Q) Chapitre 5
Polyndmes

Le but de ce chapitre est de revoir les polyndémes vu en BCPST1. Une nouveauté sera d’écrire les polynomes a 1’aide de X,
un certain polynéme. Une autre nouveauté et que cette année les polynémes pourront étre a coefficients complexes.
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Dans ce chapitre, K désigne Rou C. Si f: K— K, g: K— K, A € K, n € N*, alors on rappelle que ’on définit I’addition
de fonctions, le produit de fonctions, la multiplication d’une fonction par un scalaire et la puissance d’une fonction par :

+g: X g: - f: "=fxf.x
T e — @)+ 9@ T e @) % 9@ 2 A x f(a) ——

Par convention, pour n =0, f™: z — 1. On rappelle aussi que «f = g» équivaut a «pour tout z € K, f(z) = g(z)».

1 Définition et écriture d’un polynoéme

)
Déﬁnition d’un polynéme

Soit P: K — K. On dit que P est un polyndme réel si K = R et polynéme complexe si K = C, s’il existe n € N
n

et (ag,ai,...,a,) € K" tel que P: 2+ > apa”. Les scalaires a; sont appelés coefficients du polynéme P.
k=0
Remarques 1. e Si tous les coefficients d’un polynéme sont nuls, on dit que c’est le polynéme nul, noté 0.

e On décide de noter X: x — x, c’est bien un polynoéme : il suffit de poser n =1, ag =0 et a; = 1.
e Le n dépend du polynoéme. Si Q: x — 2 + 3z, alors on peut poser n = 1, a3 = 2 et as = 3, mais comme
Q: x— 2+ 3z + 0x? + 023, ce n n’est pas unique, on peut aussi poser m =3 et ag =2, a; = 3, ag = a4 = 0.
n
Dans l’écriture du polynoéme P: z +— Y apz”
k=0

, on peut remplacer n par m avec m > n et poser a; = 0 pour k > n.

iJ Proposition n°1 : écriture d’un polynéme quelconque a 1’aide du polynéme X

n n
| Soit P: z + Y axz* un polynéme, on a alors 1’égalité suivante : P = 3 ax X*.
k=0 k=0

Démonstration de la proposition n°1 : Comme X: z — z, X2 = X x X: z — 22, de méme pour tout k € [0;n], DGR EL
n n n
Par produit par un scalaire, arX¥: x— arz® et par somme de fonctions, Y, arXF:z— >, akmk, Ainsi, Y ar X" et P sont deux
k=0 k=0 k=0
fonctions égales (par définition de ’égalité de fonctions). |

‘ ’ o .
Deﬁnltlon des ensembles K[X]

| On note R[X] ensemble des polyndmes réels et C[X] I’ensemble des polyndémes complexes.

ij Proposition n° 2 : unicité de I’écriture d’un polynéme
n m
Soit P= Y apX* e K[X] et Q = Y. b X" € K[X], (quitte & rajouter des coefficients nuls, on suppose n = m).
k=0 k=0

1. P est le polynome nul ssi pour tout z € K, P(z) = 0. 2. Pour tout k€ [0;n ], ar = by ssi P = Q.

Démonstration de la proposition n°2 :
n
1. Si P est le polyndme nul, alors, par définition, pour tout k € [0;n]], ar = 0, dés lors, pour tout z € K, P(z) = >, apz® = 0.
k=0

Réciproquement, supposons que pour tout z € K, P(x) = 0. On souhaite montrer que tous les coefficients de P sont nuls.
Raisonnons par I’absurde et supposons il existe k € [[0;n ] tel que ar # 0. Notons d = max{k € [[0;n] | ar # 0}, alors aq # 0

d d—1
et pour tout k € [[d+ 1;n]], ar = 0. Ainsi, pour tout z € K, P(z) = 3 arz® = 0. Ainsi, agz® = — 3] axz®. En utilisant le
=0 k=0

Q

—1 d—1

module et 'inégalité triangulaire, on obtient pour z € R, |aq||z¢| = ‘— 3 arz®| < Y |ak| x |2¥|. Prenons z > 1, de sorte que
k=0 k=0
k k d—1 a . S d-1 S lal S lax]
pour tout k € [0;d — 1], |z7| = 2" < %77, ainsi, |aq|z® < Y] |ax| x 27, donc z < >, —. Notons M = —,ona
k=0 k=0 |adl K=o |adl

montré que pour tout x > 1, on a x < M. Prenons, en particulier, z =1+ M > 1 et donc 1 + M < M, ce qui est absurde.
Ainsi, pour tout k€ [0;n]], ax = 0. Donc P est le polynéme nul.
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2. Supposons que pour touut k € [0;n]], ax = by, alors, pour tout z € K, P(z) = 3 arz® = 3] bpz® = Q(z), ainsi P = Q.
k k=

Réciproquement, supposons que P = Q. Donc pour tout = € K, P(z) = Q(z), alors pour tout z € K, 3] (ar — bg)z* = 0,
k=0

ainsi, par le premier point, le polynéme z — 3 (ax — bx)z" est le polyndéme nul, donc pour tout k € [0;n], ar — by = 0,
k=0
donc pour tout k€ [0;n]], ar = bi. [ ]

2 Degré et opérations des polynomes

I
Déﬁnition du degré d’un polyndéme, du coefficient dominant, d’un polynéme unitaire

e Soit P = Z axX* un polynéme non nul. Notons d = max{k € [0;n] | ar # 0}, de sorte que P = Z ap X

et aqg # 0. L entler d est appelé degré de P et est noté d°P = d.

On pose, par convention, d°0 = -c0.

On appelle coefficient dominant de P le coefficient ay. On dit que P est unitaire si ag = 1.

On dit que P est un polynéme constant si d°P < 0, dans ce cas, P = ag.

Les polynomes AX", avec A # 0, sont appelés mondémes.

On note K,[X] I'ensemble des polynomes & coeflicients dans K dont le de degré est inférieur ou égale a n.

Exemples 1. d°0 = d°3 = d°X +2 = d° X" = d°(aX? +bX +¢) =

&Attention a ne pas confondre degré n et somme dont le dernier terme est X™

n
L’écriture P = 3] a, X" n’implique pas d°P = n seulement que d°P < n. De plus, a,, # 0 ssi d°P =
k=0

Exemples 2. Si P=2X2+4+3X,Q=X%-2Xet R=-2X?+2,calculer P+ Q, P+ R, PxQ et PoQ.

~

C'_:J Proposition n° 3 : formules pour les opérations sur les polynémes
SoienthiakaeK[]Pzi&kaQ ZkakeK[]et)\eK.AlorsP+Q,/\P,P><Q
et Po@ = P’Z:O) sont encore des polyn](c)n?es donnés par les formules sulvantes

L P+ P =3 (ap+ )Xk 2. AP = 3 (hag)X*
bra [ k = v
3. PxQ@Q= 1;:10 (Elo aibk_i> XFk 4. PoQ = P(Q) =Y aQ"

U

Démonstration de la proposition n° 3 :

1. Par définition de la somme de deux fonctions : P 4+ P: z — P(z) + P(z), or pour k € K,

P(x Zakm + Zakm = i ak-l-dk)xk
k=0

n - n
On reconnait alors le polynéme Y. (ax + ax) X", ainsi, P+ P = Y (a + ar) X"
k=0 -

2. Pour tout x € K, par linéarité de la somme, on obtient :

(AP)(z) = AP(z) = A Z arz’ = Zn] Aagz”

Ainsi, AP est un polynéme et AP = 3 (Aax)X".
k=0
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3. PxQ:z— P(x) x Q(z)

Soit z € K,
p ) q ) p g o pt+q k
P(z) x Q@) = [ Yaia' | x [ Y bja? | = D) D aibja™ = Y > aiby iz
i=0 §=0 i=05=0 k=0i=0
pt+a k
Ainsi, P x Q: z — P(z) x Q(z) est la fonction P x Q: z — > 3 a;bx_; X", ainsi, P x Q est un polynéme et P x Q =
k=04i=0
pt+a k
Z Z aibk_ixk.
k=0i=0
P P
4. PoQ: z — P(Q(x)). Soit z € K[X], P(Q(z)) = Y ar(Qx))* = X arQ"(x), or comme Q est un polynéme, le point 3
k=0 k=0
montre, par récurrence, que, pour tout k € N, QF est un polynéme. Ainsi, par somme de polynémes, P o Q est un polynéme
P
et vaut PoQ = ) axQ” |
k=0
Remarques 2. e Pour la somme de deux polyndmes, on a pris les mémes bornes (quitte & rajouter des zéros).

e En revanche, ce n’est pas nécessaire pour le produit de deux polynomes.
e Attention : P(X +1), P(X) et P(X —1) désignent souvent des composées (et non des produits) de P respectivement
avec X +1, X et X —1, de plus, Po X = P(X) = P.

("_'J Proposition n°4 : propriétés des opérations sur les polynémes A
Soient (P, @, R) € K[X]3, alors :
1. P+Q=Q+P (commutativité) 2. PxQ =Q x P (commutativité)
3. (P+Q)+R=P+(Q+R) (associativité) 4. (Px Q)x R=P x (Q x R) (associativité)
5. 0+ P =P (0 neutre de 'addition) 6. 1 x P =P (1 neutre de la multiplication)
7. P+ (-1)x P=0 (existence de I'opposé) 8. Px (Q+R)=PxQ+PxR (distributivité)
n n—1
9. (P+Q)" =Y (H)P*Q™* (binéme de Newton) 10.P™ —Q" = (P —Q) >, P*Q 17
\_ k=0 k=0

J

n

Exemple 3. Grace a (1 + X)?", démontrer que >, (2)2 = (2")
k=0

Exemples 4. Si P =2X?2 +3X, Q= X?-2X et R = —2X?2 + 2, que valent les degrés de P+ Q, P+ R, PQ et PoQ?

iJ Proposition n°5 : propriétés sur le degré et intégrité
Soient (P, Q) € K[X]?, alors :

1. d°(P + Q)< max(d°P,d°Q) 2. Sid°P # d°Q, alors d°(P + Q) = max(d°P,d°Q)
3. d°(PQ) =d°P +d°Q 4. Si X e K* alors d°(AP) = d°P
5. Si @ non constant, d°(Po Q) = d°P x d°Q 6. SiPQ=0,alors P=0ou@Q =0 (intégrité)

P a

Démonstration de la proposition n°5 : Posons p = d°P et ¢ = d°Q, de sorte que P = Y ax X" et Q = ) bp X" avec a, # 0
k=0 k=0

et by # 0.

1. Il y a trois cas :

q P

e Sip>g,alors P+Q = Y (ap+br)X*+ > arX" aveca, # 0, de sorte que d°(P+Q) = p = max(p, ¢) = max(d°P,d°Q).
k=0 k=q+1

e Sip < g, alors idem que précédemment, en changeant les roles de P et Q.

P
e Sip=gq,alors P+Q = Y (ar +bx)X". Donc si ay + by # 0, alors d°(P + Q) = p = max(d°P,d°Q). Si ax + b, = 0, alors
k=0
p—1
P+Q= Y (ar +bx)X" et donc d°(P + Q) < p—1 < p = max(d°P,d°Q).
k=0

2. La preuve du point 2 a été fait lors du point 1.

3. Remarquons que si P = 0 ou @ = 0, alors la propriété est vraie. Travaillons donc dans le cas o p = d°P > 0 et ¢ = d°Q = 0.

rt+q k
Par définition du produit de deux polynémes, PQ = Y} cx X" avec pour tout k€ [0;p + q]|, cx = 3. aibx—i, en particulier,
k=0 i=0
ptaq p—1 r+q . o o
Cprq == D, Qibpyg—i = D, Qibpyg—i + apbg + X, @ibpiq—i = apby # 0, ainsi d°PQ =p +q=d°P + d°Q.
i=0 i=0 i=p+1
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4. Utiliser la propriété précédente avec Q = A, alors d°Q = 0.
5. Par le point 3 : d°Q? = d°Q + d°Q = 2q. Puis, par une récurrence facile, d°Q* = kq. Ainsi,

P p—1
PoQ= Z arQ” = a,Q” + Z arQ”

k=0 k=0

p—1

Or, d°a,QP = pq (ap # 0) et d° (Z aka) < (p—1)g < pq (¢ = 1). Comme les degrés sont différents, par la propriété du

k=0
degré de la somme : d°P(Q) = pg = d°P x d°Q.

6. Supposons P # 0 et @ # 0. Ainsi, d°P > 0, d°Q > 0. Par conséquent, en utilisant le degré du produit, d°PQ = d°P+d°Q = 0,
deés lors, PQ # 0. Par contraposée, on a donc montré que PQ = 0 implique P =0 ou Q = 0. |

3 Racines et factorisation de polynémes

o
Déﬁnition d’une racine d’un polynéme

| Soient P un polynome et x € K, on dit que x est une racine de P si P(x) = 0.

Exemple 5. Est-ce que 0, 1 et 2 sont racines de P = X3 + X2 - X — 17

&Attention X et x ce n’est pas la méme chose!

n
Chercher les racines de P = Y ax X" € K[X], c’est résoudre 1’équation P(x) = 0. Ce n’est pas la méme chose
k=0
que résoudre I’équation P(X) =0 : P(X) = 0 ssi pour tout k€ [[0;n [, ax = 0 d’apres la proposition 2.

iJ Proposition n° 6 : caractérisation des racines par la factorisation
Soient P € K[X], a € K et (z1,22,...,2,) € K" avec les z; deux a deux distincts.

1. Le polynéme P admet a comme racine si et seulement si il existe @ € K[X] tel que P = (X — a)Q.

(X - xi)) Q

2. Le polyndéme P admet 1, xa, ..., 2, comme racines ssi il existe @ € K[X] tel que P = (
i=1

Démonstration de la proposition n°6 :
1. Supposons qu’il existe @ € K[X] tel que P = (X — a)Q. Dés lors, P(a) = (a — a)Q(a) = 0, donc a est racine de P.
n
Réciproquement, supposons que a soit racine de P. Ecrivons P = Y, ax X k alors :

k=0

n

n n k—1 n k—1
ara® = Z ar(X*F —d") = Z ar(X —a) Z X" = (X —a) Z ak Z a"ixe
0 i k=1 =0

P=P-0=P-Pa)= ), aX" -
k=0 k k=0 k=1 (=0

Ainsi, on a bien trouvé @ € K[X] tel que P = (X — a)Q.

2. Supposons qu'il existe Q € K[X] tel que P = [[(X — z;)Q, alors soit j € [1;7]], P(z;) = [](z; — z:)Q(z;) = 0 (en effet, le
i=1 i=1

terme dans le produit pour i = j est nul), ainsi les x; sont bien racines. Réciproquement, posons pour n € N* : #(n) : «Pour

tout P € K[X], si z1,...,2n sont n racines distinctes de P € K[X], alors il existe Q € K[X] tel que P = [[(X — x:)Q».

i=1

(X — 24)Q. Donc Z(1) est

—

Comme z; est racine, en utilisant le point 1, il existe Q € K[X] tel que P = (X — z1)Q =

i=1

loic.devilliers@proton.me 2BCPST?2 lycée Saint-Louis, 25-26, Cours 5


loic.devilliers@proton.me

vraie. Soit n € N, supposons &(n) vraie. Soient P € K[X] et x1,...,Zn,Zny1 n + 1 racines deux & deux distinctes de P.

En particulier, z1,...,2, sont n racines distinctes de P, d’aprés Z(n), il existe Q € K[X] tel que P = [[(X — z;)Q. Or,
i=1
n
comme Z,41 est racine, P(zp41) = 0, donc [](znt1 — 2i)Q(xn+1) = 0. Comme les z; sont deux & deux distincts, pour
i=1

tout i € [1;n]], Tnt1 — zi # 0, donc Q(zn+1) = 0, d’apres le point 1, il existe R € K[X] tel que Q@ = (X — zn41)R, ainsi,
n n+1

P=]](X—2)(X —ant1)R, donc P = [] (X —z;)R. Dés lors, #(n + 1) est vraie. Par récurrence, pour tout n € N, #(n)
i=1

i=1
est vraie. En particulier, £2(n) est vraie. [ ]

ij Proposition n° 7 : le conjugué d’une racine d’un polynéme a coefficients réels est encore racine
| Soit P e R[X] et z € C\R une racine de P, alors Z est aussi racine de P.

Démonstration de la proposition n°7 : Ecrivons P = Y] ax X" € R[X] comme P(z) = 0, alors

P(E)=iak3k=iﬁz_=iakzk=iakzk=%=ﬁ=o
k=0 k

—o k=0 k=0
Ainsi, z est une racine de P. |

Exemples 6. 1. Si P = aX? + bX + ¢ € R[X] un polynéme du second degré dont le discriminant est strictement
négatif, quelles sont ses racines ?

2. Quelles sont les racines de Q@ = X2 — (2 +1)X +2i?

Démonstration de la proposition n° 8 :

1. Notons n = d°P € N (car P % 0). Supposons que P ait strictement plus de n racines, en particulier, il en admet au moins n+1,

n+1
notons z1,%2,...,Tnt1 ces n + 1 racines distinctes. D’apres la propositon 6, il existe @ € K[X] tel que P = [] (X — z:)Q.
i=1
En passant au degré, on obtient n = (n + 1) + d°Q, donc nécessairement, d°Q = —1 ce qui est impossible, ainsi, P a au plus
n racines.

2. Soit P € K,[X], si P # 0, alors par le point précédent, le nombre de racines est majoré par d°P et d°P < n, donc le nombre
de racines est majorée par n. Par contraposée, si P € K,,[X] a au moins n + 1 racines, alors P est nul.

3. Soit P € K[X], si P # 0, alors le premier point montre que P a un nombre fini de racines. Par contraposée, si P a une infinité
de racines, alors P = 0. [

I
Déﬁnition de la multiplicité d’une racine

Soit P € K[X] non nul. On dit que la multiplicité (ou d’ordre) de a € K dans P vaut m € N ¢’il existe Q € K[ X]
tel que P = (X — a)™Q avec Q(a) # 0.

Remarques 3. Soit P € K[X] non nul.
1. Sim =0, alors a n’est pas racine de P. 2. Sim =1, on dit que a est une racine simple de P.
3. Sim = 2, on dit que a est une racine double de P. 4. Si P =(X —a)™Q avec Q € K[X], la multiplicité de a
est supérieure ou égale a m.

Exemple 7. Donner le degré, le coefficient dominant, les racines et leur multiplicités de P = 3(X — 1)*(X — 2)2.
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Exemple 8. Quelles sont les racines complexes/réelles de X2 + 17

Démonstration du théoréme n° 2 :
e Posons, pour k € N* I’hypothése de récurrence : (k) : «Si d°P = k, alors il existe des complexes z; deux & deux distincts,
T

des entiers naturels non nuls m; et A € C* tels que P = XA [T (X — 2;)™ ».
i=1

— Si k = 1. Prenons donc P € C[X] de degré 1. Alors P = aX + b avec (a,b) € C* et a # 0, alors P = a <X — %b) P est

donc bien de la forme voulue. Ainsi, &(1) est vraie.

— Soit k € N*. Supposons par récurrence forte que pour tout j € [1; k], 2 (j) vraie. Soit P € C[X] tel que d°P = k+1 > 1.
Alors d’aprés le théoréme de d’Alembert-Gauss, P admet une racine z; € C. Notons m; € N* sa multiplicité : il existe
Qe C[X] tel que P = (X — 21)™Q avec Q(z1) # 0.

— Si Q est constant alors (Q est nécessairement non nul) et P = A(X — 21)™" avec A = Q € C* convient.
— Sid°Q = 1, remarquons que n + 1 = d°P = m; + d°Q. Ceci prouve que d°Q =k + 1 —mi <n (car m; = 1). Si on
™
note j = d°Q, alors j € [1;n]], d’aprés 'hypothése de récurrence forte, #(j) est vraie. Donc Q = A [ (X — z;)™
i=2
pour des z 2 4 2 distincts, m; € N* et A € C*. Notons, que comme Q(z1) # 0, Q(22) =0, Q(23) =0, ..., Q(2-) = 0,
s
on en déduit que 21 # 22, 21 # 23, ..., 21 # 2r. Ainsi, P = A [[(X — 2z;)™ avec A € C*, les z 2 & 2 distincts et
i=1
m; € N*
Ainsi, Z(k + 1) est vraie.

— Par récurrence forte, pour tout k € N*, 2 (k) est vraie.

e Montrons que si P = X [](X — 2)™ avec les z; deux a deux distincts, les m; des entiers naturels non nuls et A € C*, alors
i=1

nécessairement les racines de P sont exactement les z; avec chacune une multiplicité m; et que A est le coefficient dominant.

Fixons j € [1;7]), alors, en isolant le terme pour ¢ = j :

P=(X- zj)mj)\H(X —z;)™M = (X —2;)™Q avec Q(z;) = )\H(zj —z)™M #£0
i=1 i=1

i#j i#J

T
Donc z; est bien une racine de P de multiplicité m;. Réciproquement si z est une racine de P alors 0 = P(2) = X [ (z—2)™,
i=1
un produit de termes étant nul, on en déduit que 'un d’eux est nul, donc il existe i € [1;r] tel que (z — 2z;)™* = 0, donc

"
que z = z;, ainsi les racines de P sont exactement les z;. De plus, en développant le produit P = A [] (X — z;)™, le terme
i=1

S mi
de plus haut degré est AXi=t  avec A # 0, ainsi A est bien le coefficient dominant de P. |

& Racines n-iémes et factorisation du polynéme X™ — 1

Soit n € N*, on pose P = X" — 1
1. Démontrer que wy, = e’ %TT, pour k € Z, est une racine de P.
2. Démontrer que les nombres complexes wy, pour k € [0;n — 1], sont deux & deux distincts.

3. Factoriser X" — 1 dans C[X].

Remarque 4. Un polynéme & coefficients complexes de degré n a donc toujours exactement n racines complexes comptées
avec multiplicité contrairement au nombre de racines réelles d’un polynéme a coefficients réels. Ainsi, les réels sont plus
complexes que les complexes...

Exemple 9. Combien P = (X2 + 1)(X? — 6X + 9) admet-il de racines réelles ? complexes ?
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4 Dérivée d’un polynéme (pas vraiment au programme)

n n
Remarque 5. Soit P = Y a; X* € R[X]. Par somme de fonctions dérivables, P: x ~ ag + Y. apx" est dérivable sur R
k=0 k=1

n n—1 n
de dérivée P': x — 0+ Y, kagz* 1 = 3 (j + 1)aj+127, ainsi P’ est un polynoéme et P’ = Y kapyX*~1. Or, vous savez
k=1 j= k=1
dériver des fonctions dont la variable est réelle mais pas complexe. La définition suivante va généraliser par métonymie :

I
Déﬁnition de la dérivée formelle d’un polynome

n
Soit P = Y ap X" e C[X], on définit le polynéme dérivé de P par P’ = Z kapXk—1 = Z (j+1)a;+1 X7 € C[X].
k=0 7=0

iJ Proposition n°9 : propriétés de la dérivation de polynémes
Soient (P, Q) € C[X]? et A e C, alors :
1. AP+Q) =AP' +Q 2. (PQ) =PQ+ PQ

Démonstration de la proposition n°9 : Prenons P = )] apX ket Q= > X k (encore une fois, on compléte avec des zéros
k=0 k=0
pour que les sommes finissent avec le méme indice n).
1. Alors, AP + Q) = >, (\ar + bk)Xk. Ainsi :
k=0
(AP + Q) Z (Aak + be) X*71 —)\ZkakX’“ L Zkb XM =AP + @

k=1 k=1

2. Par produit de deux polynoémes et par dérivation :

3 (B

2n— Jj+1
(PQ) = (kz aibk_i> Xkt s 2 <3 +1) )] aibﬁli) X7

PQ =

Y HM:"’

k=1 i=0 i=0
De plus,
n n—1
PQ/-l—PlQ = ZakaZ k+1bk+1Xk+Z k+ CLk+1X Zkak
k=0 k=0 k=0 k=0
2n—1 k 2n—1 k
= ) (Z ai(k —i+ 1)bk_i+1> X4y (Z(z + l)aiﬂbk_i) x*
k=0 \i=0 k=0 \i=0
2n—1 k k+1
= Z (Z ai(k — 1+ Dbg—iy1 + Z ’iaibk+1i> x*
k=0 =0 i=1
2n—1 [k+1
- Z ( ai(k — 1+ 1)bg—iy1 + iaibk+1_¢> x*
k=0 1=0
2n—1 k+1
k=0 =0
Ainsi, (PQ) = PQ' + P'Q. [ |

iJ Proposition n° 10 : caractérisation d’une racine non simple a l’aide de la dérivée
Soit P € C[X] un polynéme non nul et a € C.
La multiplicité de o dans P est supérieure ou égale & 2 si et seulement si P(a) = P'(«) = 0.
Le nombre « est racine simple de P si et seulement si P(a) = 0 et P'(«) # 0.
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Démonstration de la proposition n®10 : Supposons que la multiplicité de o dans P est supérieure ou égale a 2, alors il
existe Q € K[X] tel que P = (X — a)?Q, alors P(a) = (o — a)’Q(a) = 0 et P/ = 2(X — a)Q + (X — «)?Q’ de sorte que
P'(a) = 2(a — @)Q(a) + (o — a)*Q’(a) = 0. Réciproquement, supposons que P(a) = P'(a) = 0, alors « est racine de P, donc
d’aprés la proposition 6, il existe @ € K[X] tel que P = (X — @)@, alors P’ = Q + (X — @)@’ donc 0 = P'(a) = Q(a) + (a— o) Q' ()
donc Q(a) = 0, ainsi, en utilisant & nouveau la proposition 6, il existe R € K[X] tel que Q = (X — a)R, ainsi, P = (X — a)?R et
donc la multiplicité de o dans P est supérieure ou égale a 2.

Si a est racine simple de P, alors P(a) = 0, si P'(«) = 0, par ce qui précede, a serait racine au moins double ce qui est absurde,
donc P'(a) # 0.

Réciproquement, si P(a) = 0 et P'(a) # 0, alors « est racine donc sa multiplicité est supérieure ou égale a 1 et si elle était
supérieure ou égale a 2 par ce qui préceéde, on aurait P’(«) = 0 ce qui est exclus, donc « est une racine simple de P. |
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