Espaces vectoriels et sous-espaces vectoriels

Exercice 1 (* Cou, Rai, Rec ©). Parmi les ensembles suivants, lesquels sont des espaces vectoriels (on vérifiera si ce sont ou non des sous-espaces vectoriels d'espaces vectoriels de référence que l'on précisera).

- 1. L'ensemble des fonctions définies sur \mathbb{R} et continues en 0.
- 2. L'ensemble des fonctions monotones définies sur \mathbb{R} .
- 3. L'ensemble des fonctions réelles définies sur [1;2] prenant la valeur 1 en 1.
- 4. $\{(u_n)_n \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \quad u_{n+2} 5u_{n+1} + 6 = 0\}$
- 5. L'ensemble des suites réelles arithmétiques
- 6. L'ensemble des suites réelles géométriques
- 7. $\{f \in \mathscr{C}([a;b], \mathbb{R}), f(a) = f(b)\}$

8.
$$\{f \in \mathscr{C}([a;b], \mathbb{R}), \int_a^b f(t) dt = 0\}$$

- 9. $\{f: \mathbb{R} \to \mathbb{R} \text{ dérivable } | f(1) = f'(1) = 0\}$
- $10.\{M \in \mathcal{M}_n(\mathbb{R}), M \text{ est inversible}\}$
- $12.\{(u_n) \in \mathbb{R}^{\mathbb{N}} \quad (u_n) \text{ born\'ee}\}$ $11.\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ converge}\}$
- 13. $\{M \in \mathcal{M}_n(\mathbb{R}), M = M^2\}$ 14. $\{(x, y) \in \mathbb{R}^2, x + y = 0\}$
- 15. $\{(x,y) \in \mathbb{R}^2, x+y=1\}$ 16. $\{(x,y) \in \mathbb{R}^2, xy=0\}$ 17. $\{(x,y) \in \mathbb{R}^2, xy \ge 0\}$ 18. $\{(x,y) \in \mathbb{R}^2, x \le y\}$
- $19.\{(x,y)\in\mathbb{R}^2,\ x-2y=0\}$

Exercice 2 (* Rai). 1. Montrer que les ensembles suivants sont des sous-espaces vectoriels engendrés par une partie finie à déterminer :

- (a) Dans $E = \mathbb{R}[X]$: $F = \{aX^3 + bX + c, (a, b, c) \in \mathbb{R}^3\}$
- $G = \{(a, \dots, a) \in \mathbb{R}^n, a \in \mathbb{R}\}\$ (b) Dans $E = \mathbb{R}^n$:
- (c) Dans $E = \mathbb{R}^3$: $H = \{(a b, a + b, a 3b) \in \mathbb{R}^3, (a, b) \in \mathbb{R}^2\}$
- (d) Dans $E = \mathcal{M}_3(\mathbb{R})$: $N = \left\{ \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix}, (a, b, c) \in \mathbb{R}^3 \right\}$
- $R = \{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0\}$ (e) Dans $E = \mathbb{R}^3$:
- (f) Dans $\mathbb{R}^{\mathbb{N}}$: $D = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \mid u_{n+2} = 5u_{n+1} 6un\}$
- (g) Dans $E = \mathbb{R}_3[X]$: $A = \{ P \in \mathbb{R}_3[X] \mid P(1) = 0 \}.$
- $S = \{ y \in E \mid y'' 5y' 6y = 0 \}$ (h) Dans $\mathscr{C}^2(\mathbb{R},\mathbb{R})$:
- 2. Déterminer $H \cap R$.

Exercice 3 ($\mathfrak{G}_{\star\star}$ Rai, Rec \mathfrak{O}). Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriel de E. Montrer que

 $F \cup G$ sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$

Sous-espaces vectoriels engendrés

Exercice 4 ($\star\star$ Rai, Rec). Soit \mathscr{F} et \mathscr{G} deux familles finies de vecteurs d'un espace vectoriel E.

- 1. Comparer $\text{vect}(\mathcal{F} \cap \mathcal{G})$ et $\text{vect}(\mathcal{F}) \cap \text{vect}(\mathcal{G})$.
- 2. Comparer $\text{vect}(\mathcal{F} \mid \mathcal{G})$ et $\text{vect}(\mathcal{F}) + \text{vect}(\mathcal{G})$.

Exercice 5 (** Rec, Rai). Soit $E = \mathbb{R}^{\mathbb{R}}$ et $\omega \in \mathbb{R}$ on note $F = \{x \mapsto$ $A\cos(\omega x + \varphi), (A, \varphi) \in \mathbb{R}^2$. Montrer que F est un sous-espace vectoriel de E en en trouvant une partie génératrice.

Exercice 6 ($\oint \star \star$ Rai). Soit $E = \mathbb{R}^{\mathbb{R}}$, on note P l'ensemble des fonctions paires de E et I l'ensemble des fonctions impaires de E. Montrer que P et I sont des sous-espaces vectoriels de E, puis montrer que pour tout $f \in E$, il existe un unique couple $(p, i) \in P \times I$ tel que f = p + i.

Familles libres

Exercice 7 (**). Soit $\mathscr{F} = (e_1, e_2, \dots, e_n)$ une famille liée de vecteurs de E (un K-EV). Montrer qu'il existe $i \in [1; n]$ tel que $e_i \in$ $vect(e_1, ..., e_{i-1}).$

Exercice 8 ($\oint \star$ Cou, Rai). Considérons $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$. Soient a < b deux réels, on pose $f: x \mapsto e^{ax}$ et $q: x \mapsto e^{bx} \in E$ montrer que f et q sont indépendantes dans E.

Exercice 9 (\mathfrak{F}_{\star} Cou, Rai). Considérons $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$. Soient a < b deux réels, on pose $f: x \mapsto |x-a|$ et $g: x \mapsto |x-b| \in E$ montrer que f et gsont indépendantes dans E.

Exercice 10 ($\oint \star \star \operatorname{Rec} \mathbb{O}$). Généraliser l'exercice 8 (resp. 9) dans le cas de nfunctions de la forme $x \mapsto e^{a_i x}$ (resp. $x \mapsto |x-a_i|$) avec $a_1 < a_2 < \ldots < a_n$.

Exercice 11 (* Cal YT). Les familles suivantes sont-elles des familles libres de \mathbb{R}^3 ?

- 1. $x_1 = (1, 0, 1)$ et $x_2 = (1, 2, 2)$
- 2. $x_1 = (1, 2, 1), x_2 = (2, 1, -1)$ et $x_3 = (1, -1, -2)$
- 3. $x_1 = (1, -1, 1), x_2 = (2, -1, 3)$ et $x_3 = (-1, 1, -1)$
- 4. $x_1 = (1, 2, 3), x_2 = (2, 3, 1)$ et $x_3 = (-4, 1, 0)$

Exercice 12 (* Cal © YT). Montrer que $(1)_n$, $(2^n)_n$ et $(3^n)_n$ sont des vecteurs linéairement indépendants de $\mathbb{R}^{\mathbb{N}}$.

Exercice 13 (** Rai, Cal). 1. Soit $(p,q) \in \mathbb{Z}^2$. Calculer

$$\int_0^{2\pi} \cos(px) \cos(qx) \, \mathrm{d}x$$

2. Soit $n \in \mathbb{N}^*$. On pose $f_i : x \mapsto \cos(ix)$ pour $i \in [1; n]$. En déduire que $(f_i)_{i \in [1; n]}$ est une famille libre.

Exercice 14 (* Rai, Cal ©). Dans l'espace vectoriel $E = \mathscr{F}([0; 2\pi], \mathbb{R})$ on note

$$f_1 = \cos, f_2 = \sin \forall x \in [0; 2\pi], f_3(x) = x \cos(x), f_4(x) = x \sin(x)$$

Montrer que la famille (f_1, f_2, f_3, f_4) est une famille libre de E.

Bases d'un espace vectoriel

Exercice 15 (\star Cal, Cou YT). Dans \mathbb{R}^3 , on pose

$$e_1 = (1, 1, 1), e_2 = (1, 1, 0), e_3 = (0, 1, 1)$$

- 1. Montrer que $\mathscr{B}' = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .
- 2. Soit $(x, y, z) \in \mathbb{R}^3$ un vecteur exprimé dans la base canonique de \mathbb{R}^3 . Quelles sont ses coordonnées dans la nouvelle base \mathscr{B}' ?

Exercice 16 (\star Cal, Cou). Dans $\mathbb{R}_2[X]$, on pose

$$P_1 = X^2 + 1$$
 $P_2 = X^2 + X - 1$ et $P_3 = X^2 + X$

- 1. Montrer que $\mathscr{B}' = (P_1, P_2, P_3)$ est une base de $\mathbb{R}_2[X]$.
- 2. Soit $P = a_0 + a_1 X + a_2 X^2 \in \mathbb{R}_2[X]$ un vecteur exprimé dans la base canonique de $\mathbb{R}_2[X]$. Quelles sont ses coordonnées dans la nouvelle base \mathscr{B}' ?

Exercice 17 (* Cal, Rai YT). Soit $M = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. On note \mathcal{C} l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ qui commutent avec M. Montrer que \mathcal{C} est un espace vectoriel. En donner une base.

Exercice 18 (* Cal, Cou). Soit E un \mathbb{K} -espace vectoriel. Soit $\mathscr{B} = (e_1, e_2, e_3)$ une base de E. On pose

$$f_1 = e_1 + 2e_3$$
, $f_2 = e_3 - e_1$, $f_3 = e_1 + 2e_2$.

- 1. Montrer que $\mathscr{B}' = (f_1, f_2, f_3)$ est une base de E.
- 2. Soit $x \in E$ un vecteur dont les coordonnées dans la base \mathscr{B} sont connues. Quelles sont ses coordonnées dans la nouvelle base \mathscr{B}' ?

Dimensions

Exercice 19 (\star Cal, Rai). Pour chacun des sous-espaces vectoriels E considérés ci-dessous, déterminer une base de E et donner sa dimension.

- 1. $E = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2y + z t = 0\}$
- 2. $E = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y + z = 0 \text{ et } x + 3y + 2z = 0\}$
- 3. $E = \{(x, y, z) \in \mathbb{R}^3 \mid 3z = 2x = y\}$
- 4. $E = \text{vect}(\text{ch}, \text{sh}, \exp, \exp \circ (-\text{Id}_{\mathbb{R}}))$
- 5. (YT) $E = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid M^T = M \}$
- 6. L'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbb{R})$.
- 7. L'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que $u_{n+2}=5u_{n+1}-6u_n$.
- 8. $E = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid m_{11} + m_{22} = 0 \}.$
- 9. ($f \star \star YT$) $T_n(\mathbb{R})$, $\mathscr{A}_n(\mathbb{R})$ et $\mathscr{S}_n(\mathbb{R})$ (ensembles des matrices triangulaires supérieures, antisymétriques ou symétriques de $\mathscr{M}_n(\mathbb{R})$)
- 10. \mathbb{C}^n vu comme un \mathbb{R} -ev.

Exercice 20 (\star Rai ©). On se place dans $E = \mathbb{R}^3$

- 1. Donner un exemple d'une famille génératrice de E non libre.
- 2. Donner un exemple d'une famille libre de E non génératrice.
- 3. Donner un exemple d'une famille non libre de E de trois vecteurs non colinéaires deux à deux.

Exercice 21 (** Rai, Rec ©). Soit $n \in \mathbb{N}^*$. On note $H = \{M \in \text{Exercice 30 (* Rai ©)}. \text{Soit } E = \mathbb{R}_3[X], \text{ on pose } F = \text{vect}(X-1) \text{ et } X \in \mathbb{R}_3[X] \}$ $\mathcal{M}_n(\mathbb{R}) \mid \sum_{k=0}^n m_{k,k} = 0$. Démontrer que H est un sous-espace vectoriel et en trouver une base puis la dimension.

Exercice 22 (* Cal). Soit $\mathcal{B} = ((0,1,x),(0,x,1),(x,5x,x))$. Déterminer les $x \in \mathbb{R}$ tels que \mathscr{B} soit une base de \mathbb{R}^3 .

Exercice 23 (* Cal \mathbb{O}). Soit $E = \mathbb{R}_4[X]$ et a et b deux réels distincts.

- 1. On désigne par F le SEV de E constitué des polynômes dont a et bsont racines. Déterminer la dimension de F.
- 2. On pose G l'ensemble des polynômes de E tel que a soit une racine multiple, démontrer que G est un espace vectoriel et déterminer sa dimension.

Exercice 24 (\star Cal \odot). On considère les familles de E \mathbb{R}^4 suivantes $\mathscr{F}_1 = ((1,1,1,1),(1,2,3,4),(1,0,0,0)), \text{ et } \mathscr{F}_2$ ((1,1,1,1),(1,2,3,4),(1,4,7,10)) dire si \mathscr{F}_1 et \mathscr{F}_2 peuvent être complétées en des bases de E et si oui, complétez-les.

Exercice 25 (*** Rec, Rai). Soit F un sous-espace vectoriel de dimension finie de $\mathbb{R}[X]$. Montrer qu'il existe une base de F dont tous les éléments ont des degrés différents. Montrer qu'il existe une base de F dont tous les éléments sont de même degré.

Exercice 26 (** Rec ©). Soit $M \in \mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe $d \in \mathbb{N}$ tel que la famille $(I_n, M, M^2, \dots, M^d)$ soit forcément liée.

Exercice 27 (*** Rai, Rec). Soit E un \mathbb{C} -espace vectoriel de dimension n.

- 1. Justifier que E peut aussi être considéré comme un \mathbb{R} -EV.
- 2. Donner une relation entre $\dim_{\mathbb{R}}(E)$ et $\dim_{\mathbb{C}}(E)$. À partir d'une \mathbb{C} -base de E, donner une \mathbb{R} -base de E.
- 3. La réciproque est-elle vraie : tout \mathbb{R} -espace vectoriel peut-il être vu \mathbf{Rang} comme un C-espace vectoriel? Sinon, quels sont ceux qui le peuvent?

Exercice 28 (* Rai, Rec ©). Dans $E = \mathbb{C}_3[X]$, posons $H = \{P \in \mathbb{C}_3[X], P \in \mathbb{C}_3[X]\}$ $E \mid P(1) = 0$. Montrer que c'est un sous-espace vectoriel de E en en donnant une base. En déduire sa dimension.

Exercice 29 (* Cal). Soit $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + 2z = 0\}$ et $G = \{(x, y, z, t) \in \mathbb{R}^4 \mid t + z = 0 \text{ et } x + y - t = 0\}.$ Déterminer $\dim(F)$, $\dim(G)$, $\dim(F \cap G)$.

 $G = \{ P \in E \mid P(2) = 0 \}.$

- 1. Justifier que F et G sont des sous-espaces vectoriels de E.
- 2. Déterminer leur dimension.
- 3. Montrer que la concaténation d'une base de F et d'une de G est une base de E et que tout élément de E s'écrit comme somme d'un élément de F et d'un élément de G et ce d'une unique manière.

Exercice 31 (* Rai ©). Soient $n \in \mathbb{N}^*$, et $E = \mathbb{R}^n$, posons :

$$A = \{(\lambda, \dots, \lambda) | \lambda \in \mathbb{R}\} \quad \text{et} \quad B = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n | x_1 + \dots + x_n = 0\}$$

- 1. Déterminer $\dim(A)$.
- 2. Montrer que B est un sous-espace vectoriel de \mathbb{R}^n .
- 3. Déterminer la dimension de B puis une base de B.

Exercice 32 ($\star\star\star$ Rai, Cou ©). Soient E et F deux K-espaces-vectoriels de dimension finie. Montrer que $E \times F$ est un espace-vectoriel, puis qu'il est de dimension finie et calculer $\dim(E \times F)$.

Exercice 33 ($\oint \star \star \text{Rai}$, Rec ©). Soit $(a_i)_{0 \le i \le n}$ une famille de n+1 réels deux à deux distincts.

- 1. On suppose qu'il existe (L_0, L_1, \ldots, L_n) une famille de polynômes de $\mathbb{R}_n[X]$ tel que $L_i(a_j) = \delta_{i,j}$. Montrer qu'alors (L_0, L_1, \dots, L_n) est une base de $\mathbb{R}_n[X]$.
- 2. Montrer qu'une telle famille existe et est unique.
- 3. Soit $P \in \mathbb{R}_n[X]$ donner les coordonnées de P dans cette base.
- 4. Soit $(b_i)_{0 \le i \le n} \in \mathbb{R}^{n+1}$, montrer qu'il existe un unique polynôme $P \in$ $\mathbb{R}_n[X]$ tel que pour tout $i \in [0, n]$, $P(a_i) = b_i$.

Exercice 34 (* Cal). Calculer le rang des familles suivantes :

- $\mathscr{F} = ((1,1,1),(0,1,2),(-1,0,1),(0,1,2))$
- $\mathscr{F} = (I_n, J, J^2, J^3)$ avec $J \in \mathscr{M}_n(\mathbb{R})$ la matrice contenant que des 1.
- $\mathscr{F} = (\cos, \sin, x \mapsto \sin(2x)).$
- $\mathscr{F}=((1,j,j^2),(j,j^2,1),(j^2,1,j))$ dans \mathbb{C}^3 vu comme un \mathbb{C} -EV. puis dans \mathbb{C}^3 vu comme un \mathbb{R} -EV où $i = e^{i\frac{2\pi}{3}}$.
- $\mathscr{F} = ((1, 2, 3, 4), (2, 2, 2, 2), (-3, 0, 1, 2), (1, 1, -8, 5), (2, 1, 1, 1))$

Sujet de concours

Exercice 35 (* Rai). Posons $E = \mathbb{R}_4[X]$, $A = X^4 + 4X + 3$. et

$$F = {\alpha X^4 + (\alpha + \beta)X + \beta \mid (\alpha, \beta) \in \mathbb{R}^2}$$
 et $G = {P \in E \mid P'(1) = 0}$

- 1. Montrer que si $Q \in F$, alors X + 1|Q.
- 2. Décomposer A en produit d'irréductibles de $\mathbb{R}[X]$ puis de $\mathbb{C}[X]$.
- 3. Montrer que F est un SEV de $\mathbb{R}_4[X]$. Déterminer une base de F et $\dim(F)$.
- 4. Montrer que G est un SEV de $\mathbb{R}_4[X]$ et que $\dim(G) \leq 4$. Montrer que la famille $(1, (X-1)^2, (X-1)^3, (X-1)^4)$ est une famille libre de polynômes de G. Puis que c'en est une base. Que vaut $\dim(G)$?
- 5. Déterminer une base de $F \cap G$ et déterminer $\dim(F \cap G)$.

Inclassable

Exercice 36 (** Rec, Rai, Mod). Dans cet exercice on considère le \mathbb{R} -espace vectoriel \mathbb{R}^2 , et on y définit une multiplication par :

$$\star : \begin{cases} \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ ((a,b),(a',b')) & \longmapsto (aa'-bb',ab'+a'b) \end{cases}$$

1. Vérifier que pour tout $(a,b),(a',b'),(a'',b'') \in \mathbb{R}^2$:

$$(a,b) * (a',b') = (a',b') * (a,b)$$

$$((a,b) * (a',b')) * (a'',b'') = (a,b) * ((a',b') * (a'',b''))$$

$$(a,b) * [(a',b') + (a'',b'')] = (a,b) * (a',b') + (a,b) * (a'',b'')$$

- 2. On pose $\vec{1}=(1,0)$ vérifier $(a,b)\in\mathbb{R}^2,\,\vec{1}*(a,b)=(a,b)$
- 3. Soit $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$, montrer qu'il existe $(a',b') \in \mathbb{R}^2$ tel que $(a,b)*(a',b')=\vec{1}$.
- 4. On pose $\vec{i} = (0, 1)$, calculer $\vec{i} * \vec{i}$
- 5. Montrer que $\mathbb{R}^2 = \text{vect}(\vec{1}, \vec{i})$.
- 6. À votre avis, que venons nous de faire?