
Espaces vectoriels
Chapitre 6

Objectifs :
Définir la notion d’espaces vectoriels. À la façon de monsieur Jourdain, vous utilisiez déjà des exemples espaces vectoriels
sans le savoir. L’étude de la notion d’espace vectoriel permet d’étudier tous ces exemples en même temps.
Prérequis :

‚ Ensembles et applications
‚ Systèmes linéaires
‚ Matrices
‚ Polynômes
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Dans tout ce qui suit, K désigne R ou C et n un entier non nul.

1 Définition des espaces vectoriels
Avant de donner la définition d’un espace vectoriel, regardons quelques exemples :

1. Soient x “ px1, x2, . . . , xnq P Rn et y “ py1, y2, . . . , ynq P Rn, on les somme : x ` y “ px1 ` y1, . . . , xn ` ynq. On
multiplie aussi x par λ P R : λ ¨ x “ pλx1, λx2, . . . , λxnq

x⃗
y⃗

ÝÝÝÑx ` y

(a) p1, 1q ` p0, 1q “ p1, 2q

ÝÝÑ2 ¨ x

x⃗

(b) 2 ¨ p1, 1q “ p2, 2q

x⃗
y⃗

(c) x⃗ ` y⃗ “ y⃗ ` x⃗

x⃗

x⃗ ` 0⃗

‚0⃗
(d) x⃗ ` 0⃗ “ x⃗

x⃗

y⃗

‚
ÝÝÝÑx ` y

(e) Il existe y⃗ tel que x⃗`y⃗ “

0⃗

Figure 1 – Les vecteurs de R2 représentés avec des flèches. Et quelques propriétés sur les vecteurs.

2. De même, étant donnés deux polynômes P et Q P KrXs et λ P K, on obtient P ` Q P KrXs et λP P KrXs.

3. Soient deux fonctions pf, gq P pRIq2 et λ P R, on pose f ` g :
#

I ÝÑ R

x ÞÝÑ fpxq ` gpxq
P RI et λf :

#

I ÝÑ R

x ÞÝÑ λfpxq
P RI

4. Soient pA, Bq P Mn,ppKq2 et λ P K, alors A ` B P Mn,ppKq et λA P Mn,ppKq.

Remarque 1. Dans la suite, la notion d’espace vectoriel généralise ces exemples. Ainsi, Rn, KrXs, F pI,Rq, Mn,ppKq

etc. seront des espaces vectoriels, les éléments de ces ensembles seront appelés des vecteurs.

On appelle K-espace vectoriel un ensemble E muni de deux opérations ` et ¨ vérifiant :
1. L’addition dite interne, pour tout px, yq P E2 x ` y P E vérifiant :

(a) @px, yq P E2 x ` y “ y ` x (l’addition de vecteurs est commutative)
(b) @px, y, zq P E3 px ` yq ` z “ x ` py ` zq (l’addition de vecteurs est associative)
(c) D0E P E @x P E x ` 0E “ x (il existe un vecteur nul noté 0E)
(d) @x P E Dy P E x ` y “ 0E (tout vecteur x admet un vecteur opposé y).

2. La multiplication dite externe, pour tout λ P K et x P E, λ ¨ x P E, vérifiant :
(a) @x P E 1 ¨ x “ x (multiplier un vecteur par 1 ne change pas le vecteur)
(b) @pλ, µq P K2 @x P E λ ¨ pµ ¨ xq “ pλ ˆ µq ¨ x (pseudo-associativité)
(c) @pλ, µq P K2 @x P E pλ ` µq ¨ x “ λ ¨ x ` µ ¨ x (pseudo-distributivité de ¨ par rapport à `)
(d) @λ P K @px, yq P E2 λ ¨ px ` yq “ λ ¨ x ` λ ¨ y (distributivité de ¨ par rapport `)

Les éléments de E sont alors appelés vecteurs de E, 0E est appelé vecteur nul de E.

Définition d’un espace vectoriel

Remarque 2. Voilà une définition particulièrement rebutante. L’important est surtout de comprendre ce que ça veut
dire. Que faites-vous avec des vecteurs ? Les additionner ensemble, et les multiplier par un scalaire. Cette définition n’est
que la formalisation de cette idée avec tout un tas d’exigences raisonnables, par exemple :

‚ Le point 1a exige seulement que lorsqu’on ajoute deux vecteurs l’ordre n’intervient pas.
‚ Le point 1c exige juste qu’il existe un vecteur nul.
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Les ensembles suivants sont des K-espaces vectoriels :
I. Kn (i.e. Rn est un R-espace vectoriel et Cn est un C-espace vectoriel)

II. KrXs

III. Mn,ppKq (l’ensemble des matrices de n lignes et p colonnes à coefficients dans K)
IV. KI “ F pI,Kq où I est un ensemble non vide (l’ensemble des applications de I dans K)

Exemples classiques d’espaces vectoriels

Démonstration que ce sont des espaces vectoriels :
I. Si E “ Kn, alors les applications suivantes sont bien définies :

#

Kn
ˆ Kn

ÝÑ Kn

ppx1, x2, . . . , xnq , py1, y2, . . . , ynqq ÞÝÑ px1 ` y1, . . . , xn ` ynq
et

#

K ˆ Kn
ÝÑ Kn

pλ, px1, x2, . . . , xnqq ÞÝÑ pλx1, . . . , λxnq

Fixons x “ px1, x2, . . . , xnq, y “ py1, y2, . . . , ynq, z “ pz1, z2, . . . , znq trois éléments de Kn, λ P K et µ P K.
1. (a) x ` y “ px1, x2, . . . , xnq ` py1, y2, . . . , ynq “ px1 ` y1, . . . , xn ` ynq “ py1 ` x1, . . . , yn ` xnq “ y ` x

(b)

px ` yq ` z “ ppx1, x2, . . . , xnq ` py1, y2, . . . , ynqq ` z

“ px1 ` y1, . . . , xn ` ynq ` pz1, z2, . . . , znq “ px1 ` y1 ` z1, . . . , xn ` yn ` znq

“ px1, x2, . . . , xnq ` py1 ` z1, . . . , yn ` znq “ x ` py ` zq

(c) Posons z “ p0, 0, . . . , 0q P Kn, alors x ` z “ px1 ` 0, . . . , xn ` 0q “ x, z est bien un vecteur nul.
(d) Posons m “ p´x1, ´x2, . . . , ´xnq P Kn, alors x ` m “ px1 ´ x1, . . . , xn ´ xnq “ p0, 0, . . . , 0q “ z.

2. (a) 1 ¨ x “ 1 ¨ px1, x2, . . . , xnq “ p1x1, 1x2, . . . , 1xnq “ px1, x2, . . . , xnq “ x

(b) λ ¨ pµ ¨ xq “ λ ¨ pµx1, . . . , µxnq “ pλµx1, . . . , λµxnq “ pλµq px1, x2, . . . , xnq.
(c) λ ¨ x ` µ ¨ x “ pλx1, . . . , λxnq ` pµx1, . . . , µxnq “ pλx1 ` µx1, . . . , λxn ` µxnq

“ ppλ ` µqx1, . . . , pλ ` µqxnq “ pλ ` µq px1, x2, . . . , xnq “ pλ ` µqx

(d) λ ¨ px ` yq “ λ ¨ px1 ` y1, . . . , xn ` ynq “ pλpx1 ` y1q, . . . , λpxn ` ynqq “ pλx1 ` λy1, . . . , λxn ` λynq “ pλx1, . . . , λxnq `

pλy1, . . . , λynq “ λ px1, x2, . . . , xnq ` λ py1, y2, . . . , ynq “ λx ` λy

Ceci montre que Kn est un K-espace vectoriel. Appliqué à K “ R, on obtient que Rn est un R-espace vectoriel. Appliqué
à K “ C, on obtient que Cn est un C-espace vectoriel. Si E “ Cn, alors, on peut de même définir les applications suivantes :

#

Cn
ˆ Cn

ÝÑ Cn

ppx1, x2, . . . , xnq , py1, y2, . . . , ynqq ÞÝÑ px1 ` y1, . . . , xn ` ynq

#

R ˆ Cn
ÝÑ Cn

pλ, px1, x2, . . . , xnqq ÞÝÑ pλx1, . . . , λxnq

Or, on a huit propriétés qui sont vraies dans le C-espace vectoriel Cn, si on restreint ces propriétés en remplaçant C par R, elles
encore encore vraies faisant de Cn est un R-espace vectoriel. On dit que c’est un R-espace vectoriel, car dans λ ¨ px1, x2, . . . , xnq,
λ P R.

II. Si pP, Q, Rq P KrXs
3 et λ P K, alors P ` Q P KrXs et λP P K. De plus, P ` Q “ Q ` P , pP ` Qq ` R “ P pQ ` Rq, P ` 0 “ P ,

P ` p´1qP “ 0, 1 ¨ P “ P , λpP ` Qq “ λP ` λQ, pλ ` µqP “ λP ` µP et λpµP q “ pλµqP . Toutes ces propriétés ont déjà été
énoncées et démontrées dans le chapitre sur les polynômes.

III. Si E “ Mn,ppKq. Alors, pour tout pA, Bq P E2 et λ P K, A ` B P Mn,ppKq et λA P Mn,ppKq. De plus, on sait que A ` 0n,p “ A,
pA ` Bq ` C “ A ` pB ` Cq, A ` B “ B ` A, A ` p´1q ¨ A “ 0n,p, 1 ¨ A, λpµAq “ pλµqA, pλ ` µqA “ λA ` µA et
λpA ` Bq “ λA ` λB. Toutes ces propriétés ont déjà été énoncées et démontrées dans le chapitre sur les matrices.

IV. Soit pf, g, λq P F pI,Rq
2
ˆK, on pose f`g :

#

I ÝÑ R

x ÞÝÑ fpxq ` gpxq
et λ¨f :

#

I ÝÑ R

x ÞÝÑ λfpxq
, alors f`g P F pI,Rq et λf P F pI,Rq.

1. Soit pf, g, hq P F pI,Rq
3

(a) Pour tout x P I, pf ` gqpxq “ fpxq ` gpxq “ gpxq ` fpxq “ pg ` fqpxq. Ainsi, f ` g “ g ` f .
(b) Pour tout x P I,

ppf ` gq ` hqpxq “ pf ` gqpxq ` hpxq “ pfpxq ` gpxqq ` hpxq “ fpxq ` pgpxq ` hpxqq “ fpxq ` pg ` hqpxq “ pf ` pg ` hqqpxq

Ainsi, pf ` gq ` h “ f ` pg ` hq.

(c) Posons Θ:
#

I ÝÑ R

x ÞÝÑ 0E

, alors pour tout x P E, pf ` Θqpxq “ fpxq ` Θpxq “ fpxq ` 0E “ fpxq. Ainsi, f ` Θ “ f .
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(d) On pose f̃ :
#

I ÝÑ R

x ÞÝÑ ´fpxq
, alors, pour tout x P I, pf ` f̃qpxq “ fpxq ` f̃pxq “ fpxq ´ fpxq “ 0, ainsi, f ` f̃ “ Θ.

2. Soit pf, gq P F pI,Rq
2 et pλ, µq P R2

(a) Pour tout x P I, p1 ¨ fqpxq “ 1 ¨ fpxq “ fpxq. Ainsi, 1 ¨ f “ f .
(b) Pour tout x P I, pλ ¨pµ ¨fqqpxq “ λ ¨ppµfqpxqq “ λ ¨pµ ¨fpxqq “ pλˆµq¨fpxq “ ppλˆµq¨fqpxq. Ainsi, λ ¨pµ ¨fq “ pλˆµq¨f .
(c) Pour tout x P I,

ppλ ` µq ¨ fqpxq “ pλ ` µq ¨ fpxq “ λ ¨ fpxq ` µ ¨ fpxq “ pλ ¨ fqpxq ` pµ ¨ fqpxq “ pλ ¨ f ` µ ¨ fqpxq

Ainsi, pλ ` µq ¨ f “ λ ¨ f ` µ ¨ f .
(d) Pour tout x P I,

pλ ¨ pf ` gqqpxq “ λ ¨ ppf ` gqpxqq “ λ ¨ pfpxq ` gpxqq “ λ ¨ fpxq ` λ ¨ gpxq “ pλ ¨ fqpxq ` pλ ¨ gqpxq “ pλ ¨ f ` λ ¨ gqpxq

Ainsi, λ ¨ pf ` gq “ λ ¨ f ` λ ¨ g.
Par conséquent, F pI,Rq est un R-espace vectoriel. ■

Remarques 3. ‚ Les vecteurs peuvent donc être des polynômes, des matrices, des suites, des fonctions etc.
‚ «Faut-il appliquer cette définition à chaque fois pour montrer qu’un machin est un espace vectoriel ?» Non, on ne

l’utilisera quasiment jamais. Dans la pratique, on montre que des ensembles sont bien des espaces vectoriels en
vérifiant quelque chose de bien plus simple que l’on va voir au plus vite.

Si on a deux vecteurs d’un espace vectoriel, on peut les additionner mais pas les multiplier entre eux.

Péril imminent : à l’impossible nul n’est tenu

À partir de maintenant E désignera toujours un K-espace vectoriel.

1. On a unicité du vecteur 0E au point 1c.
2. @pλ, xq P K ˆ E pλ “ 0 ou x “ 0Eq ðñ λ ¨ x “ 0E

3. Pour tout x P E, on a unicité du vecteur y au point 1d, de plus y “ p´1q ¨ x.

Proposition no 1 : premières propriétés d’un espace vectoriel

Démonstration de la proposition no 1 :
1. Supposons qu’il y ait deux vecteurs nuls 0E et 01

E . Cela veut dire que :

@x P E x ` 0E “ x (1)
@x P E x ` 01

E “ x (2)

Alors 0E “
(2)

0E ` 01
E “

1a
01

E ` 0E “
(1)

01
E . On a donc montré que 0E “ 01

E , donc l’unicité du vecteur nul.

2. Soit x P E et λ P K. Pour montrer l’équivalence, procédons par double implications :
‚ Supposons x “ 0E ou λ “ 0 et montrons λ ¨ x “ 0E . Il y a donc deux cas x “ 0E ou λ “ 0.

— Cas 1 : λ “ 0. Alors λ ¨ x “ 0 ¨ x “ p0 ` 0q ¨ x “
2c

0 ¨ x ` 0 ¨ x. On a donc 0 ¨ x “ 0 ¨ x ` 0 ¨ x. Notons y P E un vecteur tel
que p0 ¨ xq ` y “ 0E (y existe d’après 1d). En ajoutant y des deux côtés, on obtient

0E “ 0 ¨ x ` y “ p0 ¨ x ` 0 ¨ xq ` y “
1b

0 ¨ x ` p0 ¨ x ` yq “ 0 ¨ x ` 0E “
1c

0 ¨ x

On a donc 0 ¨ x “ 0E , soit λ ¨ x “ 0E .
— Cas 2 : x “ 0E . Alors λ ¨ x “ λ ¨ 0E “ λ ¨ p0E ` 0Eq “

2d
λ ¨ 0E ` λ ¨ 0E . On a donc λ ¨ 0E “ λ ¨ 0E ` λ ¨ 0E . Notons y P E

un vecteur tel que λ ¨ 0E ` y “ 0E (y existe d’après 1d). En ajoutant y des deux côtés, on obtient donc

0E “ λ ¨ 0E ` y “ pλ ¨ 0E ` λ ¨ 0Eq ` y “
1b

λ ¨ 0E ` pλ ¨ 0E ` yq “ λ ¨ 0E ` 0E “
1c

λ ¨ 0E

On a donc λ ¨ 0E “ 0E , soit λ ¨ x “ 0E .
Dans les deux cas, on a montré que λ ¨ x “ 0E .

‚ Supposons λ ¨ x “ 0E et montrons λ “ 0 ou x “ 0E . Il y a deux cas :
— Soit λ “ 0 et donc c’est ce qu’on veut.
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— Soit λ ‰ 0, dans ce cas, on peut multiplier l’équation λ ¨ x “ 0E des deux côtés par 1
λ

, on a alors 1
λ

¨ pλ ¨ xq “
1
λ

0E .

Donc
ˆ

1
λ

ˆ λ

˙

¨ x “ 0E . Donc 1 ¨ x “ 0E , soit x “ 0E .

Ainsi, λ “ 0 ou x “ 0E .
3. Supposons qu’il existe y P E tel que x ` y “ 0E et y1

P E tel que x ` y1
“ 0E , alors

y “ y ` 0E “ y ` px ` y1
q “

1b
py ` xq ` y1

“ 0E ` y1
“
1a

y1
` 0E “

1c
y1

On a donc prouvé que y “ y1. Montrons que y “ p´1q ¨ x :

x ` p´1q ¨ x “ 1 ¨ x ` p´1q ¨ x “ p1 ` p´1qq ¨ x “ 0 ¨ x “ 0E

Par unicité de l’opposé, on a donc y “ p´1q ¨ x. ■

2 Sous-espaces vectoriels

Soit F Ă E, on dit que F est un sous-espace vectoriel de E si : 0E P F , @px, yq P F 2 @λ P K λx ` y P F

Définition d’un sous-espace vectoriel

Soit F un sous-espace vectoriel de E, alors F est lui-même un espace vectoriel.
Proposition no 2 : un sous-espace vectoriel est un espace vectoriel

Démonstration de la proposition no 2 : Si F est un sous-espace vectoriel, alors pour tout x et y, on a 1 ¨ x ` y P F (en utilisant
λ “ 1), de même, pour tout λ P R, λx ` 0E “ λx P F (en utilisant y “ 0E P F ). On peut ainsi définir les applications suivantes :

` :
#

F ˆ F ÝÑ F

px, yq ÞÝÑ x ` y
et ¨ :

#

K ˆ F ÝÑ F

pλ, xq ÞÝÑ λ ¨ x
. Il reste à vérifier les 8 propriétés :

1. Soit px, y, zq P F 3

(a) Comme x P E et y P E, x ` y “ y ` x (car E est un espace vectoriel).
(b) Comme x P E, y P E, z P E, px ` yq ` z “ x ` py ` zq (car E est un espace vectoriel).
(c) Par définition du vecteur nul, x ` 0E “ x avec 0E P F . Ainsi, F admet bien un vecteur nul (le même que celui de E).
(d) En prenant y “ 0E et λ “ ´1, on obtient que λ ¨ x ` y “ p´1q ¨ x P F . Or, d’après la proposition 1, x ` p´1qx “ 0E .

Ainsi, x admet bien un opposé dans F (et c’est le même opposé que l’opposé de x dans E).
2. Soient px, yq P F 2, pλ, µq P K2

(a) Comme x P E, 1 ¨ x “ x (car E est un espace vectoriel).
(b) Comme x P E, λ ¨ pµ ¨ xq “ pλ ˆ µq ¨ x (car E est un espace vectoriel).
(c) Comme x P E, pλ ` µq ¨ x “ λ ¨ x ` µ ¨ x (car E est un espace vectoriel).
(d) Comme x P E et y P E, λ ¨ px ` yq “ λ ¨ x ` λ ¨ y (car E est un espace vectoriel).

Par conséquent, F est un K-espace vectoriel. ■

Exemples 1. Montrer que F et F 1 sont des sous-espaces vectoriels de E dans les cas suivants :

E “ R3 et F “ tpx, y, zq P R3 | x ` y ` z “ 0u1. E “ M2pCq et F “

"ˆ

a b
b c

˙

| pa, b, cq P C3
*

2.

E quelconque et F “ t0Eu et F 1 “ E3. E “ KrXs et F “ KnrXs4.
E “ RR et F l’ensemble des solutions de y2 ` y “ 05. E “ MnpKq et F “ SnpKq.6.

Solution des exemples 1 :
1. ‚ F Ă E.

‚ Posons x “ y “ z “ 0 de sorte que x ` y ` z “ 0 donc 0R3 “ p0, 0, 0q P F .
‚ Soient u “ px, y, zq P F et v “ px1, y1, z1

q P F et λ P R. Posons

w “ λu ` v “ λpx, y, zq ` px1, y1, z1
q “ pλx, λy, λzq ` px1, y1, z1

q “ pλx ` x1, λy ` y1, λz ` z1
q “ px2, y2, z2

q

Avec x2
“ λx ` x1, y2

“ λy ` y1 et λz ` z1. Alors x2
` y2

` z2
“ λpx ` y ` zq ` px1

` y1
` z1

q “ λ0 ` 0 “ 0 Donc λu ` v P F .
Dès lors, F est un sous-espace vectoriel de R3.

2. ‚ Notons que F Ă M2pCq.
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‚ Posons a “ b “ c “ 0 de sorte que 02 “

ˆ

a b
b c

˙

P F .

‚ Soit pM, Nq P F 2 et λ P C. Il existe alors pa, b, cq P C3 tel que M “

ˆ

a b
b c

˙

et il existe pa1, b1, c1
q P C3 tel que N “

ˆ

a1 b1

b1 c1

˙

.

Alors λM ` N “

ˆ

λa ` a1 λb ` b1

λb ` b1 λc ` c1

˙

. Ainsi, en posant α “ λa ` a1
P C, β “ λb ` b1

P C et γ “ λc ` c1
P C, on obtient

λM ` N “

ˆ

α β
β γ

˙

P F .

Dès lors, F est un sous-espace vectoriel de M2pCq.
3. ‚ Si F “ t0Eu, alors comme 0E P E, F Ă E. De plus, 0E P F . Soit px, yq P F 2 et λ P K, alors λx ` y “ λ ¨ 0E ` 0E “ 0E P F .

Ainsi, F “ t0Eu est un sous-espace vectoriel de E.
‚ Si F 1

“ E, alors F 1
Ă E, 0E P E “ F 1. Soit px, y, λq P F 1

ˆF 1
ˆK, alors λx`y P E “ F 1. Ainsi, F 1

“ E est un sous-espace
vectoriel de E.

4. KnrXs Ă KrXs, d˝0 “ ´8 ď n donc 0 P KnrXs. Soient P P KnrXs, Q P KnrXs et λ P K, alors

d˝
pλP ` Qq ď maxpd˝λP, d˝Qq ď maxpd˝P, d˝Qq ď maxpn, nq “ n

Ainsi, λP ` Q P KnrXs. Par conséquent, KnrXs est un sous-espace vectoriel de KrXs.
5. ‚ F “ SnpRq Ă MnpRq.

‚ Comme 0n
J

“ 0n, 0n P SnpRq.
‚ Soit pS, S1

q P SnpRq
2 et λ P R. Montrons que λS`S1

P SnpRq : pλS`S1
q

J
“ λSJ

`S1J
“ λS`S1. Ainsi, λS`S1

P SnpRq.
Dès lors, SnpRq est un SEV de MnpRq.

6. E “ RR et F “
␣

y P E | y est deux fois dérivable et y2
` y “ 0

(

, alors F Ă E, notons θ :
#

R ÝÑ R

x ÞÝÑ 0
, θ est deux fois dérivable

et θ2
` θ “ θ, donc θ P F . Soient pf, gq P F 2 et λ P R, alors λf ` g est deux fois dérivables (car f et g le sont), et

pλf ` gq
2

` λf ` g “ λf2
` g2

` λf ` g “ λpf2
` fq ` pg2

` gq “ λθ ` θ “ θ

De sorte que λf ` g P F . Ainsi, F est un sous-espace vectoriel de E.
Remarquons que par résolution d’une équation différentielle : F “

␣

x ÞÑ A cospxq ` B sinpxq | pA, Bq P R2(. ■

Exemples 2. Les ensembles suivants sont-ils des sous-espaces vectoriels de R2 ?
D : la droite passant par les points p1, 2q et p0, 1q1. F “ tpx, sinpxqq | x P Ru2.

Solution des exemples 2 :
1. La droite passant par les points p1, 2q et p0, 1q a pour équation x ÞÑ 1 ` x. Ainsi, en notant D “ tpx, 1 ` xq | x P Ru Ă R2,

p0, 0q R D, ainsi D n’est pas un sous-espace vectoriel de R2.
2. Notons F “ tpx, sinpxqq | x P Ru, alors certes F Ă R2 et p0, 0q P R2. Mais, v “ pπ{2, 1q P F (prendre x “ π{2q), mais

2v “ pπ, 2q R F (en effet dans le cas contraire, il existerait x P R, tel que pπ, 2q “ px, sinpxqq, or sinpxq ă 2 ce qui est absurde).
Ainsi, F n’est pas un sous-espace vectoriel de R2. ■

Remarque 4. Soient F un SEV de E, pe1, e2, . . . , enq P F n et pλ1, λ2, . . . , λnq P Kn, alors
n
ř

i“1
λiei P F .

Justification de la remarque 4 : Posons, pour n P N˚, l’hypothèse de récurrence Ppnq : «pour tout pe1, e2, . . . , enq P F n et pour

tout pλ1, λ2, . . . , λnq P Kn,
n
ř

i“1
λiei P F ».

‚ Pour n “ 1, soit e1 P F et λ1 P K, alors
1
ř

i“1
λiei “ λ1e1 P F (car F est un espace vectoriel), ainsi Pp1q est vraie.

‚ Soit n P N˚. Supposons Ppnq vraie. Soit pe1, e2, . . . , en`1q P F n`1 et pλ1, λ2, . . . , λn`1q P Kn`1,
n`1
ř

i“1
λiei “ λn`1en`1 `

n
ř

i“1
λiei, d’après Ppnq,

n
ř

i“1
λiei P F , comme F est un sous-espace vectoriel, λn`1en`1 `

n
ř

i“1
λiei P F , ainsi,

n`1
ř

i“1
λiei P F , donc

Ppn ` 1q est vraie
Par récurrence, pour tout n P N˚, Ppnq est vraie. ■

Soient F et G deux sous-espaces vectoriels de E, alors F X G est alors un sous-espace vectoriel de E.
De même, si pFiqiPI est une famille de SEVs de E, alors

Ş

iPI

Fi est un SEV de E.

Proposition no 3 : intersection de sous-espaces vectoriels
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Démonstration de la proposition no 3 :
‚ Remarquons que F XG “ tx P E | x P F et x P Gu, nécessairement, F XG Ă E. Comme F et G sont deux SEV de E, 0E P F

et 0E P G, ainsi 0E P F X G. Soient px, yq P pF X Gq
2 et λ P K, alors x et y sont dans F , λx ` y P F (F est un SEV de E).

De même, λx ` y P G. Dès lors, λx ` y P F X G.
‚ Soit pFiqiPI une famille de SEV de E. Cela veut dire, que pour tout i P I, Fi est un SEV de E. Remarquons que

č

iPI

Fi “ tx P E | @i P I x P Fiu

Nécessairement,
Ş

iPI

Fi Ă E. Considérons x et y appartenant à
Ş

iPI

Fi et λ P R. Soit i P I, x et y appartiennent à Fi, comme

Fi est un SEV de E, 0E P Fi et λx ` y P Fi et ce pour tout i P I, Par conséquent, 0E P
Ş

iPI

Fi et λx ` y P
Ş

iPI

Fi. Donc
Ş

iPI

Fi

est un SEV de E. ■

Exemple 3. On note F “
␣

px, y, yq tel que px, yq P R2( et G “
␣

px, y, zq P R3 | x ` 2y ` z “ 0
(

. Montrer que F et G sont
des sous-espaces vectoriels de R3, puis calculer leur intersection.
Solution de l’exemple 3 :

‚ F Ă R3, en posant x “ y “ 0, on obtient que px, y, yq “ p0, 0, 0q P F . Soit pu, vq P F 2 et λ P R. Comme u P F , il existe
pa, bq P R2 tel que u “ pa, b, bq et comme v P F , il existe pa1, b1

q P R2 tel que v “ pa1, b1, b1
q, alors

λu ` v “ λpa, b, bq ` pa1, b1, b1
q “ pλa ` a1, λb ` b1, λb ` b1

q P F

Ainsi, F est un sous-espace vectoriel de R3.
‚ G Ă R3, en posant x “ 0, y “ 0 et z “ 0, alors comme x ` 2y ` z “ 0 ` 2 ˆ 0 ` 0 “ 0, on a que p0, 0, 0q P G. Soient

u “ px, y, zq P G, v “ px1, y1, z1
q P G et λ P R, alors λu ` v “ pλx ` x1, λy ` y1, λz ` z1

q, de plus :

λx ` x1
` 2pλy ` y1

q ` λz ` z1
“ λpx ` 2y ` zq ` px1

` y1
` z1

q “ λ ˆ 0 ` 0 “ 0

Ainsi, λu ` v P G. Dès lors, G est un sous-espace vectoriel de R3.
‚ Soit u “ px, y, zq P R3, alors :

u P F X G ðñ u P F et u P G ðñ

"

y “ z
x ` 2y ` z “ 0 ðñ

"

y “ z
x “ ´3z

ðñ u “ p´3z, z, zq

Ainsi, F X G “ tp´3z, z, zq | z P Ru. ■

Par exemple, F “ tpx, 0q | x P Ru et G “ tp0, yq | y P Ru, F Y G est-il un SEV de R2 ?
Attention l’union de deux SEV de E n’est pas, en général, un SEV de E.

3 Combinaison linéaire, espace vectoriel engendré

Soit pe1, e2, . . . , enq une famille finie de vecteurs de E.
‚ Soit pλ1, λ2, . . . , λnq P Kn, on dit que

n
ř

i“1
λiei est une combinaison linéaire de la famille pe1, e2, . . . , enq.

‚ On appelle espace vectoriel engendré par pe1, e2, . . . , enq l’ensemble de toutes les combinaisons linéaires
de pe1, e2, . . . , enq. On note vect pe1, e2, . . . , enq cet ensemble :

vect pe1, e2, . . . , enq “

#

x P E | D pλ1, λ2, . . . , λnq P Kn, x “

n
ÿ

i“1
λiei

+

“

#

n
ÿ

i“1
λiei où pλ1, λ2, . . . , λnq P Kn

+

Définition d’une combinaison linéaire et de l’espace vectoriel engendré

Remarques 5. ‚ vectpe1, . . . , enq a été défini par compréhension et par paramétrage.
‚ x P vect pe1, e2, . . . , enq ssi il existe pλ1, λ2, . . . , λnq P Kn tel que x “

n
ř

k“1
λkek.

Exemples 4. ‚ Dans E “ R3, donner plusieurs combinaisons linéaires de u “ p1, 2, 3q et v “ p2, 2, 2q.
‚ Si e1 ‰ 0E , vectpe1q est une droite vectorielle de E.
‚ Si e1 et e2 sont non nuls et que e2 n’est pas colinéaire à e1, alors vectpe1, e2q est un plan vectoriel.
‚ Pour E “ RrXs, déterminer vectp1, Xq.
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Soient pe1, e2, . . . , enq une famille finie de vecteurs de E et F “ vect pe1, e2, . . . , enq.
F est un SEV de E.1. Pour tout i P rr 1 ; n ss, ei P F .2.
F est le plus petit SEV de E (au sens de l’inclusion) à contenir tous les ei pour i P rr 1 ; n ss :
Si H est un sous-espace vectoriel qui contient tous les ei, alors F Ă H.

3.

Proposition no 4 : l’espace engendré est un espace vectoriel

Démonstration de la proposition no 4 :
1. ‚ F Ă E (ensemble défini par compréhension)

‚ Pour tout i P rr 1 ; n ss, posons λi “ 0 : Ainsi, 0E “
n
ř

i“1
λei est une combinaison linéaire de pe1, e2, . . . , enq, dès lors

0E P vect pe1, e2, . . . , enq.

‚ Soient px, yq P F 2 et α P K. Il existe pλ1, λ2, . . . , λnq P Kn et pµ1, µ2, . . . , µnq P Kn tel que x “
n
ř

i“1
λiei et y “

n
ř

i“1
µiei

Alors :

αx ` y “ α
n
ÿ

i“1

λiei `

n
ÿ

i“1

µiei “

n
ÿ

i“1

αλiei `

n
ÿ

i“1

µiei “

n
ÿ

i“1

pαλi ` µiqei P vect pe1, e2, . . . , enq

Ceci prouve que vect pe1, e2, . . . , enq est un SEV de E.

2. Si j P rr 1 ; n ss, alors ej “
n
ř

i“1
δi,jei P vect pe1, e2, . . . , enq. Ainsi, vect pe1, e2, . . . , enq est un SEV de E qui contient tous les ei.

3. Montrons que c’est le plus petit SEV de E, au sens de l’inclusion, qui contient tous les ei. Soit H un SEV de E qui contient tous
les ei. Montrons que vect pe1, e2, . . . , enq Ă H. Soit x P vect pe1, e2, . . . , enq, il existe pλ1, λ2, . . . , λnq P Kn tel que x “

n
ř

i“1
λiei.

Or, ei P H, et H est un SEV de E, ainsi, par combinaison linéaire, x P H. Ainsi, vect pe1, e2, . . . , enq Ă H. Par conséquent,
pour tout H, SEV de E qui contient les ei, on a vect pe1, e2, . . . , enq Ă H. ■

Remarques 6. ‚ Soit i P rr 1 ; n ss, si ei P vectpe1, . . . , ei´1, ei`1, . . . , enq, alors ce vecteur ne sert à rien dans l’espace
vectoriel engendré : vect pe1, e2, . . . , epq “ vectpe1, . . . , ei´1, ei`1, . . . , epq.

‚ Pour montrer que F est un SEV de E, il suffit de trouver des ei P E tel que F “ vect pe1, e2, . . . , enq.

Exemples 5. 1. Montrer que F “

"ˆ

a b
b c

˙

, pa, b, cq P C3
*

est un sous-espace vectoriel de M2pCq.

2. Montrer que F “
␣

y P RR | y est deux fois dérivable et y2 ` y “ 0
(

est un sous-espace vectoriel de RR.
Solution des exemples 5 :

1. Posons A “

ˆ

1 0
0 0

˙

, B “

ˆ

0 1
1 0

˙

et C “

ˆ

0 0
0 1

˙

. Alors,

vectpA, B, Cq “ taA ` bB ` cC | pa, b, cq P C3
u “

"ˆ

a b
b c

˙

| pa, b, cq P C3
*

“ F

est un SEV de M2pCq.
2. F “

␣

x ÞÑ A cospxq ` B sinpxq | pA, Bq P R2(
“

␣

A cos `B sin | pA, Bq P R2(
“ vectpcos, sinq est un SEV de RR. ■

4 Propriétés des familles finies d’un espace vectoriel

4.1 Famille libre

Remarque 7. Soit F “ pe1, e2, . . . , enq une famille de E, si pour tout i P rr 1 ; n ss, λi “ 0, alors
n
ř

i“1
λiei “ 0E .

Soit L “ pe1, e2, . . . , enq une famille finie de E, on dit que la famille L est libre, si il y a une seule façon d’écrire
le vecteur nul comme combinaison linéaire de vecteurs de L . Autrement dit si

@ pλ1, λ2, . . . , λnq P Kn

˜

n
ÿ

i“1
λiei “ 0E ùñ @i P rr 1 ; n ss λi “ 0

¸

Si L est libre, on dit aussi que les vecteurs e1, . . ., en sont linéairement indépendants, si L n’est pas libre, on
dit qu’elle est liée.

Définition d’une famille libre
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Exemples 6. 1. Soit u “ p1, 2, 3q et v “ p1, 1, 1q et w “ p1, 1, 10q, montrer que F “ pu, v, wq est une famille libre
de R3.

2. La famille p1, iq est-elle libre dans C vu comme un R-EV ? Et vu comme C-EV ?
3. La famille F “ pp1, 1, 1q, p1, 0, 0q, p4, 1, 1qq n’est pas libre.

Remarques 8. 1. La famille F “ pe1, e2, . . . , enq est liée si et seulement si il existe i0 P rr 1 ; n ss tel que ei0 P

vectpe1, . . . , ei0´1, ei0`1, . . . , enq. Ainsi, une famille F est liée si et seulement si il existe un vecteur de F qui est une
combinaison linéaire des autres vecteurs de F .

2. Si F “ pe1, e2, . . . , enq et qu’il existe i P rr 1 ; n ss tel que ei “ 0E , alors la famille F est liée.
3. Si puq est une famille de un vecteur de E, alors puq est libre si et seulement si u ‰ 0E .
4. Si pu, vq est une famille de deux vecteurs de E, alors, pu, vq est libre si et seulement si u et v ne sont pas colinéaires.

Si pour tout i ‰ j, ei et ej sont non colinéaires, cela n’implique pas forcément que F “ pe1, e2, . . . , enq est
libre. En effet, la famille pp1, 1, 1q, p1, 0, 0q, p4, 1, 1qq est liée.

Attention cela ne se généralise pas à plus de deux vecteurs

Justification des remarques 8 :
1.
2.
3. Si u “ 0E , alors, par le point précédent, la famille puq est liée. Par contraposée, on en déduit que puq est libre implique que

u ‰ 0E . Réciproquent, supposons u ‰ 0E . Soit λ1 P K, supposons que λ1u “ 0E . Comme u ‰ 0E , d’après la proposition 1, on
en déduit que λ1 “ 0, donc puq est libre.

4. Supposons u et v colinéaires, cela veut dire qu’il existe λ P K tel que u “ λv ou v “ λu, si u “ λv, alors 1 ¨ u ´ λv “ 0E ,
comme 1 ‰ 0, on en déduit que la famille pu, vq est liée. Si v “ λu, alors ´λu ` 1v “ 0E , comme 1 ‰ 0, on en déduit que la
famille pu, vq est liée. Ainsi, on a montré que u et v colinéaires implique que pu, vq est liée. Par contraposée, si pu, vq est libre,
alors u et v ne sont pas colinéaires.
Réciproquement, supposons que u et v ne soient pas colinéaires. Montrons que pu, vq est libre. Soit pλ1, λ2q P K2. Supposons
que λ1u ` λ2v “ 0E . Si λ1 ‰ 0, alors u “

´λ2

λ1
v et donc u et v sont colinéaires, ce qui est absurde, donc λ1 “ 0, et donc

λ2v “ 0E , si λ2 ‰ 0, alors v “ 0E mais alors v “ 0u et u et v sont colinéaires, ce qui est absurde, donc λ2 “ 0. On peut donc
en conclure que λ1 “ λ2 “ 0,ainsi la famille pu, vq est libre.

Remarque 9. Une famille L “ pe1, e2, . . . , enq est libre si et seulement si pour tout x P vectpL q, il existe un unique
pλ1, λ2, . . . , λnq P Kn tel que x “

n
ř

i“1
λiei.

Justification de la remarque 9 : Supposons que L “ pe1, e2, . . . , enq soit libre. Soit x P vectpL q, alors par définition de vectpL q,

il existe pλ1, λ2, . . . , λnq P Kn tel que x “
n
ř

i“1
λiei Soit pµ1, µ2, . . . , µnq P Kn tel que x “

n
ř

i“1
µiei, donc

n
ř

i“1
λiei “

n
ř

i“1
µiei, donc, par

linéarité de la somme,
n
ř

i“1
pλiei ´ µieiq “ 0E , ainsi,

n
ř

i“1
pλi ´ µiqei “ 0E , comme L est libre, on en déduit que pour tout i P rr 1 ; n ss,

λi ´ µi “ 0 donc, pour tout i P rr 1 ; n ss, λi “ µi. Ceci démontre que pour tout x P vectpL q, il existe un unique pλ1, λ2, . . . , λnq P Kn

tel que x “
n
ř

i“1
λiei.

Réciproquement, supposons que tout x P vectpL q, il existe un unique pλ1, λ2, . . . , λnq P Kn tel que x “
n
ř

i“1
λiei. Soit

pλ1, λ2, . . . , λnq P Kn, supposons que
n
ř

i“1
λiei “ 0E . Or, on sait aussi que

n
ř

i“1
0ei “ 0E . Par unicité de la décomposition de x “ 0E ,

on peut en conclure que pour tout i P rr 1 ; n ss, λi “ 0. Ainsi, la famille L est libre.

Exemple 7. Cela permet d’identifier : si ma⃗ “ F⃗ et a⃗ “ axx⃗ ` ay y⃗, F⃗ “ Fxx⃗ ` Fy y⃗, alors max “ Fx et may “ Fy.

Solution de l’exemple 7 : En effet, dans ce cas, en développant par m, on a maxx⃗ ` may y⃗ “ Fxx⃗ ` Fy y⃗, or px⃗, y⃗q est une famille
libre, ainsi max “ Fx et may “ Fy.

Si L est une famille finie de polynômes non nuls de KrXs de degrés deux à deux distincts, alors L est libre.
Théorème no 1 : famille de polynômes de degrés deux à deux distincts est libre
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Démonstration du théorème no 1 : Quitte à renuméroter les polynômes, on suppose que L “ pP1, P2, . . . , Pnq avec

0 ď d˝P1 ă d˝P2 ă . . . ă d˝Pn

Soit pλ1, λ2, . . . , λnq P Kn. Supposons que
n
ř

k“1
λkPk “ 0. Montrons que pour tout k P rr 1 ; n ss, λk “ 0. Supposons (par l’absurde)

qu’il existe k P rr 1 ; n ss tel que λk ‰ 0. Posons d “ max tk P rr 1 ; n ss | λk ‰ 0u (ensemble fini et non vide, donc le maximum est bien
défini). Ainsi, pour k P rr 1 ; n ss, si λk ‰ 0 alors k ď d. Par contraposée, si k ą d alors λk “ 0. Dès lors, en coupant la somme en
trois :

0 “

d´1
ÿ

k“1

λkPk ` λdPd `

n
ÿ

k“d`1

λk
loomoon

“0

Pk “

d´1
ÿ

k“1

λkPk ` λdPd ` 0

Donc λdPd “ ´
d´1
ř

k“1
λkPk. En passant au degré, on obtient

d˝Pd “
λd‰0

d˝
pλdPdq ď max

kPrr 1 ; d´1 ss
d˝λkPk ď d˝Pd´1

Ceci est absurde, ainsi, pour tout k P rr 1 ; n ss, λk “ 0, ainsi L est libre. ■

4.2 Famille génératrice

Soit G “ pe1, e2, . . . , enq une famille de vecteurs de E. On dit G est génératrice de E (ou engendre E) si

@x P E D pλ1, λ2, . . . , λnq P Kn tel que x “

n
ÿ

i“1
λiei

Définition d’une famille génératrice

Exemples 8. 1. Montrer que F1 “ p1, X2 ` X, X ` 1q est une famille génératrice de R2rXs. Est-elle libre ?
2. Montrer que F2 “ pp1, 0, 0q, p0, 1, 0q, p0, 0, 1qq est une famille génératrice de R3. Est-elle libre ?
3. Montrer que F3 “ pE1,1, E1,2, E2,1, E2,2q est une famille génératrice de M2pKq (où Ea,b P M2pKq est la matrice

contenant que des 0, sauf un 1 à la ligne a et colonne b). Est-elle libre ?

Solution des exemples 8 :
1. Soit P “ aX2

` bX ` c P R2rXs. Alors,

P “ apX2
` Xq ` pb ´ aqX ` c “ a ˆ pX2

` Xq ` pb ´ aq ˆ pX ` 1q ` pc ´ b ` aq ˆ 1

Ainsi, F1 est une famille génératrice de R2rXs.
2.
3.

Remarques 10. 1. La famille G est une famille génératrice de E si et seulement si E “ vectpG q.
2. La famille G est nécessairement génératrice de vectpG q.

4.3 Bases

Soit B une famille finie de E. On dit que B est une base si B est à la fois libre et génératrice de E.

Définition d’une base

Ainsi, B “ pe1, e2, . . . , enq est une base de E ssi @x P E D! px1, x2, . . . , xnq P Kn x “
n
ř

k“1
xkek

On dit que les xk sont les coordonnées de x dans la base B.

Au programme de BCPST, les familles libres, génératrices et les bases sont toujours des familles finies.
Attention : il faut une famille finie
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1. p1, X, . . . , Xnq est une base de KnrXs, appelée base canonique de KnrXs.
2. pe1, . . . , enq est une base de Kn, appelée base canonique de Kn, où ei “ p0, . . . , 0, 1, 0, . . . , 0q pour 1 ď i ď n.
3. pEa,bq1ďaďn

1ďbďp
est une base de Mn,ppKq, appelée base canonique de Mn,ppKq

Exemple de bases importantes (à connaître)

Exemples 9. ‚ Montrer que pp1, 1, 1q, p1, 0, 0q, p0, 1, 0qq est une base de R3 (ce n’est pas la base canonique de R3).
‚ Donner une base de C vu comme un R-espace vectoriel. Puis vu comme un C-espace vectoriel.

La matrice dont la j-ième colonne contient les coordonnées de uj dans la base B “ pe1, e2, . . . , enq est appelée

matrice de la famille F “ pu1, u2, . . . , upq dans la base B : @j P rr 1 ; q ss D!pa1,j , . . . , an,jq P Kn uj “
n
ř

i“1
ai,jei.

MatBpF q “ MatB pu1, u2, . . . , uqq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

u1 uj uq

a1,1 a1,j a1,q e1
a2,1 a2,j a2,q e2

ai,1 ai,j ai,q ei

an,1 an,j an,q en

˛

‹

‹

‹

‹

‹

‹

‹

‚

P Mn,qpKq

Définition de la matrice d’une famille de vecteurs dans une base

Exemples 10. ‚ Pour E “ R3rXs, B la base canonique de E, et F “ pX3 ` 2, X2 ` 1, 4q, que vaut MatBpF q ? Si

MatBpF 1q “

¨

˚

˚

˝

1 2
0 1
1 1
0 1

˛

‹

‹

‚

, que vaut F 1 ?

‚ Si F “ R2 et C la base canonique de F , F2 “ pp1, 1q, p2, 3q, p1, ´2qq que valent MatC pF2q et MatC pC q ?

5 Construction de la théorie de la dimension finie
Remarque 11. La dimension ne peut pas être définie comme le nombre d’éléments de E, car E est un ensemble infini.

On dit que E est un espace vectoriel de dimension finie si E possède une famille génératrice (finie).
Sinon, on dit que E est un espace vectoriel de dimension infinie.

Définition d’un espace vectoriel de dimension finie

Kn, C vu comme un C-EV ou un R-EV, KnrXs, Mn,ppKq sont de dimension finie, contrairement à KrXs.
Exemple d’espaces vectoriels de dimension finie ou de dimension infinie

Lemme 1. Soient L une famille libre de E et x P E. Alors, L Y pxq est libre si et seulement si x R vectpL q.

Démonstration du lemme 1 : Notons L “ pe1, e2, . . . , enq. Supposons que x P vectpL q, alors il existe pλ1, λ2, . . . , λnq P Kn tel

que x “
n
ř

k“1
λkek, alors

n
ř

k“1
λk ` λn`1x “ 0E avec λn`1 “ ´1 ‰ 0 de sorte que L Y pxq est liée. Par contraposée, si L Y pxq est

libre, alors x R vectpL q.
Supposons x R vectpL q. Montrons que L Y pxq “ pe1, . . . , en, xq est libre. Soit pλ1, λ2, . . . , λn`1q P Kn`1. Supposons que

n
ř

k“1
λkek ` λn`1x “ 0E , si λn`1 ‰ 0, alors x “

n
ř

k“1

´λk

λn`1
ek P vectpL q ce qui est impossible, donc λn`1 “ 0 donc

n
ř

k“1
λkek “ 0E . Or,

L est libre, donc pour tout k P rr 1 ; n ss, λk “ 0. Dès lors, pour tout k P rr 1 ; n ` 1 ss, λk “ 0, la famille L Y pxq est libre.
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Lemme 2. Si G engendre E et G 1 est une famille telle que G Ă vectpG 1q, alors G 1 engendre aussi E.
Démonstration du lemme 2 : Supposons que G “ pe1, e2, . . . , enq soit une famille génératrice et que G 1 soit une autre famille
telle que G Ă vectpG 1

q. Montrons que G 1 est une famille génératrice de E. Soit x P E, alors, comme G engendre E, il existe

pλ1, λ2, . . . , λnq P Kn tel que x “
n
ř

k“1
λkek. Or, pour tout k P rr 1 ; n ss, ek P vectpG 1

q par hypothèse, comme vectpG 1
q est un espace

vectoriel, on en déduit, par stabilité par combinaison linéaire que x P vectpG 1
q. Ainsi, G 1 est une famille génératrice de E.

Soit E un K-EV de dimension finie. Soit L une famille libre de E, il existe B base de E telle que L Ă B.
Théorème no 2 de la base incomplète (admis)

Soit E un K-EV de dimension finie. Soit G une famille génératrice de E, il existe B base de E telle que B Ă G .
Théorème no 3 de la base extraite (admis)

Démonstration du théorème de la base extraite et du théorème de la base incomplète : On va démontrer le théorème
de la base extraite et celui de la base incomplète en même temps. Soit G une famille génératrice de E. Et L une famille libre de E.
Notons :

C “ tCardpF q vérifiant L Ă F Ă L Y G et F famille libre de Eu

Comme CardpL q P C, C ‰ H, C est majorée par CardpL Y G q. Elle admet donc un plus grand élément p P N. Soit B “

pe1, e2, . . . , epq une famille libre de E de cardinal p telle que L Ă B Ă L Y G . Montrons que B est une base. Elle est libre.
Montrons qu’elle est génératrice : Soit g P G , supposons que g R vectpBq. La famille B1

“ pe1, . . . , ep, gq est alors libre d’après le
lemme 1. De plus, on a L Ă B1

Ă L Y G . Ainsi p ` 1 P C, donc, p ` 1 ď maxpCq “ p, ce qui est absurde, donc g P vectpBq. Ainsi,
G Ă vectpBq, par le lemme 2, B est génératrice de E. Donc c’est une base de E.

Comme B est une base de E et que L Ă B cela démontre le théorème de la base incomplète.
Prenons maintenant L “ H (famille libre), alors, par ce qu’il précède, il existe une base B de E tel que L Ă B Ă L Y G “ G

et donc cela démontre le théorème de la base extraite.

Remarque 12. Grâce au théorème de la base incomplète ou à celui de la base extraite, un espace vectoriel de dimension
finie possède au moins une base mais il n’y a pas unicité des bases.

Soit E un K-EV de dimension fine. Si les familles L , B, G sont respectivement libre, base, et génératrice alors

CardpL q ď CardpBq ď CardpG q

Proposition no 5 : comparaison entre les cardinaux des familles libres, génératrices et des bases

Démonstration de la proposition no 5 : Notons n “ CardpG q et p “ CardpL q. Posons, pour k P rr 0 ; p ss :

Ppkq : «DLk Ă L DGk Ă G telles que Lk Y Gk soit génératrice et CardpLkq “ k et CardpGkq “ n ´ k »

‚ Initialisation : posons L0 “ H et G0 “ G , alors Pp0q est vraie.
‚ Hérédité : soit k P rr 0 ; p ´ 1 ss. Supposons Ppkq vraie. Soient Lk “ pv1, v2, . . . , vkq et Gk “ pg1, g2, . . . , gn´kq vérifiant Ppkq.

Le but est d’ajouter un élément à Lk et d’en retirer un Gk. Comme CardpLkq “ k ă p “ CardpL q, il existe un élément
vk`1 P L zLk, alors vk`1 P E “ vectpLk Y Gkq :

Dpµiq1ďiďk P Kk
Dpλiq1ďiďn´k P Kn´k vk`1 “

k
ÿ

i“1

µivi `

n´k
ÿ

i“1

λigi

Or, il existe un λi ‰ 0 (par l’absurde : L est libre), prouvant que n ´ k ě 1. Quitte à changer la numérotation, on suppose
que λn´k ‰ 0, alors

gn´k “
1

λn´k

˜

vk`1 ´

k
ÿ

i“1

µivi ´

n´k´1
ÿ

i“1

λigi

¸

P vectppv1, v2, . . . , vk`1q Y pg1, g2, . . . , gn´k´1qq

Posons Lk`1 “ pv1, v2, . . . , vk`1q et Gk`1 “ pg1, g2, . . . , gn´k´1q, alors Lk Y Gk Ă vectpLk`1 Y Gk`1q, en appliquant le
lemme 2, Lk`1 Y Gk`1 engendre E. Ainsi Ppk ` 1q est vraie.

‚ Conclusion : par principe de récurrence, Ppkq est vraie pour k P rr 0 ; p ss.
Alors, on a Pppq vraie, et donc CardpGpq “ n ´ p ě 0 donc p ď n. Ainsi, si L est libre et B est une base, comme B est génératrice,
CardG ď CardB, si B est une base et G est génératrice, alors comme B est libre, CardB ď CardG , en rassemblant ces deux
inégalités, CardL ď CardB ď CardG . ■

Si E est un K-EV de dimension finie, toutes les bases de E ont le même cardinal.
Théorème no 4 : toutes les bases ont le même cardinal
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Démonstration du théorème no 4 : Soient B et B1 deux bases de E. Alors B est libre et B1 est une famille génératrice, donc
d’après la proposition 5, CardpBq ď CardpB1

q. De plus, B1 est libre et B est une famille génératrice, en utilisant encore une fois la
proposition 5, il s’ensuit que CardpB1

q ď CardpBq. Par double inégalité, CardpBq “ CardpB1
q. ■

Soient E un K-EV de dimension finie et B une base de E. On définit la dimension de E, par dimpEq “ CardpBq.

Définition de la dimension d’un espace vectoriel de dimension finie

Remarque 13. La dimension d’un espace vectoriel E s’interprète comme le nombre de degrés de liberté de E.
Si E “ t0Eu, on pose dimpEq “ 0, si E n’est pas de dimension finie, on dit que la dimension de E est infinie.

dimpKnq “ dimCpCq “ dimRpCq “ dimpMn,ppKqq “ dimpKnrXsq “

Exemples de dimensions importantes à connaître

La dimension de MnpRq est n2 (et non n), de même attention à la dimension de RnrXs.
Attention à la dimension de deux espaces vectoriels

Exemple 11. Soit F “

"

px, y, z, tq P R4 |

"

x ` 2y ` z “ 0
2x ´ t “ 0

*

. Déterminer une base de F et en déduire dimpF q.

Exemple 12. Si E est de dimension n, alors toute famille de n ` 1 vecteurs (ou plus) est liée.

Soient E un K-EV de dimension finie, et F une famille finie de vecteurs de E telle que CardpF q “ dimpEq. Alors,

F est une base de E ssi F est une famille génératrice de E ssi F est une famille libre.

Proposition no 6 : caractérisation des bases avec le cardinal

Démonstration de la proposition no 6 :
‚ Si F est une base alors elle est libre et génératrice.
‚ Si F est une famille génératrice, d’après le théorème de la base extraite, il existe B base de E incluse dans F . Donc B Ă F

et CardpBq “ CardpF q donc F “ B est une base de E.
‚ Si F est une famille libre, alors d’après le théorème de la base incomplète, il existe une base B telle que F Ă B et

CardpF q “ n “ CardpBq. Donc F “ B est une base de E. ■

Exemples 13. 1. Montrer que B “ pp1, 1, 0q, p2, 1, 0q, p5, 1, 1qq est une base de R3.
2. Soit F “ pp1, 1, 1q, p2, 1, 3q, p3, 2, 4q, p´1, 0, 3qq, extraire de cette famille une base de R3.

3. Soit L “

ˆ

I2,

ˆ

2 0
0 1

˙˙

, compléter cette famille libre en une base de M2pRq.

4. Si F “ pP0, P1, . . . , Pnq P KrXsn`1 telle que pour tout i P rr 0 ; n ss, d˝Pi “ i, alors F est une base de KnrXs.

6 Sous-espaces vectoriels d’un espace vectoriel de dimension finie

6.1 Dimension d’un sous-espace vectoriel

Soient E un EV de dimension finie et F un SEV de E, alors :
F est de dimension finie1. dimpF q ď dimpEq2. E “ F ðñ dimpEq “ dimpF q3.

Proposition no 7 : dimension d’un sous-espace vectoriel (admise)
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Démonstration de la proposition no 7 :
‚ Si F “ t0Eu, il n’y a rien à faire. Sinon, on note C “ tCardpF q, F famille libre de F u, C est non vide, et si F est une

famille libre de F , alors F est une famille libre de E, donc CardpF q ď dimpEq prouvant que C est majorée. Soit F une
famille libre de F tel que CardpF q “ max C. Montrons que F est génératrice de F . Soit f P F , supposons f R vectpF q, alors
en vertu du lemme 1, F Y tfu est une famille libre. Contredisant le maximum de C, donc f P vectpF q. Donc F Ă vectpF q.
De plus, vectpF q Ă F . Donc vectpF q “ F , ainsi F est une base de F .

‚ Comme F est de dimension finie, il existe B “ pf1, f2, . . . , fpq une base de F , comme c’est une famille libre de F et donc
de E. Ainsi dimpF q “ CardpBq ď dimpEq en vertu de la proposition 5.

‚ Si E “ F , alors dimpEq “ dimpF q. Réciproquement, supposons dimpEq “ dimpF q. Soit B “ pf1, f2, . . . , fpq une base de F ,
c’est une famille libre de F et donc de E. De plus, CardpBq “ dimpF q “ dimpEq. Donc d’après la proposition 5, B est une
base de E. Donc E “ vectpBq “ F . Donc E “ F . ■

Soit E un espace vectoriel de dimension finie n. Soit F un sous-espace vectoriel de E :
‚ Si dimpF q “ 1, alors on dit que F est une droite (vectorielle) de E.
‚ Si dimpF q “ 2, alors on dit que F est un plan (vectoriel) de E.

Exemples de sous-espaces particuliers

Exemple 14. Si E “ R3 et F “ tpx, y, zq P R3, x ` y ´ 2z “ 0u, donner dimpF q.

6.2 Rang d’une famille de vecteurs

Soit F une famille finie de vecteurs de E, on appelle rang de F : rgpF q “ dimpvectpF qq

Définition du rang d’une famille finie de vecteurs

La dimension c’est pour les EV. Le rang et le cardinal sont pour les familles finies de vecteurs.
Attention à ne pas confondre dimension, rang et cardinal

Exemple 15. Soit E “ R3, notons e1 “ p1, 1, 1q, e2 “ p2, 1, 1q et e3 “ p4, 3, 3q. Former des phrases justes utilisant les
mots dimension, rang et cardinal et la famille F “ pe1, e2, e3q.

Soient E un EV de dimension finie n et F “ pe1, e2, . . . , epq une famille de vecteurs de E. Alors :
rgpF q ď minpp, nq.1. F engendre E SSI rgpF q “ n.2. F est libre SSI rgpF q “ p.3.
Soit i P rr 1 ; p ss, et F 1 “ pe1, . . . , ei´1, ei`1, . . . , epq, si ei P vectpF 1q alors rgpF q “ rgpF 1q.4.
rgpF q “ rgpMatBpF qq où B est une base de E.5.
rgpF q est le nombre maximum de vecteurs de F linéairement indépendants.6.

Proposition no 8 : propriétés du rang

Démonstration de la proposition no 8 : Posons F “ vectpF q “ vect pe1, e2, . . . , epq de sorte que dimpF q “ rgpF q.
1. Comme F est une famille génératrice de F , on a dimpF q ď CardpF q, soit rg pe1, e2, . . . , epq ď p. Comme F “ vectpF q est un

SEV de E, on a dimpF q ď dimpEq soit rg pe1, e2, . . . , epq ď n. Ainsi, rg pe1, e2, . . . , epq ď minpp, nq.
2. Si F est une famille génératrice de E, alors vectpF q “ E donc dimpvectpF qq “ dimpEq “ n donc rgpF q “ n. Si rgpF q “ n,

alors dimpF q “ n “ dimpEq avec F SEV de E donc F “ E, ainsi, vectpF q “ E donc F est une famille génératrice de E.
3. Si F est libre, alors F est une base de F “ vectpF q, dès lors CardpF q “ dimpF q soit p “ rgpF q. Si rgpF q “ p, alors F

est une famille génératrice de vectpF q avec CardpF q “ p “ rgpF q “ dimpvectpF qq ainsi, F est une base de vectpF q par
conséquent, F est libre.

4. Posons F 1
“ F zpeiq “ pe1, e2, . . . , ei´1, ei`1, . . . , enq. Si ei P vectpF 1

q, alors comme F Ă vectpF 1
q, en appliquant le lemme 2,

la famille F 1 engendre F , ainsi, rgpF q “ dimpF q “ dimpvectpF 1
qq “ rgpF 1

q.
5. Admis provisoirement.
6. Soit L une famille libre incluse dans F , alors CardpL q ď dimpvectpF qq “ rgpF q. Comme F est une famille génératrice,

d’après le théorème de la base extraite, il existe B Ă F une base de F , alors rgpF q “ dimpvectpF qq “ CardpBq. ■

Exemple 16. Calculer le rang de pP1, P2, P3, P4, P5q, avec P1 “ X2, P2 “ X2 ` 1, P3 “ 5X2 ` 1, P4 “ P1, P5 “ 2P1
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7 Méthodes

M1 Montrer que E un sous-espace vectoriel d’un espace vectoriel de référence (voir méthode suivante).
M2 Reconnaître que E est un espace vectoriel de référence.
M3 Montrer que E respecte la définition (rare et long).

Comment montrer que E est un espace vectoriel ?

M1 Montrer que F Ă E 0E P F @pa, bq P F 2 @λ P K a ` λb P F .
M2 F “ vect pe1, e2, . . . , enq où ei P E.
M3 Écrire F “ Kerpφq en introduisant φ une application linéaire définie sur E.
M4 F s’écrit comme intersection de SEVs de E.

Comment montrer que F est un sous-espace vectoriel de E ?

Écrire «Soit pλ1, λ2, . . . , λnq P Kn, supposons
n
ř

i“1
λiei “ 0E», et montrer que pour tout i, λi “ 0 (système à

résoudre souvent).

Quelle est la méthode standard pour montrer que pe1, e2, . . . , enq est libre ?

«Soit x P E» puis trouver pλ1, λ2, . . . , λnq P Kn tel que x “
n
ř

i“1
λiei (système à résoudre, ou analyse-synthèse).

Comment montrer que pe1, e2, . . . , enq est génératrice ?

M1 Montrer qu’elle est libre et génératrice.
M2 Montrer que B est libre et vérifier CardpBq “ dimpEq. (utile si dimpEq est connue)
M3 Montrer que B est génératrice et vérifier CardpBq “ dimpEq. (utile si dimpEq est connue)

Comment montrer qu’une famille est une base ?

M1 On trouve une famille génératrice.
M2 On montre qu’il est inclus dans un autre espace vectoriel de dimension finie.

Comment montrer qu’un espace vectoriel est de dimension finie ?

Montrer dimpF q “ dimpGq et F Ă G.
Comment, en dimension finie, montrer que F et G deux sous-espaces vectoriels sont égaux ?

Compter le nombre d’éléments dans une de ses bases.
Comment calculer la dimension d’un espace vectoriel ?

M1 Si on a une famille libre, rajouter petit à petit des vecteurs de façon à rester libre. Dès que la famille a
dimpEq d’éléments, on a une base.

M2 Si on a une famille génératrice, retirer petit à petit des vecteurs qui s’écrivent comme combinaison linéaire
des autres vecteurs. Dès que la famille a dimpEq d’éléments, on a une base.

Comment construire une base de E ?
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M1 Pour calculer rg pe1, e2, . . . , enq, retirer un vecteur de la famille s’il est combinaison linéaire des autres. Puis
continuer de retirer des vecteurs que l’on peut exprimer comme combinaison linéaire des autres. S’arrêter,
dès qu’on obtient une famille libre, le rang est alors égal au nombre de vecteurs qui restent.

M2 Se fixer une base B, alors rg pe1, e2, . . . , enq “ rgpMatB pe1, e2, . . . , enqq puis échelonner cette matrice pour
déterminer son rang.

Comment calculer le rang d’une famille de vecteurs ?

8 Carte mentale pour étudier la liberté d’une famille

F “ pe1, . . . , enq

libre ou liée ?
Avec la

dimension

n ą

dimpEq

ùñ liée

libre ðñ

rgpF q “ n

Dans KrXs,
F “

pP1, . . . , Pnq 0E R F
@i ‰ j,
d˝Pi ‰

d˝Pj

ùñ libre

Dans Rn

F orthogo-
nal et 0E R

F ùñ

libre
F ortho-
normée

ùñ libre

Si F “ pe1q

libre ðñ

e1 ‰ 0E

Si F “

pe1, e2q

libre ssi e1
et e2 non
colinéaires

0E P F
ùñ liée liée ðñ

Di ei “
ř

k‰i

λkek
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