Problème 1 : mais où vont donc les racines? Sous terre?

Soit $n \in \mathbb{N}^*$ fixé, on pose $P_n = X^n + 9X^2 - 4$

Partie I : Existence, unicité et approximation d'une racine positive de P_n

- 1. Donner le degré de P_n .
- 2. Écrire une fonction Python Pn(x,n) qui, pour x un réel positif et $n \in \mathbb{N}$, renvoie $P_n(x)$.
- 3. À l'aide du théorème des valeurs intermédiaires, démontrer qu'il existe $c \in [0;1]$ tel que $P_n(c) = 0$.
- 4. On souhaite écrire un algorithme de dichotomie qui à un n donné et un $\varepsilon > 0$ donné renvoie une approximation de c à ε près, recopiez et complétez le code suivant :

- return
- 5. Écrire des commandes Python qui, sur une même figure, affiche les tracés de P_3 , P_4 , P_5 sur [0;1], ainsi que les approximations de la racine de P_3 , celle de P_4 et celle de P_5 .
- 6. Démontrer qu'il existe un unique $c \in \mathbb{R}_+$ tel que $P_n(c) = 0$.

Comme ce c dépend du n choisi, on l'appelle à partir de maintenant x_n , ainsi, $P_n(x_n) = 0$

7. Donner la valeur explicite de x_1 et de x_2 .

Partie II: Étude d'une suite

Ainsi, on a défini une suite $(x_n)_{n\in\mathbb{N}^*}$.

- 8. Démontrer que pour tout $x \in]0;1[, P_{n+1}(x) < P_n(x).$
- 9. En déduire le signe de $P_{n+1}(x_n)$.
- 10. Soit $g \colon I \to \mathbb{R}$ une fonction croissante et $(x,x') \in I^2$, on suppose que g(x) < g(x'), démontrer que x < x'.
- 11. À l'aide des questions précédentes, montrer que la suite $(x_n)_n$ est croissante.
- 12. En déduire que la suite $(x_n)_n$ converge.
- 13. Déterminer la limite de $(x_n)_n$.

Partie III : Étude des dérivées successives

- 14. On pose $f: x \mapsto \frac{1}{P_1(x)}$. Démontrer que pour tout $n \in \mathbb{N}$, f est n fois dérivable sur $[1; +\infty[$ et qu'il existe $Q_n \in \mathbb{R}[X]$ tel que pour tout $x \ge 1$, $f^{(n)}(x) = \frac{Q_n(x)}{(9x^2 + x 4)^{n+1}}$. On donnera une formule reliant Q_{n+1} à Q_n .
- 15. Déterminer le degré de Q_n .

Problème 2 : Les polynômes de la ferme

Partie I : cas particulier $\mathbb{R}_2[X]$

1. En déterminant ses racines, factoriser le polynôme $2X^2 + 10X + 12$.

- 2. Donner un exemple de polynôme P de degré 2 tel que 3 et 4 soient racines de P. Que vaut P(5)?
- 3. En déduire alors un exemple de polynôme Q de degré 2 tel que Q(3) = Q(4) = 0 et Q(5) = 1. On pourra remarquer que si $\lambda \in \mathbb{K}$ et $Q = \lambda P$, alors, on on a encore Q(3) = Q(4) = 0.
- 4. Soit $S \in \mathbb{R}_2[X]$, on suppose que S a au moins trois racines distinctes, en citant un résultat de cours, que peut-on en déduire sur S?
- 5. Démontrer qu'il existe un unique polynôme Q de degré 2 tel que Q(3) = Q(4) = 0 et Q(5) = 1. On pourra prendre deux tels polynômes Q et R et étudier les racines de Q R.

On note maintenant L_1 l'unique polynôme de degré 2 tel que $L_1(3) = L_1(4) = 0$ et $L_1(5) = 1$.

- 6. Donner alors, sans preuve et sous forme factorisée :
 - L_2 le seul polynôme de degré 2 tel que $L_2(3) = L_2(5) = 0$ et $L_2(4) = 1$
 - L_3 le seul polynôme de degré 2 tel que $L_3(4) = L_3(5) = 0$ et $L_3(3) = 1$.
- 7. Soit $P \in \mathbb{R}_2[X]$. Montrer que $P = P(5)L_1 + P(4)L_2 + P(3)L_3$. On pourra considérer les racines de la différence entre ces deux polynômes.

Partie II: Cas général

On fixe $n \in \mathbb{N}^*$ et $(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1}$ un n+1-uplet de réels deux à deux distincts. Fixons $i \in [0; n]$. On pose $L_i = \prod_{\substack{k=0 \ k \neq i}}^n \frac{X - x_k}{x_i - x_k}$

- 8. Déterminer le degré de L_i .
- 9. Pour tout $j \in [0; n]$, calculer $L_i(x_j)$.
- 10. Soit $P \in \mathbb{R}_n[X]$, en utilisant les racines de $P \sum_{k=0}^n P(x_k)L_k$, démontrer que $P = \sum_{k=0}^n P(x_k)L_k$.

Partie III: Majoration de l'erreur (partie facultative)

- 11. Soit $f: [a;b] \to \mathbb{R}$ dérivable sur [a;b], on suppose que f s'annule au moins n+2 fois, montrer que f' s'annule au moins n+1 fois.
- 12. Soit $f \in \mathcal{C}^{n+1}([a;b],\mathbb{R})$ s'annulant n+2 fois, montrer que $f^{(n+1)}$ s'annule au moins une fois sur [a;b].

Soit $f \in \mathcal{C}^{n+1}([a;b],\mathbb{R})$ et $a \leq x_0 < x_1 < \ldots < x_n \leq b$, on note $P = \sum_{k=0}^n f(x_k)L_k$, on cherche à montrer que

$$\forall x \in [a; b] \quad \exists c \in [a; b] \qquad f(x) - P(x) = \frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} f^{(n+1)}(c)$$

- 13. Démontrer que le résultat est vrai, si $x = x_i$ pour un certain $i \in [0; n]$.
- 14. On considère $x \in [a; b] \setminus \{x_0, x_1, \dots, x_n\}$, on pose

$$Q = \prod_{k=0}^{n} (X - x_k) \qquad \text{et} \qquad W : t \mapsto f(t) - P(t) - \frac{Q(t)}{Q(x)} (f(x) - P(x))$$

En utilisant la fonction W en déduire le résultat voulu.

- 15. Justifier que $f^{(n+1)}$ est une fonction bornée sur [a;b].
- 16. On note alors $M=\sup\{|f^{(n+1)}(t)|$ tel que $t\in [a;b]\}$. Déduire de ce qui précède que

$$\forall x \in [a; b] \qquad |f(x) - P(x)| \le \frac{|Q(x)|}{(n+1)!} M$$