
Polynômes
Chapitre 5

Le but de ce chapitre est de revoir les polynômes vu en BCPST1. Une nouveauté sera d’écrire les polynômes à l’aide de X,
un certain polynôme. Une autre nouveauté et que cette année les polynômes pourront être à coefficients complexes.
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Dans ce chapitre, K désigne R ou C. Si f : K Ñ K, g : K Ñ K, λ P K, n P N˚, alors on rappelle que l’on définit l’addition
de fonctions, le produit de fonctions, la multiplication d’une fonction par un scalaire et la puissance d’une fonction par :

f ` g :
#

K ÝÑ K

x ÞÝÑ fpxq ` gpxq
f ˆ g :

#

K ÝÑ K

x ÞÝÑ fpxq ˆ gpxq
λ ¨ f :

#

K ÝÑ K

x ÞÝÑ λ ˆ fpxq
fn “ f ˆ f ¨ ¨ ¨ ˆ f

loooooomoooooon

n fois

Par convention, pour n “ 0, fn : x ÞÑ 1. On rappelle aussi que «f “ g» équivaut à «pour tout x P K, fpxq “ gpxq».

1 Définition et écriture d’un polynôme

Soit P : K Ñ K. On dit que P est un polynôme réel si K “ R et polynôme complexe si K “ C, s’il existe n P N
et pa0, a1, . . . , anq P Kn`1 tel que P : x ÞÑ

n
ř

k“0
akxk. Les scalaires ak sont appelés coefficients du polynôme P .

Définition d’un polynôme

Remarques 1. ‚ Si tous les coefficients d’un polynôme sont nuls, on dit que c’est le polynôme nul, noté 0.
‚ On décide de noter X : x ÞÑ x, c’est bien un polynôme : il suffit de poser n “ 1, a0 “ 0 et a1 “ 1.
‚ Le n dépend du polynôme. Si Q : x ÞÑ 2 ` 3x, alors on peut poser n “ 1, a1 “ 2 et a2 “ 3, mais comme

Q : x ÞÑ 2 ` 3x ` 0x2 ` 0x3, ce n n’est pas unique, on peut aussi poser m “ 3 et a0 “ 2, a1 “ 3, a2 “ a4 “ 0.
Dans l’écriture du polynôme P : x ÞÑ

n
ř

k“0
akxk, on peut remplacer n par m avec m ą n et poser ak “ 0 pour k ą n.

Soit P : x ÞÑ
n
ř

k“0
akxk un polynôme, on a alors l’égalité suivante : P “

n
ř

k“0
akXk.

Proposition no 1 : écriture d’un polynôme quelconque à l’aide du polynôme X

Démonstration de la proposition no 1 : Comme X : x ÞÑ x, X2
“ X ˆX : x ÞÑ x2, de même pour tout k P rr 0 ; n ss, Xk : x ÞÑ xk.

Par produit par un scalaire, akXk : x ÞÑ akxk et par somme de fonctions,
n
ř

k“0
akXk : x ÞÑ

n
ř

k“0
akxk, Ainsi,

n
ř

k“0
akXk et P sont deux

fonctions égales (par définition de l’égalité de fonctions). ■

On note RrXs l’ensemble des polynômes réels et CrXs l’ensemble des polynômes complexes.

Définition des ensembles KrXs

Soit P “
n
ř

k“0
akXk P KrXs et Q “

m
ř

k“0
bkXk P KrXs, (quitte à rajouter des coefficients nuls, on suppose n “ m).

P est le polynôme nul ssi pour tout x P K, P pxq “ 0.1. Pour tout k P rr 0 ; n ss, ak “ bk ssi P “ Q.2.

Proposition no 2 : unicité de l’écriture d’un polynôme

Démonstration de la proposition no 2 :

1. Si P est le polynôme nul, alors, par définition, pour tout k P rr 0 ; n ss, ak “ 0, dès lors, pour tout x P K, P pxq “
n
ř

k“0
akxk

“ 0.

Réciproquement, supposons que pour tout x P K, P pxq “ 0. On souhaite montrer que tous les coefficients de P sont nuls.
Raisonnons par l’absurde et supposons il existe k P rr 0 ; n ss tel que ak ‰ 0. Notons d “ maxtk P rr 0 ; n ss | ak ‰ 0u, alors ad ‰ 0

et pour tout k P rr d ` 1 ; n ss, ak “ 0. Ainsi, pour tout x P K, P pxq “
d
ř

k“0
akxk

“ 0. Ainsi, adxd
“ ´

d´1
ř

k“0
akxk. En utilisant le

module et l’inégalité triangulaire, on obtient pour x P R, |ad||xd
| “

ˇ

ˇ

ˇ

ˇ

´
d´1
ř

k“0
akxk

ˇ

ˇ

ˇ

ˇ

ď
d´1
ř

k“0
|ak| ˆ |xk

|. Prenons x ě 1, de sorte que

pour tout k P rr 0 ; d ´ 1 ss, |xk
| “ xk

ď xd´1, ainsi, |ad|xd
ď

d´1
ř

k“0
|ak| ˆ xd´1, donc x ď

d´1
ř

k“0

|ak|

|ad|
. Notons M “

d´1
ř

k“0

|ak|

|ad|
, on a

montré que pour tout x ě 1, on a x ď M . Prenons, en particulier, x “ 1 ` M ě 1 et donc 1 ` M ď M , ce qui est absurde.
Ainsi, pour tout k P rr 0 ; n ss, ak “ 0. Donc P est le polynôme nul.

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, Cours 2

loic.devilliers@proton.me


2. Supposons que pour touut k P rr 0 ; n ss, ak “ bk, alors, pour tout x P K, P pxq “
n
ř

k“0
akxk

“
n
ř

k“0
bkxk

“ Qpxq, ainsi P “ Q.

Réciproquement, supposons que P “ Q. Donc pour tout x P K, P pxq “ Qpxq, alors pour tout x P K,
n
ř

k“0
pak ´ bkqxk

“ 0,

ainsi, par le premier point, le polynôme x ÞÑ
n
ř

k“0
pak ´ bkqxk est le polynôme nul, donc pour tout k P rr 0 ; n ss, ak ´ bk “ 0,

donc pour tout k P rr 0 ; n ss, ak “ bk. ■

2 Degré et opérations des polynômes

‚ Soit P “
n
ř

k“0
akXk un polynôme non nul. Notons d “ maxtk P rr 0 ; n ss | ak ‰ 0u, de sorte que P “

d
ř

k“0
akXk

et ad ‰ 0. L’entier d est appelé degré de P et est noté d˝P “ d.
‚ On pose, par convention, d˝0 “ ´8.
‚ On appelle coefficient dominant de P le coefficient ad. On dit que P est unitaire si ad “ 1.
‚ On dit que P est un polynôme constant si d˝P ď 0, dans ce cas, P “ a0.
‚ Les polynômes λXn, avec λ ‰ 0, sont appelés monômes.
‚ On note KnrXs l’ensemble des polynômes à coefficients dans K dont le de degré est inférieur ou égale à n.

Définition du degré d’un polynôme, du coefficient dominant, d’un polynôme unitaire

Exemples 1. d˝0 “ d˝3 “ d˝X ` 2 “ d˝Xn “ d˝paX2 ` bX ` cq “

L’écriture P “
n
ř

k“0
akXk n’implique pas d˝P “ n seulement que d˝P ď n. De plus, an ‰ 0 ssi d˝P “ n.

Attention à ne pas confondre degré n et somme dont le dernier terme est Xn

Exemples 2. Si P “ 2X2 ` 3X, Q “ X3 ´ 2X et R “ ´2X2 ` 2, calculer P ` Q, P ` R, P ˆ Q et P ˝ Q.

Soient P “
p
ř

k“0
akXk P KrXs, P̃ “

p
ř

k“0
ãkXk, Q “

q
ř

k“0
bkXk P KrXs et λ P K. Alors P ` Q, λP , P ˆ Q

et P ˝ Q “ P pQq sont encore des polynômes donnés par les formules suivantes :

P ` P̃ “
p
ř

k“0
pak ` ãkqXk1. λP “

p
ř

k“0
pλakqXk2.

P ˆ Q “
p`q
ř

k“0

ˆ

k
ř

i“0
aibk´i

˙

Xk3. P ˝ Q “ P pQq “
p
ř

k“0
akQk4.

Proposition no 3 : formules pour les opérations sur les polynômes

Démonstration de la proposition no 3 :
1. Par définition de la somme de deux fonctions : P ` P̃ : x ÞÑ P pxq ` P̃ pxq, or pour k P K,

P pxq ` P̃ pxq “

n
ÿ

k“0

akxk
`

n
ÿ

k“0

ãkxk
“

n
ÿ

k“0

pak ` ãkqxk

On reconnait alors le polynôme
n
ř

k“0
pak ` ãkqXk, ainsi, P ` P̃ “

n
ř

k“0
pak ` ãkqXk

2. Pour tout x P K, par linéarité de la somme, on obtient :

pλP qpxq “ λP pxq “ λ
n

ÿ

k“0

akxk
“

n
ÿ

k“0

λakxk

Ainsi, λP est un polynôme et λP “
n
ř

k“0
pλakqXk.
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3. P ˆ Q : x ÞÑ P pxq ˆ Qpxq

Soit x P K,

P pxq ˆ Qpxq “

˜

p
ÿ

i“0

aix
i

¸

ˆ

˜

q
ÿ

j“0

bjxj

¸

“

p
ÿ

i“0

q
ÿ

j“0

aibjxi`j
“

p`q
ÿ

k“0

k
ÿ

i“0

aibk´ix
k

Ainsi, P ˆ Q : x ÞÑ P pxq ˆ Qpxq est la fonction P ˆ Q : x ÞÑ
p`q
ř

k“0

k
ř

i“0
aibk´iX

k, ainsi, P ˆ Q est un polynôme et P ˆ Q “

p`q
ř

k“0

k
ř

i“0
aibk´ix

k.

4. P ˝ Q : x ÞÑ P pQpxqq. Soit x P KrXs, P pQpxqq “
p
ř

k“0
akpQpxqq

k
“

p
ř

k“0
akQk

pxq, or comme Q est un polynôme, le point 3

montre, par récurrence, que, pour tout k P N, Qk est un polynôme. Ainsi, par somme de polynômes, P ˝ Q est un polynôme
et vaut P ˝ Q “

p
ř

k“0
akQk ■

Remarques 2. ‚ Pour la somme de deux polynômes, on a pris les mêmes bornes (quitte à rajouter des zéros).
‚ En revanche, ce n’est pas nécessaire pour le produit de deux polynômes.
‚ Attention : P pX `1q, P pXq et P pX ´1q désignent souvent des composées (et non des produits) de P respectivement

avec X ` 1, X et X ´ 1, de plus, P ˝ X “ P pXq “ P .

Soient pP, Q, Rq P KrXs3, alors :
P ` Q “ Q ` P (commutativité)1. P ˆ Q “ Q ˆ P (commutativité)2.
pP ` Qq ` R “ P ` pQ ` Rq (associativité)3. pP ˆ Qq ˆ R “ P ˆ pQ ˆ Rq (associativité)4.
0 ` P “ P (0 neutre de l’addition)5. 1 ˆ P “ P (1 neutre de la multiplication)6.
P ` p´1q ˆ P “ 0 (existence de l’opposé)7. P ˆ pQ ` Rq “ P ˆ Q ` P ˆ R (distributivité)8.

pP ` Qqn “
n
ř

k“0

`

n
k

˘

P kQn´k (binôme de Newton)9. P n ´ Qn “ pP ´ Qq
n´1
ř

k“0
P kQn´1´k10.

Proposition no 4 : propriétés des opérations sur les polynômes

Exemple 3. Grâce à p1 ` Xq2n, démontrer que
n
ř

k“0

`

n
k

˘2
“

`2n
n

˘

.

Exemples 4. Si P “ 2X2 ` 3X, Q “ X3 ´ 2X et R “ ´2X2 ` 2, que valent les degrés de P ` Q, P ` R, PQ et P ˝ Q ?

Soient pP, Qq P KrXs2, alors :
d˝pP ` Qqď maxpd˝P, d˝Qq1. Si d˝P ‰ d˝Q, alors d˝pP ` Qq “ maxpd˝P, d˝Qq2.
d˝pPQq “ d˝P ` d˝Q3. Si λ P K˚ alors d˝pλP q “ d˝P4.
Si Q non constant, d˝pP ˝ Qq “ d˝P ˆ d˝Q5. Si PQ “ 0, alors P “ 0 ou Q “ 0 (intégrité)6.

Proposition no 5 : propriétés sur le degré et intégrité

Démonstration de la proposition no 5 : Posons p “ d˝P et q “ d˝Q, de sorte que P “
p
ř

k“0
akXk et Q “

q
ř

k“0
bkXk avec ap ‰ 0

et bq ‰ 0.
1. Il y a trois cas :

‚ Si p ą q, alors P `Q “
q
ř

k“0
pak`bkqXk

`
p
ř

k“q`1
akXk avec ap ‰ 0, de sorte que d˝

pP `Qq “ p “ maxpp, qq “ maxpd˝P, d˝Qq.

‚ Si p ă q, alors idem que précédemment, en changeant les rôles de P et Q.
‚ Si p “ q, alors P ` Q “

p
ř

k“0
pak ` bkqXk. Donc si ak ` bk ‰ 0, alors d˝

pP ` Qq “ p “ maxpd˝P, d˝Qq. Si ak ` bk “ 0, alors

P ` Q “
p´1
ř

k“0
pak ` bkqXk et donc d˝

pP ` Qq ď p ´ 1 ă p “ maxpd˝P, d˝Qq.

2. La preuve du point 2 a été fait lors du point 1.
3. Remarquons que si P “ 0 ou Q “ 0, alors la propriété est vraie. Travaillons donc dans le cas où p “ d˝P ě 0 et q “ d˝Q ě 0.

Par définition du produit de deux polynômes, P Q “
p`q
ř

k“0
ckXk avec pour tout k P rr 0 ; p ` q ss, ck “

k
ř

i“0
aibk´i, en particulier,

cp`q ““
p`q
ř

i“0
aibp`q´i “

p´1
ř

i“0
aibp`q´i ` apbq `

p`q
ř

i“p`1
aibp`q´i “ apbq ‰ 0, ainsi d˝P Q “ p ` q “ d˝P ` d˝Q.
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4. Utiliser la propriété précédente avec Q “ λ, alors d˝Q “ 0.
5. Par le point 3 : d˝Q2

“ d˝Q ` d˝Q “ 2q. Puis, par une récurrence facile, d˝Qk
“ kq. Ainsi,

P ˝ Q “

p
ÿ

k“0

akQk
“ apQp

`

p´1
ÿ

k“0

akQk

Or, d˝apQp
“ pq (ap ‰ 0) et d˝

ˆ

p´1
ř

k“0
akQk

˙

ď pp ´ 1qq ă pq (q ě 1). Comme les degrés sont différents, par la propriété du

degré de la somme : d˝P pQq “ pq “ d˝P ˆ d˝Q.
6. Supposons P ‰ 0 et Q ‰ 0. Ainsi, d˝P ě 0, d˝Q ě 0. Par conséquent, en utilisant le degré du produit, d˝P Q “ d˝P `d˝Q ě 0,

dès lors, P Q ‰ 0. Par contraposée, on a donc montré que P Q “ 0 implique P “ 0 ou Q “ 0. ■

En général, le degré de la somme n’est pas égale à la somme des degrés ni au maximum des degrés.

Péril imminent au degré de la somme

3 Racines et factorisation de polynômes

Soient P un polynôme et x P K, on dit que x est une racine de P si P pxq “ 0.

Définition d’une racine d’un polynôme

Exemple 5. Est-ce que 0, 1 et 2 sont racines de P “ X3 ` X2 ´ X ´ 1 ?

Chercher les racines de P “
n
ř

k“0
akXk P KrXs, c’est résoudre l’équation P pxq “ 0. Ce n’est pas la même chose

que résoudre l’équation P pXq “ 0 : P pXq “ 0 ssi pour tout k P rr 0 ; n ss, ak “ 0 d’après la proposition 2.

Attention X et x ce n’est pas la même chose !

Soient P P KrXs, a P K et px1, x2, . . . , xrq P Kr avec les xi deux à deux distincts.
1. Le polynôme P admet a comme racine si et seulement si il existe Q P KrXs tel que P “ pX ´ aqQ.

2. Le polynôme P admet x1, x2, . . . , xr comme racines ssi il existe Q P KrXs tel que P “

ˆ

r
ś

i“1
pX ´ xiq

˙

Q

Proposition no 6 : caractérisation des racines par la factorisation

Démonstration de la proposition no 6 :
1. Supposons qu’il existe Q P KrXs tel que P “ pX ´ aqQ. Dès lors, P paq “ pa ´ aqQpaq “ 0, donc a est racine de P .

Réciproquement, supposons que a soit racine de P . Écrivons P “
n
ř

k“0
akXk, alors :

P “ P ´ 0 “ P ´ P paq “

n
ÿ

k“0

akXk
´

n
ÿ

k“0

akak
“

n
ÿ

k“0

akpXk
´ ak

q “

n
ÿ

k“1

akpX ´ aq

k´1
ÿ

i“0

Xiak´1´i
“ pX ´ aq

n
ÿ

k“1

ak

k´1
ÿ

i“0

ak´1´iXi

Ainsi, on a bien trouvé Q P KrXs tel que P “ pX ´ aqQ.

2. Supposons qu’il existe Q P KrXs tel que P “
r

ś

i“1
pX ´ xiqQ, alors soit j P rr 1 ; r ss, P pxjq “

r
ś

i“1
pxj ´ xiqQpxjq “ 0 (en effet, le

terme dans le produit pour i “ j est nul), ainsi les xi sont bien racines. Réciproquement, posons pour n P N˚ : Ppnq : «Pour

tout P P KrXs, si x1, . . . , xn sont n racines distinctes de P P KrXs, alors il existe Q P KrXs tel que P “
n
ś

i“1
pX ´ xiqQ».

Comme x1 est racine, en utilisant le point 1, il existe Q P KrXs tel que P “ pX ´ x1qQ “
1

ś

i“1
pX ´ xiqQ. Donc Pp1q est
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vraie. Soit n P N, supposons Ppnq vraie. Soient P P KrXs et x1, . . . , xn, xn`1 n ` 1 racines deux à deux distinctes de P .

En particulier, x1, . . . , xn sont n racines distinctes de P , d’après Ppnq, il existe Q P KrXs tel que P “
n
ś

i“1
pX ´ xiqQ. Or,

comme xn`1 est racine, P pxn`1q “ 0, donc
n
ś

i“1
pxn`1 ´ xiqQpxn`1q “ 0. Comme les xi sont deux à deux distincts, pour

tout i P rr 1 ; n ss, xn`1 ´ xi ‰ 0, donc Qpxn`1q “ 0, d’après le point 1, il existe R P KrXs tel que Q “ pX ´ xn`1qR, ainsi,

P “
n
ś

i“1
pX ´ xiqpX ´ xn`1qR, donc P “

n`1
ś

i“1
pX ´ xiqR. Dès lors, Ppn ` 1q est vraie. Par récurrence, pour tout n P N, Ppnq

est vraie. En particulier, Ppnq est vraie. ■

Soit P P RrXs et z P CzR une racine de P , alors z est aussi racine de P .
Proposition no 7 : le conjugué d’une racine d’un polynôme à coefficients réels est encore racine

Démonstration de la proposition no 7 : Écrivons P “
n
ř

k“0
akXk

P RrXs comme P pzq “ 0, alors

P pz̄q “

n
ÿ

k“0

akzk
“

n
ÿ

k“0

akzk “

n
ÿ

k“0

akzk “

n
ÿ

k“0

akzk “ P pzq “ 0 “ 0

Ainsi, z̄ est une racine de P . ■

Exemples 6. 1. Si P “ aX2 ` bX ` c P RrXs un polynôme du second degré dont le discriminant est strictement
négatif, quelles sont ses racines ?

2. Quelles sont les racines de Q “ X2 ´ p2 ` iqX ` 2i ?

Si P P KrXszt0u, P a au plus d˝P racines.1. Si P P KnrXs a au moins n`1 racines, alors P “ 0.2.
Si P P KrXs a une infinité de racines, alors P “ 0.3.

Proposition no 8 : un polynôme non nul admet un nombre fini de racines majoré par son degré

Démonstration de la proposition no 8 :
1. Notons n “ d˝P P N (car P ‰ 0). Supposons que P ait strictement plus de n racines, en particulier, il en admet au moins n`1,

notons x1, x2, . . . , xn`1 ces n ` 1 racines distinctes. D’après la propositon 6, il existe Q P KrXs tel que P “
n`1
ś

i“1
pX ´ xiqQ.

En passant au degré, on obtient n “ pn ` 1q ` d˝Q, donc nécessairement, d˝Q “ ´1 ce qui est impossible, ainsi, P a au plus
n racines.

2. Soit P P KnrXs, si P ‰ 0, alors par le point précédent, le nombre de racines est majoré par d˝P et d˝P ď n, donc le nombre
de racines est majorée par n. Par contraposée, si P P KnrXs a au moins n ` 1 racines, alors P est nul.

3. Soit P P KrXs, si P ‰ 0, alors le premier point montre que P a un nombre fini de racines. Par contraposée, si P a une infinité
de racines, alors P “ 0. ■

Soit P P KrXs non nul. On dit que la multiplicité (ou d’ordre) de a P K dans P vaut m P N s’il existe Q P KrXs

tel que P “ pX ´ aqmQ avec Qpaq ‰ 0.

Définition de la multiplicité d’une racine

Remarques 3. Soit P P KrXs non nul.
Si m “ 0, alors a n’est pas racine de P .1. Si m “ 1, on dit que a est une racine simple de P .2.
Si m “ 2, on dit que a est une racine double de P .3. Si P “ pX ´ aqmQ avec Q P KrXs, la multiplicité de a

est supérieure ou égale à m.
4.

Exemple 7. Donner le degré, le coefficient dominant, les racines et leur multiplicités de P “ 3pX ´ 1q4pX ´ 2q2.

Soit P P CrXs un polynôme non constant, alors P admet au moins une racine complexe.
Théorème no 1 de d’Alembert-Gauss (théorème fondamental de l’algèbre) (admis)
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Exemple 8. Quelles sont les racines complexes/réelles de X2 ` 1 ?

Si P P CrXs est non constant, alors il se factorise P “ λ
r

ś

i“1
pX ´ ziq

mi avec λ P C‹, mi des entiers naturels non

nuls et les zi des complexes deux à deux distincts. Cette décomposition est unique à l’ordre des facteurs près : λ
est le coefficient dominant, les zi sont exactement les racines de P et mi est la multiplicité de zi.

Théorème no 2 : factorisation d’un polynôme dans CrXs

Démonstration du théorème no 2 :
‚ Posons, pour k P N˚, l’hypothèse de récurrence : Ppkq : «Si d˝P “ k, alors il existe des complexes zi deux à deux distincts,

des entiers naturels non nuls mi et λ P C˚ tels que P “ λ
r

ś

i“1
pX ´ ziq

mi ».

— Si k “ 1. Prenons donc P P CrXs de degré 1. Alors P “ aX ` b avec pa, bq P C2 et a ‰ 0, alors P “ a

ˆ

X ´
´b

a

˙

. P est

donc bien de la forme voulue. Ainsi, Pp1q est vraie.
— Soit k P N˚. Supposons par récurrence forte que pour tout j P rr 1 ; k ss, Ppjq vraie. Soit P P CrXs tel que d˝P “ k`1 ě 1.

Alors d’après le théorème de d’Alembert-Gauss, P admet une racine z1 P C. Notons m1 P N˚ sa multiplicité : il existe
Q P CrXs tel que P “ pX ´ z1q

m1 Q avec Qpz1q ‰ 0.
— Si Q est constant alors (Q est nécessairement non nul) et P “ λpX ´ z1q

m1 avec λ “ Q P C˚ convient.
— Si d˝Q ě 1, remarquons que n ` 1 “ d˝P “ m1 ` d˝Q. Ceci prouve que d˝Q “ k ` 1 ´ m1 ď n (car m1 ě 1). Si on

note j “ d˝Q, alors j P rr 1 ; n ss, d’après l’hypothèse de récurrence forte, Ppjq est vraie. Donc Q “ λ
r

ś

i“2
pX ´ ziq

mi

pour des zi 2 à 2 distincts, mi P N˚ et λ P C˚. Notons, que comme Qpz1q ‰ 0, Qpz2q “ 0, Qpz3q “ 0, . . ., Qpzrq “ 0,

on en déduit que z1 ‰ z2, z1 ‰ z3, . . ., z1 ‰ zr. Ainsi, P “ λ
r

ś

i“1
pX ´ ziq

mi avec λ P C˚, les zi 2 à 2 distincts et

mi P N˚.
Ainsi, Ppk ` 1q est vraie.

— Par récurrence forte, pour tout k P N˚, Ppkq est vraie.

‚ Montrons que si P “ λ
r

ś

i“1
pX ´ ziq

mi avec les zi deux à deux distincts, les mi des entiers naturels non nuls et λ P C˚, alors

nécessairement les racines de P sont exactement les zi avec chacune une multiplicité mi et que λ est le coefficient dominant.
Fixons j P rr 1 ; r ss, alors, en isolant le terme pour i “ j :

P “ pX ´ zjq
mj λ

r
ź

i“1
i‰j

pX ´ ziq
mi “ pX ´ zjq

mj Q avec Qpziq “ λ
r

ź

i“1
i‰j

pzj ´ ziq
mi ‰ 0

Donc zj est bien une racine de P de multiplicité mj . Réciproquement si z est une racine de P alors 0 “ P pzq “ λ
r

ś

i“1
pz´ziq

mi ,

un produit de termes étant nul, on en déduit que l’un d’eux est nul, donc il existe i P rr 1 ; r ss tel que pz ´ ziq
mi “ 0, donc

que z “ zi, ainsi les racines de P sont exactement les zi. De plus, en développant le produit P “ λ
r

ś

i“1
pX ´ xiq

mi , le terme

de plus haut degré est λX

r
ř

i“1
mi

avec λ ‰ 0, ainsi λ est bien le coefficient dominant de P . ■

Soit n P N˚, on pose P “ Xn ´ 1
1. Démontrer que wk “ e i 2kπ

n , pour k P Z, est une racine de P .
2. Démontrer que les nombres complexes wk, pour k P rr 0 ; n ´ 1 ss, sont deux à deux distincts.
3. Factoriser Xn ´ 1 dans CrXs.

Racines n-ièmes et factorisation du polynôme Xn ´ 1

Remarque 4. Un polynôme à coefficients complexes de degré n a donc toujours exactement n racines complexes comptées
avec multiplicité contrairement au nombre de racines réelles d’un polynôme à coefficients réels. Ainsi, les réels sont plus
complexes que les complexes...

Exemple 9. Combien P “ pX2 ` 1qpX2 ´ 6X ` 9q admet-il de racines réelles ? complexes ?
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4 Dérivée d’un polynôme (pas vraiment au programme)

Remarque 5. Soit P “
n
ř

k“0
akXk P RrXs. Par somme de fonctions dérivables, P : x ÞÑ a0 `

n
ř

k“1
akxk est dérivable sur R

de dérivée P 1 : x ÞÑ 0 `
n
ř

k“1
kakxk´1 “

n´1
ř

j“0
pj ` 1qaj`1xj , ainsi P 1 est un polynôme et P 1 “

n
ř

k“1
kakXk´1. Or, vous savez

dériver des fonctions dont la variable est réelle mais pas complexe. La définition suivante va généraliser par métonymie :

Soit P “
n
ř

k“0
akXk P CrXs, on définit le polynôme dérivé de P par P 1 “

n
ř

k“1
kakXk´1 “

n´1
ř

j“0
pj ` 1qaj`1Xj P CrXs.

Définition de la dérivée formelle d’un polynôme

Soient pP, Qq P CrXs2 et λ P C, alors :
pλP ` Qq1 “ λP 1 ` Q11. pPQq1 “ P 1Q ` PQ12.

Proposition no 9 : propriétés de la dérivation de polynômes

Démonstration de la proposition no 9 : Prenons P “
n
ř

k“0
akXk et Q “

n
ř

k“0
bkXk (encore une fois, on complète avec des zéros

pour que les sommes finissent avec le même indice n).

1. Alors, pλP ` Qq “
n
ř

k“0
pλak ` bkqXk. Ainsi :

pλP ` Qq
1

“

n
ÿ

k“1

kpλak ` bkqXk´1
“ λ

n
ÿ

k“1

kakXk´1
`

n
ÿ

k“1

kbkXk´1
“ λP 1

` Q1

2. Par produit de deux polynômes et par dérivation :

P Q “

2n
ÿ

k“0

˜

k
ÿ

i“0

aibk´i

¸

Xk

pP Qq
1

“

2n
ÿ

k“1

˜

k
k

ÿ

i“0

aibk´i

¸

Xk´1
“

j“k´1

2n´1
ÿ

j“0

˜

pj ` 1q

j`1
ÿ

i“0

aibj`1´i

¸

Xj

De plus,

P Q1
` P 1Q “

n
ÿ

k“0

akXk
n´1
ÿ

k“0

pk ` 1qbk`1Xk
`

n´1
ÿ

k“0

pk ` 1qak`1Xk
n

ÿ

k“0

bkXk

“

2n´1
ÿ

k“0

˜

k
ÿ

i“0

aipk ´ i ` 1qbk´i`1

¸

Xk
`

2n´1
ÿ

k“0

˜

k
ÿ

i“0

pi ` 1qai`1bk´i

¸

Xk

“

2n´1
ÿ

k“0

˜

k
ÿ

i“0

aipk ´ i ` 1qbk´i`1 `

k`1
ÿ

i“1

iaibk`1´i

¸

Xk

“

2n´1
ÿ

k“0

˜

k`1
ÿ

i“0

aipk ´ i ` 1qbk´i`1 ` iaibk`1´i

¸

Xk

“

2n´1
ÿ

k“0

˜

pk ` 1q

k`1
ÿ

i“0

aibk`1´i

¸

Xk

Ainsi, pP Qq
1

“ P Q1
` P 1Q. ■

Soit P P CrXs un polynôme non nul et α P C.
La multiplicité de α dans P est supérieure ou égale à 2 si et seulement si P pαq “ P 1pαq “ 0.
Le nombre α est racine simple de P si et seulement si P pαq “ 0 et P 1pαq ‰ 0.

Proposition no 10 : caractérisation d’une racine non simple à l’aide de la dérivée
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Démonstration de la proposition no 10 : Supposons que la multiplicité de α dans P est supérieure ou égale à 2, alors il
existe Q P KrXs tel que P “ pX ´ αq

2Q, alors P pαq “ pα ´ αq
2Qpαq “ 0 et P 1

“ 2pX ´ αqQ ` pX ´ αq
2Q1 de sorte que

P 1
pαq “ 2pα ´ αqQpαq ` pα ´ αq

2Q1
pαq “ 0. Réciproquement, supposons que P pαq “ P 1

pαq “ 0, alors α est racine de P , donc
d’après la proposition 6, il existe Q P KrXs tel que P “ pX ´ αqQ, alors P 1

“ Q ` pX ´ αqQ1 donc 0 “ P 1
pαq “ Qpαq ` pα ´ αqQ1

pαq

donc Qpαq “ 0, ainsi, en utilisant à nouveau la proposition 6, il existe R P KrXs tel que Q “ pX ´ αqR, ainsi, P “ pX ´ αq
2R et

donc la multiplicité de α dans P est supérieure ou égale à 2.
Si α est racine simple de P , alors P paq “ 0, si P 1

pαq “ 0, par ce qui précède, α serait racine au moins double ce qui est absurde,
donc P 1

pαq ‰ 0.
Réciproquement, si P pαq “ 0 et P 1

pαq ‰ 0, alors α est racine donc sa multiplicité est supérieure ou égale à 1 et si elle était
supérieure ou égale à 2 par ce qui précède, on aurait P 1

pαq “ 0 ce qui est exclus, donc α est une racine simple de P . ■
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