(% Chapitre 6

Espaces vectoriels

Objectifs :
Définir la notion d’espaces vectoriels. A la facon de monsieur Jourdain, vous utilisiez déja des exemples espaces vectoriels
sans le savoir. L’étude de la notion d’espace vectoriel permet d’étudier tous ces exemples en méme temps.
Prérequis :
e Ensembles et applications
e Systemes linéaires
e Matrices
e Polynémes
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Dans tout ce qui suit, K désigne R ou C et n un entier non nul.

1 Définition des espaces vectoriels

Avant de donner la définition d’un espace vectoriel, regardons quelques exemples :

1. Soient x = (z1,22,...,2,) € R" et y = (y1,¥2,...,Yn) € R, on les somme : x +y = (1 + Y1,.-.,Tn + Yn). On

multiplie aussi « par A€ R : A2 = (Ax1, A2, ..., Axy,)
z+y 2-a
240 r
A
y R v Y 1 g N
X X Xz e €T +y
/// y
0*
(a) (1,1) + (0,1) = (1,2) (b)2-(1,1) =(2,2) ()Z+y=9+7 (d) &+ 0=2 (ﬂe) 1l existe ¢ tel que T+ =
0

FIGURE 1 — Les vecteurs de R? représentés avec des fleches. Et quelques propriétés sur les vecteurs.

2. De méme, étant donnés deux polynomes P et @ € K[X] et A € K, on obtient P + @ € K[X] et AP € K[ X].
I —R I —R
eRl et \f: e R!

3. Soient deux fonctions (f,g) € (R’)? et A € R, on pose f +g:
T

z— f(z) +g(x)
4. Soient (A, B) € My, ,(K)? et A€ K, alors A + B € M, ,(K) et NA € 4, ,(K).

Remarque 1. Dans la suite, la notion d’espace vectoriel généralise ces exemples. Ainsi, R", K[X], Z#(I,R), 4, ,(K)
etc. seront des espaces vectoriels, les éléments de ces ensembles seront appelés des vecteurs.

o
Déﬁnition d’un espace vectoriel

On appelle K-espace vectoriel un ensemble F muni de deux opérations + et - vérifiant :

1. L’addition dite interne, pour tout (x,y) € E? x + y € E vérifiant :

(a) V(z,y) € E? r+y=y+z (laddition de vecteurs est commutative)
(b) V(z,y,2) € B> (z+y)+z=a+ (y+2) (Paddition de vecteurs est associative)
(¢c) 0geE VreE r+0g ==z (il existe un vecteur nul noté Og)
(d) Vee E JyeE x+y=0g (tout vecteur z admet un vecteur opposé y).

2. La multiplication dite externe, pour tout A\e Ket x € E, A-x € E, vérifiant :

(a) Ve E l-z=x (multiplier un vecteur par 1 ne change pas le vecteur
(b) Y\, u) eK? VaxeFE A(p-z)=Axup)z (pseudo-associativité
(c) VO, u)eK?2 VzeE A+p)-z=Xz+pu-zx (pseudo-distributivité de - par rapport a +
(d) VAe K VY(z,y) e E? Alz+y)=A-z+Ay (distributivité de - par rapport +

Les éléments de F sont alors appelés vecteurs de E, Op est appelé vecteur nul de E.

Remarque 2. Voila une définition particulierement rebutante. L’important est surtout de comprendre ce que ¢a veut
dire. Que faites-vous avec des vecteurs? Les additionner ensemble, et les multiplier par un scalaire. Cette définition n’est
que la formalisation de cette idée avec tout un tas d’exigences raisonnables, par exemple :
e Le point la exige seulement que lorsqu’on ajoute deux vecteurs 'ordre n’intervient pas.
e Le point 1c exige juste qu’il existe un vecteur nul.
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Q@ Exemples classiques d’espaces vectoriels A
Les ensembles suivants sont des [K-espaces vectoriels :
I. K" (i.e. R™ est un R-espace vectoriel et C™ est un C-espace vectoriel)
II. K[X]
III. A, ,(K) (Pensemble des matrices de n lignes et p colonnes a coefficients dans K)
\ IV. KI = Z(I,KK) ot I est un ensemble non vide (Pensemble des applications de I dans K)j

Démonstration que ce sont des espaces vectoriels :

I. Si E = K", alors les applications suivantes sont bien définies :

{ K™ x K" — K" { K x K" —s K"
et
((x1,x2,...,mn),(yl,yg,...7yn)) — (1'1 +y17"'7$’ﬂ +y”7«) ()‘7 (mhI??"'?w”)) — (AIl,...,)\IL’n)

Fixons z = (z1,%2,...,Zn), ¥ = (Y1,Y2,---,Yn), 2 = (21, 22, ..., 2n) trois éléments de K", A e K et u e K.
1. (a) z+y=(x1,22,--,Zn) + (Y1,92,- -, Yn) = (X1 + Y1, T+ Yn) = (Y1 + T1, -, Yn + Tn) =y +
(b)
(z+y)+z = (1,22, . ,20) + (Y1,Y2,- -, Yn)) + 2
= (B1+Y,- T+ Yn) + (21,22, 20) = (@1 + Y1 + 21, -+, Try + Yn + 2n)
= (z1,22,..,Zn)+ (Y1 + 21, sYn +2n) =+ (Y + 2)
(¢) Posons z = (0,0,...,0) e K", alors x + z = (1 + 0,...,2, + 0) = x, z est bien un vecteur nul.
(d) Posons m = (—z1,—x2,...,—xn) € K", alors t + m = (z1 — 1,...,Zn — zn) = (0,0,...,0) = 2.
2. (a) 1z =1-(z1,272,...,%n) = (lz1, 122, ..., 12p) = (T1,T2,...,Tn) =T
®) A (p-z) =X (pz1, ..., uxn) = (Aux1, ..., \uxn) = (Ap) (z1, 22, ..., Tn).
() x4+ p-z=Az1,..., T0) + (pz1, ..., uxn) = (Az1 + pz1, ..., A\Tn + py)

((A +/JJ):E17 R (A + ,U,)ZETL) = ()‘ + /L) (th?v- . ,{En) = ()‘ + M):L'
@ A+y)=A(@1+y1,- - Znt+yn) = ANz1+91),- ., M@+ yn)) = Az1 + Ay1, .-, AZn + Ayn) = (Az1, ..., Az0) +
Ay, Ayn) = A(@1, @2, 2n) + A (Y1, 92, 9n) = AT + Ay
Ceci montre que K" est un K-espace vectoriel. Appliqué & K = R, on obtient que R™ est un R-espace vectoriel. Appliqué
4 K = C, on obtient que C" est un C-espace vectoriel. Si E = C", alors, on peut de méme définir les applications suivantes :

{ C" xC" —s C" { R x C™ — C"
((x1, 22,y Zn), (Y1,Y2, -y Yn)) — (T1 + Y1, .., Tn + Yn) A\ (1,2, ..o xn)) — (A1, ..., Azy)

Or, on a huit propriétés qui sont vraies dans le C-espace vectoriel C™, si on restreint ces propriétés en remplacant C par R, elles
encore encore vraies faisant de C™ est un R-espace vectoriel. On dit que c’est un R-espace vectoriel, car dans A- (z1, z2, ..., Zn),
AeRR.

I. Si (P,Q,R)eK[X]?et Ae K, alors P+QeK[X] et \PeK.Deplus, P+Q=Q+P, (P+Q)+R=P(Q+R), P+0=P,
P+(-1)P=0,1-P=P, A(P+Q)=AP+AQ, A+ p)P = AP + uP et A(uP) = (Au)P. Toutes ces propriétés ont déja été
énoncées et démontrées dans le chapitre sur les polynémes.

1. Si E = My »(K). Alors, pour tout (A, B) € E? et A\e K, A+ B € My, ,(K) et NA € My ,(K). De plus, on sait que A+ 0, = A,
(A+B)+C =A+B+C),A+B=B+A A+ (-1)-A =0np, 1-A, A(pld) = M)A, A+ p)A = AA + pA et
A(A + B) = MA + AB. Toutes ces propriétés ont déja été énoncées et démontrées dans le chapitre sur les matrices.

I — R {I—)]R
et \-f: ,alors f+g e Z(I,R) et \f € F(I,R).
) + g(x) )

z— Af(x

IV. Soit (f,9,\) € Z(I,R)*xK, on pose f+g: { (
z+— f

1. Soit (f,g,h) € F(I,R)?

(a) Pour tout z €I, (f +g)(z) = f(z) + g(z) = g(x) + f(z) = (g + f)(z). Ainsi, f+g=9g+ f.
(b) Pour tout z € I,

(f+9)+h)(z) = (f+9)(x) +h(z) = (f(2) +9(x)) + h(z) = f() + (9(z) + h(z)) = f(z) + (9 +h)(x) = (f + (9+h))(2)

Ainsi, (f +g)+h=f+(g+h).

I —R
(c) Posons ©: { , alors pour tout z € E, (f + ©)(z) = f(z) + O(z) = f(z) + 0p = f(z). Ainsi, f +© = f.

xl—)OE
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5 I — R ~ _ ~
(d) On pose f: {x @) , alors, pour tout x € I, (f + f)(z) = f(z) + f(z) = f(z) — f(z) =0, ainsi, f + f = O.
2. Soit (f,g) € F(I,R)* et (\, ) € R?
(a) Pour tout z eI, (1- f)(z) =1- f(z) = f(x). Ainsi, 1- f = f.
(b) Pour tout @ € I, (A-(p-f))(x) = A-((uf)(2)) = A (p- f(2)) = Axp)-f(x) = (Axp)-f)(x). Alnsi, A-(u-f) = (Axp)-f.
(¢) Pour tout z € I,

(At p)- ) =A+p)- fle)=A fl@)+p- flz) = @)+ - )= f+p )
Ainsi, A+ p)-f=X-f+u-f.
(d) Pour tout z € I,
A (f+ta)@) =2 ((f+9)(@) =A-(fx) +9(x)) =X f(z) + A-g(z) = (A f)(@) + (A-g)(@) = (A- f+A-g)(x)
Ainsi, A- (f+g)=X-f+X-g.
Par conséquent, % (I, R) est un R-espace vectoriel. [ ]

Remarques 3. e Les vecteurs peuvent donc étre des polyndmes, des matrices, des suites, des fonctions etc.
o «Faut-il appliquer cette définition d chaque fois pour montrer qu’un machin est un espace vectoriel ?» Non, on ne
I'utilisera quasiment jamais. Dans la pratique, on montre que des ensembles sont bien des espaces vectoriels en
vérifiant quelque chose de bien plus simple que ’on va voir au plus vite.

A partir de maintenant E désignera toujours un K-espace vectoriel.

iJ Proposition n°1 : premiéres propriétés d’un espace vectoriel
1. On a unicité du vecteur Og au point lc.
2.V \2)eKxE (A=0 ou z=0g) < X ax=0g

3. Pour tout « € F, on a unicité du vecteur y au point 1d, de plus y = (—1) - z.

Démonstration de la proposition n°1 :

1. Supposons qu’il y ait deux vecteurs nuls Og et 0%. Cela veut dire que :
Vee E 2+0g = = (1)
Vee E r+0p = = (2)
Alors O 5 0p + 0% =05 +0g 5 0%z. On a donc montré que Og = 0%, donc 'unicité du vecteur nul.
2 la 1

2. Soit x € E et A € K. Pour montrer I’équivalence, procédons par double implications :
e Supposons £ = 0g ou A = 0 et montrons A -z = 0g. Il y a donc deux cas x = 0g ou A = 0.
— Cas1: A=0.Alors \-2=0-2 = (0+0)-m2=0-m+0-m. OnadoncO-z=0-2+0-z. Notons y € E un vecteur tel

que (0-z) +y = 0p (y existe d’aprés 1d). En ajoutant y des deux c6tés, on obtient
0E=O-m+y=(O-m+0~x)+yTbO~x+(0-x+y)=O-ac+0E1=O-m

On adonc0-z =0g, soit A-xz =0g.
— Cas 2:z =0g. Alors /\-x=)\-0E=)\-(OE+0E)2=d)\-OE+)\~OE. Onadonc A-0g =A-0g+A-0g. Notonsy e E

un vecteur tel que A -0g + y = Og (y existe d’aprés 1d). En ajoutant y des deux cotés, on obtient donc
Og=X-0g+y= (A'OE+>\'OE)+yE)\’0E+()\’0E+y)IA'OE‘FOE 1=)\~0E

On a donc A -0g = 0g, soit A-x = 0g.
Dans les deux cas, on a montré que A -z = Og.
e Supposons A -z = 0g et montrons A = 0 ou x = Og. Il y a deux cas :
— Soit A = 0 et donc c’est ce qu’on veut.
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—, on a alors 1 AN-z) = lOE.

A A A

— Soit A # 0, dans ce cas, on peut multiplier I’équation )\ - x = O des deux cbtés par

Donc (% X )\) -x =0g. Donc 1-z =0g, soit z =0g.

Ainsi, A\=0ouz = 0g.

3. Supposons qu'il existe y € E tel que x +y = 0g et ¢ € E tel que z + 3y’ = O, alors

y=y+0s=y+(@+y)=(W+a)+y =0s+y =y + 05 =y

On a donc prouvé que y = 3. Montrons que y = (—1) - x :
z+(-1)z=1-24+(-1)-z2=(01+(-1)-z2=0-2=0g

Par unicité de 'opposé, on a donc y = (1) - z. |
2 Sous-espaces vectoriels

=
Déﬁnition d’un sous-espace vectoriel
| Soit F < E, on dit que F est un sous-espace vectoriel de Esi: 0OgeF, V(r,y)eF? VieK X +yelF

L/ e . . .
-: Proposition n°® 2 : un sous-espace vectoriel est un espace vectoriel
| Soit F' un sous-espace vectoriel de E, alors F' est lui-méme un espace vectoriel.

Démonstration de la proposition n°2 : Si F' est un sous-espace vectoriel, alors pour tout z et y, ona 1-x+y € F (en utilisant
= 1), de méme, pour tout A € R, Az + 0g = Az € F (en utilisant y = Og € F'). On peut ainsi définir les applications suivantes :
{F x F— F {K x F— F

. Il reste a vérifier les 8 propriétés :
Nz) — Xz

(zy) —z+y
1. Soit (x,y,z) € F*

(a) Commexz e Eetye E, x+y=y+x (car E est un espace vectoriel).

(b) Comme zx € E,ye E,z€ E, (t+y)+z=x+ (y + 2) (car E est un espace vectoriel).
(c) Par définition du vecteur nul, z + O = x avec O € F. Ainsi, F' admet bien un vecteur nul (le méme que celui de E).
(d) En prenant y = Og et A = —1, on obtient que A-z +y = (—1) - € F. Or, d’aprés la proposition 1, z + (—1)z = Og.

Ainsi, z admet bien un opposé dans F' (et c’est le méme opposé que 'opposé de x dans E).
2. Soient (z,y) € F?, (\, u) € K?
(a) Comme z € E, 1 -2 =z (car E est un espace vectoriel).
(b) Comme xz€ E, A+ (u-x) = (A x p) -z (car E est un espace vectoriel).
(¢) Comme ze E, A+ p)-z=X-z+p-x (car E est un espace vectoriel).
(d) Commeze Eetye E,X\-(z+y)=A-x+ A-y (car E est un espace vectoriel).

Par conséquent, F' est un K-espace vectoriel. |

Exemples 1. Montrer que F' et F’ sont des sous-espaces vectoriels de E dans les cas suivants :

1. E=R3et F={(2,y,2)eR® |z +y+2=0} 2. E = .#,(C) etF—{(z ﬁ) |(a,b,c)e(C3}
3. E quelconque et F = {0g} et F' =F 4. E=K[X] et F =K,[X]

5. E = RR et F I’ensemble des solutions de y” +y = 0 6. F=,K)et F=.9,K).

Solution des exemples 1 :

1. ¢ FCE.
e Posons z =y = z = 0 de sorte que z + y + z = 0 donc Ogs = (0,0,0) € F'.
e Soient u = (x,y,2) € F et v = (2',9,2') € F et X\ € R. Posons

w=Au+v=Aa,y,2) + @,y 2) = (e, g, A2) + (@5, 2) = Qe+ My +3/, Az +2) = @y, 2)

Avecz” = dx+2',y" = y+y et Az +2 . Alorsa” +y" +2" = Mz +y+2)+ (2’ +y +2') =A0+0=0Donc \u+veF.
Dés lors, F est un sous-espace vectoriel de R3.
2. e Notons que F c .#>(C).
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® P030n5a=b=c=()des0rteque()2=(Z Z;)EF

a

e Soit (M, N) € F? et A € C. Il existe alors (a, b, c) € C* tel que M = (b Y
Aa+a A+
Ab+b e+
AM + N = (a 5) e F.
B v
Dés lors, F' est un sous-espace vectoriel de .#5(C).
3. e SiF ={0g}, alors comme Og € E, F c E. De plus, Og € F. Soit (z,y) € F? et A e K, alors MM+y=X0g+0g=0g€kF.
Ainsi, F = {0g} est un sous-espace vectoriel de E.
e SiF' =FE, alors F' c E,0p € E = F'. Soit (z,y,\) € F' x F' xK, alors Az +y € E = F'. Ainsi, I’ = E est un sous-espace
vectoriel de E.

4. Kp[X] € K[X], d°0 = -0 < n donc 0 € K, [X]. Soient P € K,[X], Q € K,[X] et A € K, alors

! /
?;) et il existe (a’, V', ¢') € C® tel que N = (a b )

Alors AM + N = ( ) Ainsi, en posant « = da+a € C, 8= Xb+b €Cety= A+ €C, on obtient

d°(AP + Q) < max(d°\P,d°Q) < max(d°P,d’Q) < max(n,n) =n

Ainsi, AP + Q € K,[X]. Par conséquent, K,[X] est un sous-espace vectoriel de K[X].
5 o F=.9,(R)c #.(R).
e Comme 0,,| = On, 0, € 7 (R).
e Soit (5, 5") € .%n(R)? et A € R. Montrons que AS+5" € .7, (R) : AS+S)T = AST+8'T = AS+S". Ainsi, A\S+ 5’ € .7, (R).
Des lors, ., (R) est un SEV de ., (R).
R— R
6. E=RFet F = {y € E |y est deux fois dérivable et y” + y = O}7 alors F' ¢ F, notons 6: , 0 est deux fois dérivable

r— 0

et 0" + 0 =0, donc 6 € F. Soient (f,g) € F? et A € R, alors A\f + g est deux fois dérivables (car f et g le sont), et
AN+ " + A +g=M"+g"+Af+g9=Xf"+f)+ (" +9) = +0=0

De sorte que A\f + g € F. Ainsi, F' est un sous-espace vectoriel de F.
Remarquons que par résolution d’une équation différentielle : F = {x — Acos(z) + Bsin(z) | (A, B) € R*}. [ |

Exemples 2. Les ensembles suivants sont-ils des sous-espaces vectoriels de R? ?
1. D : la droite passant par les points (1,2) et (0,1) 2. F = {(z,sin(z)) |z € R}

Solution des exemples 2 :

1. La droite passant par les points (1,2) et (0,1) a pour équation z ~— 1 + x. Ainsi, en notant D = {(z,1 + z) | z € R} = R?
(0,0) ¢ D, ainsi D n’est pas un sous-espace vectoriel de R

2. Notons F = {(z,sin(x)) | x € R}, alors certes F < R? et (0,0) € R% Mais, v = (7/2,1) € F (prendre x = w/2)), mais
20 = (m,2) ¢ F (en effet dans le cas contraire, il existerait z € R, tel que (m,2) = (z,sin(z)), or sin(z) < 2 ce qui est absurde).
Ainsi, F n’est pas un sous-espace vectoriel de R2. |

n
Remarque 4. Soient F' un SEV de E, (e, ea,...,e,) € F™ et (A1, A2, ..., \,) € K alors > N\e; € F.

i=1

Justification de la remarque 4 : Posons, pour n € N* I'hypothése de récurrence &(n) : «pour tout (e1,es,...,e,) € F™ et pour

tout (A1, A2, ..., An) € K™, > Nies € Fo.
i=1

i=

1
e Pour n =1, soit e; € F et A1 € K, alors >, A\je; = Aie; € F (car F est un espace vectoriel), ainsi (1) est vraie.
=1
' n+1
e Soit n € N*. Supposons Z(n) vraie. Soit (e1,ez,...,ent1) € F™™ et (A1, A2, o, dng1) € K™ 3 Nies = Angiengr +
i—1
n n n ‘ n+1
> Aieq, d’aprés Z(n), >, \ie; € F, comme F est un sous-espace vectoriel, Any1€nt1 + 2, Aie; € F, ainsi, >, Aie; € F, donc
i=1 i=1 i=1 i=1
P(n+ 1) est vraie

Par récurrence, pour tout n € N*| 2(n) est vraie. [ ]

L/ e . . . .
-' Proposition n° 3 : intersection de sous-espaces vectoriels

Soient F' et G deux sous-espaces vectoriels de F, alors F' n G est alors un sous-espace vectoriel de E.
De méme, si (F})ies est une famille de SEVs de E, alors [ F; est un SEV de E.

el
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Démonstration de la proposition n°3 :
e Remarquons que FnG = {z € E |z € F et x € G}, nécessairement, F nG c E. Comme F et G sont deux SEV de E, 0 € F
et Op € G, ainsi Og € F' n G. Soient (x,y) € (F n G)? et A€ K, alors z et y sont dans F, Az +y € F (F est un SEV de E).
De méme, Az + y€ G. Dés lors, Az +y€ F' n G.
e Soit (F;)ser une famille de SEV de E. Cela veut dire, que pour tout i € I, F; est un SEV de E. Remarquons que

(VFi={zeE|Viel xzeF}

iel
Nécessairement, (| F; < E. Considérons = et y appartenant & [ F; et A € R. Soit i € I, = et y appartiennent & F;, comme
F; est un SEV d;dE7 Op € F; et Ax + y € F; et ce pour tout 4 616}, Par conséquent, Og € ﬂFZ et Az +y€ ﬁFZ Donc ﬂFZ
est un SEV de F. ! <! !

Exemple 3. On note F' = {(z,y,y) tel que (z,y) € R?} et G = {(z,y,2) € R¥| z + 2y + z = 0}. Montrer que F et G sont
des sous-espaces vectoriels de R3, puis calculer leur intersection.

Solution de ’exemple 3 :
e F c R3 en posant z = y = 0, on obtient que (z,y,y) = (0,0,0) € F. Soit (u,v) € F2 et A € R. Comme u € F, il existe
(a,b) € R? tel que u = (a,b,b) et comme v € F, il existe (a’,b') € R? tel que v = (o, ¥, 1), alors

Xu+v=Xa,b,b) + (a',V/,t)) = Na+ad , b+, M+b)eF

Ainsi, F est un sous-espace vectoriel de R3.
e GcR® enposant z =0,y =0et z =0, alors comme 2 +2y+2 =04+2x0+0 = 0, on a que (0,0,0) € G. Soient
u=(z,y,2) € G,v=(2,9y,2") e Get \e R, alors \u + v = Az + ', \y + 3, A\z + 2’), de plus :

M4z +20y+y) Azt = Az 4+ 2y +2)+ (2 +y +2)=A%x04+0=0

Ainsi, Au + v € G. Dés lors, G est un sous-espace vectoriel de R3.
e Soit u = (z,y, z) € R?, alors :

|
w

— u=(-3222)

I
(=)

ueFmG<=>ueFetueG<=){ Y -z (:){y
rz+2y+z =

Ainsi, F n G = {(—3z,2,2) | ze R}. [ ]

&Attention I’union de deux SEV de E n’est pas, en général, un SEV de E.
Par exemple, F' = {(x,0) |z € R} et G = {(0,y) |y € R}, F U G est-il un SEV de R??

3 Combinaison linéaire, espace vectoriel engendré

>
Deﬁmtlon d’une combinaison linéaire et de 1’espace vectoriel engendré

Soit (e1,ea,...,e,) une famille finie de vecteurs de E.
n
e Soit (A1, Ag,...,\,) € K", on dit que > )\;e; est une combinaison linéaire de la famille (e, ez, ..., €,).
i=1
e On appelle espace vectoriel engendré par (e, es,...,e,) I'ensemble de toutes les combinaisons linéaires
de (e1,es,...,e,). On note vect (e, ea,...,e,) cet ensemble :

VeCt(€1,€2,...,€n) = {$€E|3(>\1,)\2,...,)\n)€Kn, xr = Z)\Lez} = {Z )\Z€L ou ()\1,)\2,...,)\'”)6]1{”}

i=1 =1

Remarques 5. e vect(eq,...,e,) a été défini par compréhension et par paramétrage.
n
o x € vect(er,ea,...,e,) ssiil existe (A1, Ag, ..., \p) €K™ tel que z = Y Apeg.
k=1
Exemples 4. e Dans E = R?, donner plusieurs combinaisons linéaires de u = (1,2,3) et v = (2,2,2).

e Sie; # 0p, vect(er) est une droite vectorielle de E.
e Si ey et e sont non nuls et que ey n’est pas colinéaire & eg, alors vect(eq, es) est un plan vectoriel.
e Pour E = R[X], déterminer vect(1l, X).
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ij Proposition n° 4 : I’espace engendré est un espace vectoriel
Soient (e, ea,...,e,) une famille finie de vecteurs de E et F = vect (e1, ea,...,¢€,).
1. F est un SEV de E. 2. Pour toutie [1;n], e € F.
3. F est le plus petit SEV de E (au sens de U'inclusion) & contenir tous les e; pour i€ [1;n] :
Si H est un sous-espace vectoriel qui contient tous les e;, alors F < H.

Démonstration de la proposition n°4 :

1. e F c E (ensemble défini par compréhension)

e Pour tout ¢ € [[1;n], posons \; = 0 : Ainsi, Op = i Ae; est une combinaison linéaire de (e1,ez,...,e,), dés lors
Op € vect (e1,€2,...,€n). =

e Soient (z,y) € F? et a € K. Tl existe (A1, A2,..., ) € K™ et (u1,p2,...,pn) € K* tel que z = i Aie; et y = i‘ i€
Alors : = =

n n

n n n
ar + Y = OZZ Aiei + Z piei = Z alie; + Z i€ = Z(a)\i + i)e; € vect (e1,e2,...,en)

i=1 i=1 i=1 i=1 i=1
Ceci prouve que vect (e, ez, ..., e,) est un SEV de E.
2. Sije[[1;n],alors e; = >, & e; € vect (e1, ea,...,e,). Alnsi, vect (e1,e2,...,e,) est un SEV de E qui contient tous les e;.
i=1
3. Montrons que c’est le plus petit SEV de E, au sens de I’inclusion, qui contient tous les e;. Soit H un SEV de E qui contient tous

n
les e;. Montrons que vect (e1,e2,...,e,) € H. Soit = € vect (e1, e2,...,en), il existe (A1, A2, ..., An) € K" tel que x = )] Aie;.

i=1
Or, e; € H, et H est un SEV de E, ainsi, par combinaison linéaire, x € H. Ainsi, vect (e1,e2,...,en) € H. Par conséquent,
pour tout H, SEV de F qui contient les e;, on a vect (e1,e2,...,e,) € H. [ |
Remarques 6. e Soitie[[1;n]),sie; €vect(er,...,ei—1,€i41,...,€n), alors ce vecteur ne sert a rien dans l’espace

vectoriel engendré : vect (eq, e, ..., e,) = vect(er,...,€i—1,€i+1,...,€p).
e Pour montrer que F est un SEV de FE, il suffit de trouver des e; € E tel que F = vect (e1,ea,...,¢€,).

(bl lé) , (a,b,c) e C?’} est un sous-espace vectoriel de .#5(C).

2. Montrer que F' = {y € R® | y est deux fois dérivable et y” +y = 0} est un sous-espace vectoriel de R¥.

Exemples 5. 1. Montrer que F' = {(

Solution des exemples 5 :
1 0 0 1 0 0
1. Posons A = (0 0>’ B = <1 0) et C = (0 1). Alors,

vect(A, B,C) = {aA + bB + ¢C | (a,b,¢c) € C*} = {((bl lc)> | (a,b,c) GCS} =F

est un SEV de .#>(C).
2. F = {z+— Acos(z) + Bsin(z) | (A, B) e R*} = {Acos+Bsin | (4, B) € R*} = vect(cos, sin) est un SEV de R*. ]

4 Propriétés des familles finies d’un espace vectoriel
4.1 Famille libre

n
Remarque 7. Soit % = (ej,es,...,e,) une famille de E, si pour tout i € [1;n]], A; =0, alors > \je; = 0.
i=1

Déﬁnition d’une famille libre

Soit £ = (e1,ea,...,e,) une famille finie de E, on dit que la famille £ est libre, si il y a une seule fagon d’écrire
le vecteur nul comme combinaison linéaire de vecteurs de .. Autrement dit si

V(/\l,/\g,...,/\n)EKn (Z)\iei—OE Ed Vieﬂl;n]] /\i_0>
i=1

Si & est libre, on dit aussi que les vecteurs ey, ..., e, sont linéairement indépendants, si .Z n’est pas libre, on
dit qu’elle est liée.
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Exemples 6. 1. Soit u = (1,2,3) et v = (1,1,1) et w = (1,1,10), montrer que .# = (u,v,w) est une famille libre
de R3.

2. La famille (1,1) est-elle libre dans C vu comme un R-EV ? Et vu comme C-EV ?

)

3. La famille # = ((1,1,1),(1,0,0),(4,1,1)) n’est pas libre.

Remarques 8. 1. La famille % = (e, ea,...,e,) est liée si et seulement si il existe ig € [[1;n] tel que e;, €
vect(e1, ..., ig—1,€ig+1s- - - €n). Ainsi, une famille .7 est liée si et seulement si il existe un vecteur de .# qui est une
combinaison linéaire des autres vecteurs de .%.

2. Si.F = (e1,e2,...,en) et quil existe i € [ 1;n] tel que e; = O, alors la famille & est liée.
3. Si (u) est une famille de un vecteur de E, alors (u) est libre si et seulement si u # Op.
Si (

u,v) est une famille de deux vecteurs de E, alors, (u, v) est libre si et seulement si u et v ne sont pas colinéaires.

&Attention cela ne se généralise pas a plus de deux vecteurs

Si pour tout i # j, e; et e; sont non colinéaires, cela n’implique pas forcément que .# = (ey, ea,...,€,) est
libre. En effet, la famille ((1,1,1),(1,0,0), (4,1,1)) est liée.

Justification des remarques 8 :

1.

2.

3. Si u = Og, alors, par le point précédent, la famille (u) est liée. Par contraposée, on en déduit que (u) est libre implique que
u # 0g. Réciproquent, supposons u # 0g. Soit A1 € K, supposons que A\ju = 0. Comme u # Og, d’apres la proposition 1, on
en déduit que A\; = 0, donc (u) est libre.

4. Supposons u et v colinéaires, cela veut dire qu’il existe A € K tel que u = Av ou v = Au, si u = Av, alors 1 -u — \v = Og,
comme 1 # 0, on en déduit que la famille (u,v) est liée. Si v = Au, alors —Au + lv = Og, comme 1 # 0, on en déduit que la
famille (u,v) est liée. Ainsi, on a montré que u et v colinéaires implique que (u,v) est liée. Par contraposée, si (u,v) est libre,
alors u et v ne sont pas colinéaires.

Réciproquement, supposons que u et v ne soient pas colinéaires. Montrons que (u,v) est libre. Soit (A1, A2) € K2. Supposons

-
que AMu + Av = 0g. Si Ap # 0, alors u = /\—21) et donc u et v sont colinéaires, ce qui est absurde, donc A1 = 0, et donc

1
Aov = 0, si A2 # 0, alors v = Og mais alors v = Ou et u et v sont colinéaires, ce qui est absurde, donc A2 = 0. On peut donc
en conclure que A1 = A2 = 0,ainsi la famille (u,v) est libre.

Remarque 9. Une famille .Z = (e1,e2,...,¢,) est libre si et seulement si pour tout x € vect(.¥), il existe un unique

(A1, A2, ..., An) € K™ tel que = ) Ajey.
i=1

Justification de la remarque 9 : Supposons que .Z = (e1, e2,. .., ey) soit libre. Soit x € vect(.Z), alors par définition de vect(.%),

il existe (A1, A2,...,A\n) € K" tel que x = > \ie; Soit (w1, g2, ..., pun) € K* tel que z = ) pie;, done >, Aie; = 3, pie;, done, par
= i1 i=1 i=1

linéarité de la somme, Y (A\ie; — pie;) = Op, ainsi, Y, (A; — pi)e; = O, comme & est libre, on en déduit que pour tout i € [1;n [,
i=1 i=1

Ai — i = 0 donc, pour tout i € [[1;n]], Ai = ui. Ceci démontre que pour tout x € vect(£), il existe un unique (A1, A2,..., \n) € K"

tel que z = > A\ie;.
i=1

n
Réciproquement, supposons que tout z € vect(.%), il existe un unique (A1,A2,...,An) € K" tel que z = > A\je;. Soit
i=1

(M, A2y ..., An) € K™, supposons que Y, A;e; = 0g. Or, on sait aussi que Y, Oe; = Og. Par unicité de la décomposition de z = 0g,
i=1 i=1
on peut en conclure que pour tout i € [1;n]], A\; = 0. Ainsi, la famille .£ est libre.

Exemple 7. Cela permet d’identifier : si md = F et @ = a, & + ayy, F=F,%+ F,y, alors ma, = F, et ma, = F,,.

Solution de ’exemple 7 : En effet, dans ce cas, en développant par m, on a ma,& + mayy = Fo@ + Fy¥, or (Z,7) est une famille
libre, ainsi ma, = F, et ma, = F},.

ﬁJ Théoréme n°1 : famille de polynémes de degrés deux a deux distincts est libre
| Si.Z est une famille finie de polynomes non nuls de K[X] de degrés deux & deux distincts, alors . est libre.
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Démonstration du théoréme n°1 : Quitte a renuméroter les polynémes, on suppose que .Z = (P1, Pa, ..., P,) avec

0<d°PL<d’P<...<d°P,

Soit (A1, Az,...,An) € K". Supposons que Y, A Pr = 0. Montrons que pour tout k € [1;n], Ax = 0. Supposons (par ’absurde)
k=1

qu’il existe k € [1;n ] tel que Ap # 0. Posons d = max{ke [1;n] | Ax # 0} (ensemble fini et non vide, donc le maximum est bien
défini). Ainsi, pour k € [1;n]], si Ax # 0 alors k < d. Par contraposée, si k > d alors Ay = 0. Dés lors, en coupant la somme en
trois :

d—1 n d—1
0= Z MePe + XaPa + Z A Pp = Z APy + XaPa+0
k=1

— k=d+1 _ k=1

d—1
Donc A\gqPy = — >, AxPx. En passant au degré, on obtient
k=1

d°P; = do()\dpd) < max d°Ag Py < d°Py_1
Ag#0 ke[ 1;d—1T

Ceci est absurde, ainsi, pour tout k€ [1;n]], A\x = 0, ainsi . est libre. |

4.2 Famille génératrice

I
Déﬁnition d’une famille génératrice
Soit 4 = (eq, e, ...,e,) une famille de vecteurs de E. On dit ¢ est génératrice de F (ou engendre F) si

VeeE  3(Ande,.. A) K'Y telque z= ) e

i=1

Exemples 8. 1. Montrer que .#; = (1, X? + X, X + 1) est une famille génératrice de Ry[X]. Est-elle libre ?
2. Montrer que %, = ((1,0,0), (0,1,0),(0,0,1)) est une famille génératrice de R3. Est-elle libre ?

3. Montrer que #3 = (E11,E12,E21,Es2) est une famille génératrice de #2(K) (o E,p € #>(K) est la matrice
contenant que des 0, sauf un 1 & la ligne a et colonne b). Est-elle libre ?

Solution des exemples 8 :
1. Soit P = aX? 4+ bX + c e Ro[X]. Alors,

P=aX’+X)+(b—a)X+c=ax(X°+X)+(b—-a)x (X +1)+(c—b+a)x1

Ainsi, %1 est une famille génératrice de Ro[X].

Remarques 10. 1. La famille ¢ est une famille génératrice de E si et seulement si E = vect(¥).

2. La famille ¢ est nécessairement génératrice de vect(¥).

4.3 Bases

-
Déﬁnition d’une base

| Soit % une famille finie de E. On dit que & est une base si % est a la fois libre et génératrice de FE.

n
Ainsi, Z = (e1,€ea,...,e,) est une base de E ssi Vr e FE (21, 2a,...,2,) EK™ x= > xpeg
k=1
On dit que les x sont les coordonnées de = dans la base A.

&Attention : il faut une famille finie

Au programme de BCPST, les familles libres, génératrices et les bases sont toujours des familles finies.
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@ Exemple de bases importantes (a connaitre)
1. (1,X,...,X™) est une base de K,[X], appelée base canonique de K,[X].

2. (e1,...,en) est une base de K", appelée base canonique de K", otte; = (0,...,0,1,0,...,0) pour 1 <4 < n.
3. (Eap)i<a<n est une base de .#, ,(K), appelée base canonique de .#,, ,(K)
1<b<p
Exemples 9. e Montrer que ((1,1,1),(1,0,0),(0,1,0)) est une base de R? (ce n’est pas la base canonique de R?).

e Donner une base de C vu comme un R-espace vectoriel. Puis vu comme un C-espace vectoriel.

o
Déﬁnition de la matrice d’une famille de vecteurs dans une base

La matrice dont la j-ieme colonne contient les coordonnées de u; dans la base & = (e1,eq,...,e,) est appelée
n
matrice de la famille .% = (uj,ug,...,u,) dans la base Z : Vje [1;9] 3 ary, ... an;) €K w; = > a;je;.
i=1
Upe-ee-- Ujeroeee Ug
ai,1 ayj - a1.q \€1
az.1 ag j - a2 q |€2
7 _ : :
Matz(.#) = Matg (u1,u2, ..., uq) = ais aeeang |6 € M, q(K)
ar;’l . anj .a,r;’q én
Exemples 10. e Pour E = R3[X], £ la base canonique de E, et # = (X + 2, X? + 1,4), que vaut Matg(F)? Si
1 2
/ 0 1 /
Matg(F') = 1 1 | auevaut F'?
0 1

e Si ' =R? et € la base canonique de F, Z, = ((1,1),(2,3), (1,—2)) que valent Mate (%) et Mate (%) ?

5 Construction de la théorie de la dimension finie

Remarque 11. La dimension ne peut pas étre définie comme le nombre d’éléments de E, car E est un ensemble infini.

o
Déﬁnition d’un espace vectoriel de dimension finie

On dit que E est un espace vectoriel de dimension finie si F posséde une famille génératrice (finie).
Sinon, on dit que E est un espace vectoriel de dimension infinie.

@ Exemple d’espaces vectoriels de dimension finie ou de dimension infinie

| K", C vu comme un C-EV ou un R-EV, K, [X], .#, ,(K) sont de dimension finie, contrairement & K[X].

Lemme 1. Soient .Z une famille libre de E et x € E. Alors, £ u (z) est libre si et seulement si = ¢ vect(.%).

Démonstration du lemme 1 : Notons .Z = (e1,e2,...,en). Supposons que z € vect(.Z), alors il existe (A1, A2,...,An) € K™ tel
que T = Y, Ageg, alors Y Ag + A1z = O avec Apy1 = —1 # 0 de sorte que £ U (z) est liée. Par contraposée, si £ u () est
-1 k=1

libre, alors = ¢ vect(&).

Supposons = ¢ vect(.Z). Montrons que .Z U (z) = (e1,...,en,x) est libre. Soit (A1, Aa,..., Ant1) € K. Supposons que
> Aker + A1z = 0g, si Apy1 # 0, alors x = ), — Ak er € vect(Z) ce qui est impossible, donc A1 = 0 donc Y, Arer = 0g. Or,
k=1 k=1 \n+1

k=1
Z est libre, donc pour tout k€ [1;n], Ax = 0. Dés lors, pour tout k€ [1;n + 1], Ay =0, la famille .Z U (z) est libre.
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Lemme 2. Si ¢4 engendre E et ¢’ est une famille telle que ¥ < vect(¥¢'), alors ¥’ engendre aussi E.

Démonstration du lemme 2 : Supposons que ¥ = (er,ea,...,e,) soit une famille génératrice et que ¥’ soit une autre famille
telle que 4 < vect(¥4'). Montrons que ¥’ est une famille génératrice de E. Soit x € E, alors, comme ¥ engendre F, il existe
n
(A1, A2, .., An) € K™ tel que = ) Ageg. Or, pour tout k € [1;n]], ex € vect(¥’) par hypothese, comme vect(¥’) est un espace
k=1
vectoriel, on en déduit, par stabilité par combinaison linéaire que x € vect(¥4’). Ainsi, ¢’ est une famille génératrice de E.

“

Démonstration du théoréme de la base extraite et du théoréme de la base incompléte : On va démontrer le théoreme
de la base extraite et celui de la base incompléte en méme temps. Soit 4 une famille génératrice de E. Et £ une famille libre de E.
Notons :
C = {Card(F) vérifiant ¥ ¢ F < £ U ¥ et .F famille libre de E}

Comme Card(¥) € C, C # &, C est majorée par Card(Z u ¥). Elle admet donc un plus grand élément p € N. Soit B =
(e1,€2,...,ep) une famille libre de E de cardinal p telle que ¥ ¢ B < £ u ¢. Montrons que £ est une base. Elle est libre.
Montrons qu’elle est génératrice : Soit g € ¢, supposons que g ¢ vect(%). La famille ' = (e, ..., ep, g) est alors libre d’apres le
lemme 1. De plus,ona ¥ c &' < L u¥%. Ainsi p+ 1 € C, donc, p + 1 < max(C) = p, ce qui est absurde, donc g € vect(%). Ainsi,
4 < vect(A), par le lemme 2, B est génératrice de E. Donc c’est une base de E.

Comme # est une base de E et que .Z < £ cela démontre le théoréme de la base incompléte.

Prenons maintenant ¥ = ¢ (famille libre), alors, par ce qu’il précéde, il existe une base Z de E telque X c Bc L u¥ =9
et donc cela démontre le théoréme de la base extraite.

Remarque 12. Gréace au théoreme de la base incompléte ou a celui de la base extraite, un espace vectoriel de dimension
finie posséde au moins une base mais il n’y a pas unicité des bases.

iJ Proposition n°5 : comparaison entre les cardinaux des familles libres, génératrices et des bases
Soit £ un K-EV de dimension fine. Si les familles .2, £, ¢ sont respectivement libre, base, et génératrice alors

Card(.Z) < Card(#) < Card(¥)

Démonstration de la proposition n°5 : Notons n = Card(¥) et p = Card(.%). Posons, pour k€ [0;p] :
Pk): «IL ¥ F9. 9 tellesque Zh U Y soit génératrice et Card(Z) =k et Card(%)=n—Fk»

o Initialisation : posons % = & et % = ¥, alors #(0) est vraie.

o Hérédité : soit k€ [[0;p — 1]. Supposons & (k) vraie. Soient &, = (v1,v2,...,vk) et G = (91,92, - - -, gn—k) vérifiant P (k).
Le but est d’ajouter un élément a % et d’en retirer un %,. Comme Card(%) = k < p = Card(¥), il existe un élément
Vkt1 € L\, alors vpy1 € B = vect (L w %) -

k n—k
Ipi)i<i<k €K* I(Ni)1<icn—k e K*7F Vg1 = Z Hivs + Z Aigi
=1 =1

Or, il existe un A; # 0 (par I'absurde : £ est libre), prouvant que n — k = 1. Quitte & changer la numérotation, on suppose
que An—x # 0, alors

k n—k—1
1
gn—k = m (’Uk+1 — i:Zlui’Ui — 1221 )\igi> S vect((vl,vz, .. ,’Uk+1) V] (gl,gg, e ,gn,kfl))
Posons 1 = (v1,V2,...,Vk41) €t Guv1 = (91,92, -, 9n—k—1), alors L U % < vect( L1 U Y1), en appliquant le

lemme 2, 511 U Git1 engendre E. Ainsi Z(k + 1) est vraie.
e Conclusion : par principe de récurrence, (k) est vraie pour k€ [0;p].
Alors, on a Z(p) vraie, et donc Card(¥,) = n—p > 0 donc p < n. Ainsi, si £ est libre et # est une base, comme 2 est génératrice,
Card¥9 < Card4, si & est une base et ¥ est génératrice, alors comme £ est libre, Card# < Card¥, en rassemblant ces deux
inégalités, Card.Z < CardZ < Card¥. n
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Démonstration du théoréme n° 4 : Soient % et %’ deux bases de E. Alors Z est libre et %’ est une famille génératrice, donc
d’apres la proposition 5, Card(%) < Card(%'). De plus, %’ est libre et & est une famille génératrice, en utilisant encore une fois la
proposition 5, il s’ensuit que Card(#’') < Card(%). Par double inégalité, Card(#) = Card(#’). [ ]

Déﬁnition de la dimension d’un espace vectoriel de dimension finie
| Soient E un K-EV de dimension finie et % une base de E. On définit la dimension de E, par dim(E) = Card(%).

Remarque 13. La dimension d’un espace vectoriel F s’interpréte comme le nombre de degrés de liberté de E.
Si E = {0g}, on pose dim(E) = 0, si E n’est pas de dimension finie, on dit que la dimension de E est infinie.

Exemples de dimensions importantes a connaitre
| dim(K") = dim¢(C) = dimg(C) = dim (A, ,(K)) = dim(K,[X]) =

&Attention a la dimension de deux espaces vectoriels

< La dimension de .#,(R) est n? (et non n), de méme attention & la dimension de R, [X].

T+ 2y+z

Exemple 11. Soit F' = {(x,y,z,t) eR*| { 99—t

8} Déterminer une base de F' et en déduire dim(F).

Exemple 12. Si F est de dimension n, alors toute famille de n + 1 vecteurs (ou plus) est liée.

iJ Proposition n°6 : caractérisation des bases avec le cardinal
Soient E un K-EV de dimension finie, et .# une famille finie de vecteurs de E telle que Card(.#) = dim(E). Alors,

F est une base de E ssi .% est une famille génératrice de E ssi F est une famille libre.

Démonstration de la proposition n°6 :
e Si .7 est une base alors elle est libre et génératrice.
e Si % est une famille génératrice, d’apres le théoréme de la base extraite, il existe & base de E incluse dans .%. Donc # ¢ %
et Card(#) = Card(.#) donc .F = 2 est une base de E.
e Si .7 est une famille libre, alors d’aprés le théoréme de la base incompléte, il existe une base Z telle que F < £ et
Card(.#) = n = Card(%). Donc . = A est une base de E. [ ]

Exemples 13. 1. Montrer que & = ((1,1,0),(2,1,0),(5,1,1)) est une base de R3.
2. Soit # = ((1,1,1),(2,1,3),(3,2,4),(—1,0,3)), extraire de cette famille une base de R3.

0 1
4. Si F = (Py, Py,...,P,) e K[X]"*! telle que pour tout i € [0;n], d°P; = i, alors .% est une base de K, [X].

3. Soit .Z = (12, (2 O)), compléter cette famille libre en une base de .#5(R).

6 Sous-espaces vectoriels d’un espace vectoriel de dimension finie

6.1 Dimension d’un sous-espace vectoriel

iJ Proposition n° 7 : dimension d’un sous-espace vectoriel (admise)
Soient E un EV de dimension finie et F un SEV de FE, alors :
1. F est de dimension finie 2. dim(F) < dim(E) 3. E=F < dim(F) = dim(F)
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Démonstration de la proposition n°7 :

e Si F = {0g}, il n’y a rien & faire. Sinon, on note C' = {Card(.#), .% famille libre de F'}, C' est non vide, et si . est une
famille libre de F, alors .# est une famille libre de E, donc Card(.%#) < dim(E) prouvant que C est majorée. Soit .# une
famille libre de F tel que Card(.%#) = max C. Montrons que .% est génératrice de F'. Soit f € F, supposons f ¢ vect(%), alors
en vertu du lemme 1, .% U {f} est une famille libre. Contredisant le maximum de C, donc f € vect(.#). Donc F < vect(F).
De plus, vect(.#) < F. Donc vect(#) = F, ainsi .# est une base de F.

e Comme F est de dimension finie, il existe & = (f1, f2,..., fp) une base de F, comme c’est une famille libre de F' et donc
de E. Ainsi dim(F') = Card(#) < dim(F) en vertu de la proposition 5.

e Si E = F, alors dim(E) = dim(F'). Réciproquement, supposons dim(E) = dim(F). Soit & = (f1, fe, ..., fp) une base de F,
c’est une famille libre de F' et donc de E. De plus, Card(#) = dim(F') = dim(E). Donc d’aprés la proposition 5, & est une
base de E. Donc E = vect(%#) = F. Donc E = F. [ ]

Exemples de sous-espaces particuliers

Soit E un espace vectoriel de dimension finie n. Soit F' un sous-espace vectoriel de E :
e Si dim(F) = 1, alors on dit que F est une droite (vectorielle) de E.
e Si dim(F') = 2, alors on dit que F' est un plan (vectoriel) de E.

Exemple 14. Si E =R3 et F = {(z,y,2) € R?, x + y — 2z = 0}, donner dim(F).

6.2 Rang d’une famille de vecteurs

S
Déﬁnition du rang d’une famille finie de vecteurs

)
)

) = dim(vect(

)

| Soit .# une famille finie de vecteurs de E, on appelle rang de .Z : rg(

Attention a ne pas confondre dimension, rang et cardinal

La dimension c’est pour les EV. Le rang et le cardinal sont pour les familles finies de vecteurs.

Exemple 15. Soit £ = R3 notons e; = (1,1,1), ex = (2,1,1) et e3 = (4,3,3). Former des phrases justes utilisant les
mots dimension, rang et cardinal et la famille % = (eq, €2, €3).

ij Proposition n° 8 : propriétés du rang

Soient £ un EV de dimension finie n et & = (e1,e2,...,e,) une famille de vecteurs de E. Alors :
1. rg(#) < min(p,n). 2. % engendre E SSIrg(#) =n. 3. % est libre SSI rg(.%) = p.
4. Soit ie[1;p], et F' = (e1,...,€i—1,€i+1,---,€p), si €; € vect(F') alors rg(F) = rg(F’).
5. rg(F) =rg(Matg(F#)) o £ est une base de E.
6. rg(F) est le nombre maximum de vecteurs de # linéairement indépendants.
Démonstration de la proposition n®8 : Posons F' = vect(.#) = vect (e1, e2,...,ep) de sorte que dim(F) = rg(.#).
1. Comme .Z est une famille génératrice de F', on a dim(F') < Card(%), soit rg(e1, e2,...,ep) < p. Comme F = vect(.F) est un

SEV de E, on a dim(F) < dim(E) soit rg(e1,ez,...,ep) < n. Ainsi, rg(e1, e2,...,ep) < min(p, n).
2. Si .F est une famille génératrice de E, alors vect(.:#) = E donc dim(vect(.#)) = dim(E) = n donc rg(.%) = n. Si rg(¥) = n,
alors dim(F) = n = dim(F) avec F' SEV de F donc F = E, ainsi, vect(.#) = E donc .% est une famille génératrice de E.

3. Si Z est libre, alors % est une base de F = vect(.%), deés lors Card(#) = dim(F) soit p = rg(F#). Si rg(F) = p, alors F
est une famille génératrice de vect(.#) avec Card(#) = p = rg(.#) = dim(vect(.#)) ainsi, .# est une base de vect(.#) par
conséquent, % est libre.

4. Posons F' = F\(e;) = (e1,€2,...,€i—1,€it1,---,€n). Si e; € vect(F'), alors comme .F < vect(.F'), en appliquant le lemme 2,
la famille .#’ engendre F, ainsi, rg(:#) = dim(F) = dim(vect(F")) = rg(.F’).
5. Admis provisoirement.

6. Soit .Z une famille libre incluse dans .7, alors Card(.%) < dim(vect(#)) = rg(.#). Comme .Z est une famille génératrice,
d’apres le théoréme de la base extraite, il existe # c .# une base de .#, alors rg(.#) = dim(vect(.#)) = Card(%). ]

Exemple 16. Calculer le rang de (Py, Py, P3, Py, Ps), avec Py = X2, Py = X2+ 1, P3 =5X2+1, P, = P, P; = 2P,
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7 Méthodes

/“ Comment montrer que F est un espace vectoriel ?
M1 Montrer que E un sous-espace vectoriel d’un espace vectoriel de référence (voir méthode suivante).
M2 Reconnaitre que E est un espace vectoriel de référence.

M3 Montrer que E respecte la définition (rare et long).

/“ Comment montrer que F' est un sous-espace vectoriel de E 7
M1 Montrer que F c E OpeF V(a,b)e F? YAeK a+XbeF.
M2 F = vect (e1,ea,...,e,) ou e; € E.
M3 Ecrire F' = Ker(p) en introduisant ¢ une application linéaire définie sur E.

M4 F s’écrit comme intersection de SEVs de E.

/’Quelle est la méthode standard pour montrer que (e, eaz,...,e,) est libre?

L, n

Ecrire «Soit (A1, A2,...,A,) € K", supposons Y, A\;e; = Og», et montrer que pour tout i, \; = 0 (systéme a
i=1

résoudre souvent).

/’Comment montrer que (e, ea,...,e,) est génératrice ?

n
«Soit z € E» puis trouver (A1, Ag, ..., A,) € K™ tel que z = Y A\je; (systéme a résoudre, ou analyse-synthese).
i=1

1=

/’ Comment montrer qu’une famille est une base ?
M1 Montrer qu’elle est libre et génératrice.

M2 Montrer que Z# est libre et vérifier Card(#) = dim(E). (utile si dim(E) est connue)
M3 Montrer que % est génératrice et vérifier Card(#) = dim(E). (utile si dim(E) est connue)

Comment montrer qu’un espace vectoriel est de dimension finie ?
M1 On trouve une famille génératrice.

M2 On montre qu’il est inclus dans un autre espace vectoriel de dimension finie.

Comment, en dimension finie, montrer que F' et G deux sous-espaces vectoriels sont égaux ?
Montrer dim(F) = dim(G) et F < G.

Comment calculer la dimension d’un espace vectoriel 7
Compter le nombre d’éléments dans une de ses bases.

Comment construire une base de E 7

M1 Si on a une famille libre, rajouter petit a petit des vecteurs de facon a rester libre. Dés que la famille a
dim(E) d’éléments, on a une base.

M2 Si on a une famille génératrice, retirer petit a petit des vecteurs qui s’écrivent comme combinaison linéaire
des autres vecteurs. Dés que la famille a dim(E) d’éléments, on a une base.
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Comment calculer le rang d’une famille de vecteurs ?

M1 Pour calculer rg(eq, es,...,e,), retirer un vecteur de la famille s’il est combinaison linéaire des autres. Puis
continuer de retirer des vecteurs que l'on peut exprimer comme combinaison linéaire des autres. S’arréter,
dés qu’on obtient une famille libre, le rang est alors égal au nombre de vecteurs qui restent.

M2 Se fixer une base %, alors rg (e1,ea,...,e,) = rg(Matg (e1, €2, ..., e,)) puis échelonner cette matrice pour
déterminer son rang.

8 Carte mentale pour étudier la liberté d’une famille
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