonique de Mn,ppKq

Exemple de bases importantes (à connaître)

Exemples 9. ‚ Montrer que pp1, 1, 1q, p1, 0, 0q, p0, 1, 0qq est une base de R3 (ce n’est pas la base canonique de R3).
‚ Donner une base de C vu comme un R-espace vectoriel. Puis vu comme un C-espace vectoriel.

La matrice dont la j-ième colonne contient les coordonnées de uj dans la base B “ pe1, e2, . . . , enq est appelée

matrice de la famille F “ pu1, u2, . . . , upq dans la base B : @j P rr 1 ; q ss D!pa1,j , . . . , an,jq P Kn uj “
n
ř

i“1
ai,jei.

MatBpF q “ MatB pu1, u2, . . . , uqq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

u1 uj uq

a1,1 a1,j a1,q e1
a2,1 a2,j a2,q e2

ai,1 ai,j ai,q ei

an,1 an,j an,q en

˛

‹

‹

‹

‹

‹

‹

‹

‚

P Mn,qpKq

Définition de la matrice d’une famille de vecteurs dans une base

Exemples 10. ‚ Pour E “ R3rXs, B la base canonique de E, et F “ pX3 ` 2, X2 ` 1, 4q, que vaut MatBpF q ? Si

MatBpF 1q “

¨

˚

˚

˝

1 2
0 1
1 1
0 1

˛

‹

‹

‚

, que vaut F 1 ?

‚ Si F “ R2 et C la base canonique de F , F2 “ pp1, 1q, p2, 3q, p1, ´2qq que valent MatC pF2q et MatC pC q ?

5 Construction de la théorie de la dimension finie
Remarque 11. La dimension ne peut pas être définie comme le nombre d’éléments de E, car E est un ensemble infini.

On dit que E est un espace vectoriel de dimension finie si E possède une famille génératrice (finie).
Sinon, on dit que E est un espace vectoriel de dimension infinie.

Définition d’un espace vectoriel de dimension finie
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Kn, C vu comme un C-EV ou un R-EV, KnrXs, Mn,ppKq sont de dimension finie, contrairement à KrXs.
Exemple d’espaces vectoriels de dimension finie ou de dimension infinie

Soit E un K-EV de dimension finie. Soit L une famille libre de E, il existe B base de E telle que L Ă B.
Théorème no 2 de la base incomplète (admis)

Soit E un K-EV de dimension finie. Soit G une famille génératrice de E, il existe B base de E telle que B Ă G .
Théorème no 3 de la base extraite (admis)

Remarque 12. Grâce au théorème de la base incomplète ou à celui de la base extraite, un espace vectoriel de dimension
finie possède au moins une base mais il n’y a pas unicité des bases.

Soit E un K-EV de dimension fine. Si les familles L , B, G sont respectivement libre, base, et génératrice alors

CardpL q ď CardpBq ď CardpG q

Proposition no 5 : comparaison entre les cardinaux des familles libres, génératrices et des bases

Si E est un K-EV de dimension finie, toutes les bases de E ont le même cardinal.
Théorème no 4 : toutes les bases ont le même cardinal

Soient E un K-EV de dimension finie et B une base de E. On définit la dimension de E, par dimpEq “ CardpBq.

Définition de la dimension d’un espace vectoriel de dimension finie

Remarque 13. La dimension d’un espace vectoriel E s’interprète comme le nombre de degrés de liberté de E.
Si E “ t0Eu, on pose dimpEq “ 0, si E n’est pas de dimension finie, on dit que la dimension de E est infinie.

dimpKnq “ dimCpCq “ dimRpCq “ dimpMn,ppKqq “ dimpKnrXsq “

Exemples de dimensions importantes à connaître

La dimension de MnpRq est n2 (et non n), de même attention à la dimension de RnrXs.
Attention à la dimension de deux espaces vectoriels

Exemple 11. Soit F “

"

px, y, z, tq P R4 |

"

x ` 2y ` z “ 0
2x ´ t “ 0

*

. Déterminer une base de F et en déduire dimpF q.

Exemple 12. Si E est de dimension n, alors toute famille de n ` 1 vecteurs (ou plus) est liée.

Soient E un K-EV de dimension finie, et F une famille finie de vecteurs de E telle que CardpF q “ dimpEq. Alors,

F est une base de E ssi F est une famille génératrice de E ssi F est une famille libre.

Proposition no 6 : caractérisation des bases avec le cardinal
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Exemples 13. 1. Montrer que B “ pp1, 1, 0q, p2, 1, 0q, p5, 1, 1qq est une base de R3.
2. Soit F “ pp1, 1, 1q, p2, 1, 3q, p3, 2, 4q, p´1, 0, 3qq, extraire de cette famille une base de R3.

3. Soit L “

ˆ

I2,

ˆ

2 0
0 1

˙˙

, compléter cette famille libre en une base de M2pRq.

4. Si F “ pP0, P1, . . . , Pnq P KrXsn`1 telle que pour tout i P rr 0 ; n ss, d˝Pi “ i, alors F est une base de KnrXs.

6 Sous-espaces vectoriels d’un espace vectoriel de dimension finie

6.1 Dimension d’un sous-espace vectoriel

Soient E un EV de dimension finie et F un SEV de E, alors :
F est de dimension finie1. dimpF q ď dimpEq2. E “ F ðñ dimpEq “ dimpF q3.

Proposition no 7 : dimension d’un sous-espace vectoriel (admise)

Soit E un espace vectoriel de dimension finie n. Soit F un sous-espace vectoriel de E :
‚ Si dimpF q “ 1, alors on dit que F est une droite (vectorielle) de E.
‚ Si dimpF q “ 2, alors on dit que F est un plan (vectoriel) de E.

Exemples de sous-espaces particuliers

Exemple 14. Si E “ R3 et F “ tpx, y, zq P R3, x ` y ´ 2z “ 0u, donner dimpF q.

6.2 Rang d’une famille de vecteurs

Soit F une famille finie de vecteurs de E, on appelle rang de F : rgpF q “ dimpvectpF qq

Définition du rang d’une famille finie de vecteurs

La dimension c’est pour les EV. Le rang et le cardinal sont pour les familles finies de vecteurs.
Attention à ne pas confondre dimension, rang et cardinal

Exemple 15. Soit E “ R3, notons e1 “ p1, 1, 1q, e2 “ p2, 1, 1q et e3 “ p4, 3, 3q. Former des phrases justes utilisant les
mots dimension, rang et cardinal et la famille F “ pe1, e2, e3q.

Soient E un EV de dimension finie n et F “ pe1, e2, . . . , epq une famille de vecteurs de E. Alors :
rgpF q ď minpp, nq.1. F engendre E SSI rgpF q “ n.2. F est libre SSI rgpF q “ p.3.
Soit i P rr 1 ; p ss, et F 1 “ pe1, . . . , ei´1, ei`1, . . . , epq, si ei P vectpF 1q alors rgpF q “ rgpF 1q.4.
rgpF q “ rgpMatBpF qq où B est une base de E.5.
rgpF q est le nombre maximum de vecteurs de F linéairement indépendants.6.

Proposition no 8 : propriétés du rang

Exemple 16. Calculer le rang de pP1, P2, P3, P4, P5q, avec P1 “ X2, P2 “ X2 ` 1, P3 “ 5X2 ` 1, P4 “ P1, P5 “ 2P1

7 Méthodes

M1 Montrer que E un sous-espace vectoriel d’un espace vectoriel de référence (voir méthode suivante).
M2 Reconnaître que E est un espace vectoriel de référence.
M3 Montrer que E respecte la définition (rare et long).

Comment montrer que E est un espace vectoriel ?
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M1 Montrer que F Ă E 0E P F @pa, bq P F 2 @λ P K a ` λb P F .
M2 F “ vect pe1, e2, . . . , enq où ei P E.
M3 Écrire F “ Kerpφq en introduisant φ une application linéaire définie sur E.
M4 F s’écrit comme intersection de SEVs de E.

Comment montrer que F est un sous-espace vectoriel de E ?

Écrire «Soit pλ1, λ2, . . . , λnq P Kn, supposons
n
ř

i“1
λiei “ 0E», et montrer que pour tout i, λi “ 0 (système à

résoudre souvent).

Quelle est la méthode standard pour montrer que pe1, e2, . . . , enq est libre ?

«Soit x P E» puis trouver pλ1, λ2, . . . , λnq P Kn tel que x “
n
ř

i“1
λiei (système à résoudre, ou analyse-synthèse).

Comment montrer que pe1, e2, . . . , enq est génératrice ?

M1 Montrer qu’elle est libre et génératrice.
M2 Montrer que B est libre et vérifier CardpBq “ dimpEq. (utile si dimpEq est connue)
M3 Montrer que B est génératrice et vérifier CardpBq “ dimpEq. (utile si dimpEq est connue)

Comment montrer qu’une famille est une base ?

M1 On trouve une famille génératrice.
M2 On montre qu’il est inclus dans un autre espace vectoriel de dimension finie.

Comment montrer qu’un espace vectoriel est de dimension finie ?

Montrer dimpF q “ dimpGq et F Ă G.
Comment, en dimension finie, montrer que F et G deux sous-espaces vectoriels sont égaux ?

Compter le nombre d’éléments dans une de ses bases.
Comment calculer la dimension d’un espace vectoriel ?

M1 Si on a une famille libre, rajouter petit à petit des vecteurs de façon à rester libre. Dès que la famille a
dimpEq d’éléments, on a une base.

M2 Si on a une famille génératrice, retirer petit à petit des vecteurs qui s’écrivent comme combinaison linéaire
des autres vecteurs. Dès que la famille a dimpEq d’éléments, on a une base.

Comment construire une base de E ?

M1 Pour calculer rg pe1, e2, . . . , enq, retirer un vecteur de la famille s’il est combinaison linéaire des autres. Puis
continuer de retirer des vecteurs que l’on peut exprimer comme combinaison linéaire des autres. S’arrêter,
dès qu’on obtient une famille libre, le rang est alors égal au nombre de vecteurs qui restent.

M2 Se fixer une base B, alors rg pe1, e2, . . . , enq “ rgpMatB pe1, e2, . . . , enqq puis échelonner cette matrice pour
déterminer son rang.

Comment calculer le rang d’une famille de vecteurs ?
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8 Carte mentale pour étudier la liberté d’une famille

F “ pe1, . . . , enq

libre ou liée ?
Avec la

dimension

n ą

dimpEq

ùñ liée

libre ðñ

rgpF q “ n

Dans KrXs,
F “

pP1, . . . , Pnq 0E R F
@i ‰ j,
d˝Pi ‰

d˝Pj

ùñ libre

Dans Rn

F orthogo-
nal et 0E R

F ùñ

libre
F ortho-
normée

ùñ libre

Si F “ pe1q

libre ðñ

e1 ‰ 0E

Si F “

pe1, e2q

libre ssi e1
et e2 non
colinéaires

0E P F
ùñ liée liée ðñ

Di ei “
ř

k‰i

λkek
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