Correction de l'exercice 1. a) Notons $E = \mathscr{F}(\mathbb{R}, \mathbb{R}) = \mathbb{R}^{\mathbb{R}}$ le \mathbb{R} -espace vectoriel des fonctions réelles définies sur \mathbb{R} et $F = \{f \in E, f \text{ continue en } 0\}$.

- $F \subset E$
- La fonction nulle : θ : $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto 0 \end{cases}$ est bien continue en 0 (en effet, $\theta(x) = 0 \xrightarrow[x \to 0]{} 0 = \theta(0)$). Donc $\theta \in F$
- Soit $(f,g) \in F^2$ et $\lambda \in \mathbb{R}$, alors $f + \lambda g$ est continue en 0, en effet :

$$(f+\lambda)(x) = f(x) + \lambda g(x) \xrightarrow[x\to 0]{} f(0) + \lambda g(0) = (\lambda f + g)(0)$$

donc $f + \lambda g \in F$

Conclusion : F est un sous-espace vectoriel de E.

- b) Notons $E=\mathscr{F}(\mathbb{R},\mathbb{R})=\mathbb{R}^{\mathbb{R}}$ le \mathbb{R} -espace vectoriel des fonctions réelles définies sur \mathbb{R} et $F=\{f\in E,f \text{ monotone sur }\mathbb{R}\}$. On va montrer que F n'est pas un sous-espace vectoriel de E. Prenons $f\colon\begin{cases}\mathbb{R}\longrightarrow\mathbb{R}\\x\longmapsto x^3\end{cases}$ et $g\colon\begin{cases}\mathbb{R}\longrightarrow\mathbb{R}\\x\longmapsto -3x\end{cases}$, alors f et g sont monotones donc $f\in F$ et $g\in F$. Posons $h=f+g\colon\begin{cases}\mathbb{R}\longrightarrow\mathbb{R}\\x\mapsto x^3-3x\end{cases}$ Remarquons que $0\leqslant 1$ et que h(0)=0>h(1)=-2 donc h n'est pas croissante, remarquons aussi que $1\leqslant 2$ et que h(1)=-1< h(2)=2, donc h n'est pas décroissante. Ainsi, $h=f+g\notin F$. Par conséquent, F n'est pas un sous-espace vectoriel de E.
- c) Notons $E = \mathscr{F}([1;2],\mathbb{R}) = \mathbb{R}^{[1;2]}$ le \mathbb{R} -espace vectoriel des fonctions réelles définies sur [1;2] et $F = \{f \in E, f(1) = 1\}$. Alors, posons la fonction nulle $\theta : \begin{cases} [1;2] \longrightarrow \mathbb{R} \\ x \longmapsto 0 \end{cases}$, comme $\theta(1) = 0, \theta \notin F$. Donc F n'est pas un sous-espace vectoriel de E.
- d) Notons $F = \{(u_n)_n \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \quad u_{n+2} 5u_{n+1} + 6 = 0\}$, posons, pour tout $n \in \mathbb{N}$, $u_n = 0$, $(u_n)_n$ est la suite nulle, pour $n = 28 \in \mathbb{N}$, $u_{n+2} 5u_{n+1} + 6 = 6 \neq 0$, donc la suite nulle n'est pas dans F, donc F n'est pas un SEV de $\mathbb{R}^{\mathbb{N}}$.
- e) Notons

$$F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \quad (u_n)_n \text{ est arithmétique}\} = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \quad \exists r \in \mathbb{R} \quad \forall n \in \mathbb{N} \qquad u_{n+1} = u_n + r\}$$

- $F \subset \mathbb{R}^{\mathbb{N}}$.
- Posons, pour tout $n \in \mathbb{N}$, $u_n = 0$, $(u_n)_n$ est la suite nulle. Posons également r = 0, de sorte que, pour tout $n \in \mathbb{N}$, $u_{n+1} = 0 = u_n + r$. Donc la suite nulle est dans F.
- Soient (u_n) et $(v_n) \in F$ et $\lambda \in \mathbb{R}$. Notons r la raison de $(u_n)_n$ et r' la raison de $(v_n)_n$, alors

$$\forall n \in \mathbb{N} \qquad \lambda u_{n+1} + v_{n+1} = \lambda (u_n + r) + v_n + r' = (\lambda u_n + v_n) + (\lambda r + r')$$

Ainsi, la suite $(\lambda u_n + v_n)_n$ est une suite arithmétique (de raison $\lambda r + r'$). Dès lors, $(\lambda u_n + v_n)_n \in F$. Ainsi, l'ensemble des suites arithmétiques réelles est un sous-espace vectoriel de l'ensemble des suites réelles.

- f) Notons $E=\mathbb{R}^{\mathbb{N}}$ le \mathbb{R} -espace vectoriel des suites réelles et $F=\{(u_n)_n,\,u_n\text{ soit géométrique}\}$. Prenons $(u_n)_n$ et $(v_n)_n$ deux suites définies par, pour tout $n\in\mathbb{N},\,u_n=1^n$ et $v_n=2^n$, alors $(u_n)_n\in F$ et $(v_n)_n\in F$. Notons $(w_n)_{n\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}+(v_n)_{n\in\mathbb{N}}$. Alors pour tout $n\in\mathbb{N},\,w_n=1+2^n$. Remarquons que $w_0=2$ et $w_1=3$ ne sont pas nuls, on peut donc calculer $\frac{w_1}{w_0}=\frac{3}{2}$ et $\frac{w_2}{w_1}=\frac{5}{3}$, donc $\frac{w_1}{w_0}\neq\frac{w_2}{w_1}$, ainsi la suite $(w_n)_n$ n'est pas géométrique. Donc $(u_n)_{n\in\mathbb{N}}+(v_n)_{n\in\mathbb{N}}\notin F$. F n'est donc pas un sous-espace vectoriel de E.
- g) $\{f \in \mathscr{C}([a;b],\mathbb{R}), f(a) = f(b)\}$
- h) Posons $E=\mathscr{F}([\,a\,;b\,]\,,\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions réelles définies sur $[\,a\,;b\,]$. Et $F=\{f\in\mathscr{C}([\,a\,;b\,]\,,\mathbb{R}),\,\int_a^b f(t)\,\mathrm{d}t=0\}$:
 - \bullet $F \subset E$.

- La fonction nulle θ : $\begin{cases} \begin{bmatrix} a ; b \end{bmatrix} \longrightarrow \mathbb{R} \\ x \longmapsto 0 \end{cases}$ est continue sur $\begin{bmatrix} a ; b \end{bmatrix}$ et $\int_a^b \theta(t) \, \mathrm{d}t = \int_a^b 0 \, \mathrm{d}t = 0$. Donc $\theta \in F$.
- Soit $(f,g) \in F^2$ et $\lambda \in \mathbb{R}$, alors $f + \lambda g$ est continue sur [a;b] (opérations sur les fonctions continues), donc $f + \lambda g \in \mathscr{C}([a;b],\mathbb{R})$. De plus, par linéarité de l'intégrale :

$$\int_{a}^{b} (f + \lambda g)(t) dt = \int_{a}^{b} f(t) + \lambda g(t) dt = \int_{a}^{b} f(t) dt + \lambda \int_{a}^{b} g(t) dt = 0 + \lambda 0 = 0$$

Donc $f + \lambda g \in F$.

Donc F est un sous-espace vectoriel de E.

- i) $\{f \in \mathcal{D}(\mathbb{R}, \mathbb{R}), f(1) = f'(1) = 0\}$
- j) Notons le \mathbb{R} -espace vectoriel $E = \mathcal{M}_n(\mathbb{R})$ et $F = \{M \in \mathcal{M}_n(\mathbb{R}), M \text{ est inversible}\}$. La matrice nulle 0_n n'est pas inversible (en effet, pour tout $B \in \mathcal{M}_n(\mathbb{R})$, $0_n \times B = 0_n \neq I_n$). Donc F n'est pas un sous-espace vectoriel de E.
- k) Notons $E = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites réelles. Et $F = \{(u_n) \in E, (u_n) \text{ converge}\}.$
 - $F \subset E$
 - Posons, pour tout $n \in \mathbb{N}$, $z_n = 0$, $(z_n)_n$ est la suite nulle dans E, de plus, $z_n \xrightarrow[n \to \infty]{} 0$, donc $(z_n)_n \in F$.
 - Soit $(u_n)_{n\in\mathbb{N}} \in F$ et $(v_n)_{n\in\mathbb{N}} \in F$, $\lambda \in \mathbb{R}$, notons ℓ la limite de $(u_n)_n$ et ℓ' la limite de $(v_n)_n$, alors d'après le cours $u_n + \lambda v_n \xrightarrow[n \to \infty]{} \ell + \lambda \ell'$, ainsi, $\lambda(u_n)_n + \lambda(v_n)_n$ est une suite convergente. Donc $(u_n)_n + \lambda(v_n)_n \in F$. Donc F est un sous-espace vectoriel de E.
- l) Notons $E = \mathbb{R}^N$ l'espace vectoriel des suites réelles et $F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \ (u_n)_n \text{ bornée}\}.$
 - \bullet $F \subset F$
 - Posons, pour tout $n \in \mathbb{N}$, $z_n = 0$ de sorte que $(z_n)_n$ soit la suite nulle, alors pour tout $n \in \mathbb{N}$, $|z_n| \leq 42$, de sorte que la suite nulle soit bien bornée. Donc $(z_n)_{n \in \mathbb{N}} \in F$.
 - Soit $(u_n)_{n\in\mathbb{N}} \in F$ et $(v_n)_{n\in\mathbb{N}} \in F$, $\lambda \in \mathbb{R}$. Posons $(w_n)_n = (u_n)_n + \lambda(v_n)_n$. Il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $|u_n| \leq M$. De même, il existe $M' \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $|v_n| \leq M'$. Alors, d'après l'inégalité triangulaire, on a

$$\forall n \in \mathbb{N} \qquad |w_n| = |u_n + \lambda v_n| \leqslant |u_n| + |\lambda v_n| \leqslant |u_n| + |\lambda| \times |v_n| \leqslant M + |\lambda| M'$$

Ce qui prouve que la suite $(w_n)_n \in F$.

Ainsi, F est un sous-espace vectoriel de E.

- m) Notons le \mathbb{R} -espace vectoriel $E = \mathscr{M}_n(\mathbb{R})$ et $F = \{M \in \mathscr{M}_n(\mathbb{R}), M = M^2\}$. Comme $I_n^2 = I_n$, on a que $I_n \in F$. Pourtant $(2I_n)^2 = 4I_n \neq 2I_n$, donc $2I_n \notin F$. F n'est donc pas un sous-espace vectoriel de E.
- n) Notons $E = \mathbb{R}^2$ le \mathbb{R} -espace vectoriel et $F = \{(x, y) \in \mathbb{R}^2, x + y = 0\}.$
 - $F \subset E$.
 - $0_E = (0,0)$, or 0+0=0, donc $0_E \in F$.
 - Soit $u \in F$ et $v \in F$, alors il existe $x \in \mathbb{R}$ et $y \in \mathbb{R}$ tel que u = (x, y) avec x + y = 0. De même il existe $x' \in \mathbb{R}$ et $y' \in \mathbb{R}$ tel que v = (x', y') avec x' + y' = 0. Soit $\lambda \in \mathbb{R}$. Notons $w = u + \lambda v = (x + \lambda x', y + \lambda y')$. Calculons

$$(x + \lambda x') + (y + \lambda y') = (x + y) + \lambda (x' + y') = 0 + \lambda 0$$

Donc $w = u + \lambda v \in F$.

F est donc un sous-espace vectoriel de \mathbb{R}^2 .

- o) Notons l'espace vectoriel $E = \mathbb{R}^2$ et $F = \{(x, y) \in \mathbb{R}^2, x + y = 1\}$. Remarquons que $0_E = (0, 0) \notin F$, car $0 + 0 \neq 1$. Donc F n'est pas un sous-espace vectoriel de \mathbb{R}^2 .
- p) Notons $F = \{(x, y) \in \mathbb{R}^2, xy = 0\}$, remarquons que $(1, 0) \in F$ et $(0, 1) \in F$, mais (1, 0) + (0, 1) = (1, 1) avec $1 \times 1 \neq 0$, donc $(1, 0) + (0, 1) \notin F$. Ainsi, F n'est pas un SEV de \mathbb{R}^2 .
- q) Notons l'espace vectoriel $E = \mathbb{R}^2$ et $F = \{(x,y) \in \mathbb{R}^2, xy \ge 0\}$. Remarquons que $u = (10,1) \in F$ (car $10 \times 1 \ge 0$) que $v = (-1,-10) \in F$, car $(-1) \times (-10) \ge 0$, pourtant u+v=(9,-9) et $9 \times -9 < 0$, donc $u+v \notin F$. F n'est donc pas un sous-espace vectoriel de \mathbb{R}^2 .

r) Notons l'espace vectoriel $E = \mathbb{R}^2$ et $F = \{(x,y) \in \mathbb{R}^2, \ x \leq y\}$. Prenons le vecteur u = (1,2), alors comme $1 \leq 2$, on a que $u \in F$. Considérons v = (-1)u = (-1,-2), alors comme -1 > -2, $v \notin F$, donc F n'est pas un sous-espace vectoriel de E.

s)

Correction de l'exercice 2.

Correction de l'exercice 3. Tout d'abord, si $F \subset G$, alors $F \cup G = G$ est bien un sous-espace vectoriel de E. De même, si $G \subset F$ alors $F \cup G = F$ est bien un sous-espace vectoriel de E, ainsi si $F \subset G$ ou $G \subset F$, $F \cup G$ est bien un sous-espace vectoriel de E. Ainsi, l'implication réciproque est vérifiée.

Pour l'implication directe, supposons que $F \cup G$ soit un espace vectoriel et procédons par l'absurde. Supposons donc que F ne soit pas inclus dans G et que G ne soit pas inclus dans F^{-1} . Cela veut dire qu'il existe $f \in F$ avec $f \notin G$. De même, cela veut dire qu'il existe $g \in G$ avec $g \notin F$. Dans tous les cas, $f \in F \cup G$ et $g \in F \cup G$. Comme $F \cup G$ est un sous-espace vectoriel de E, il vient que $f + g \in F \cup G$. Par définition de l'union, $f + g \in F$ ou $f + g \in G$.

- Dans le premier cas $f + g = f' \in F$ et donc $g = f' f \in F$ (car F est un sous-espace vectoriel de E), donc $g \in F$ ce qui est impossible.
- Dans le second cas, $f + g = g' \in G$ et donc $f = g' g \in G$ (car G est un sous-espace vectoriel de E), donc $f \in G$ ce qui est impossible.

On obtient donc une contradiction dans tous les cas. Donc notre hypothèse était fausse. Ainsi $F \subset G$ ou $G \subset F$.

^{1.} De l'intérêt de savoir nier les ou.