
Intégrales généralisées
Chapitre 9

Objectif :
Vous connaissez la notion d’intégrale d’une fonction f continue sur un segment r a ; b s, mais pas sur un intervalle quelconque,

dans ce chapitre, on va donner un sens à des objets comme
ż `8

1

1
t2 dt ou

ż 1

0
lnptq dt.

Pré-requis :
‚ Fonctions usuelles
‚ Notion de limites, fonctions continues et fonctions prolongeables par continuité
‚ Intégrales et primitives (primitives usuelles, IPP, changement de variable)
‚ Intégration sur un segment
‚ Obtention d’équivalents
‚ Théorème fondamental de l’analyse
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Dans ce chapitre, I est un intervalle de R d’extrémités a P R Y t´8u et b P R Y t`8u avec a ă b. Ainsi, suivant les cas,
I “ s a ; b r, I “ s a ; b s, I “ r a ; b r ou I “ r a ; b s.

1 Définition de l’intégrale généralisée (ou impropre) sur un intervalle

Si a P R et f P C 0pr a ; b r ,Rq, on dit que l’intégrale généralisée
ż b

a

f converge si x ÞÝÑ
ż x

a

f admet une limite

finie en b´. Dans ce cas, on pose :
ż b

a

fptq dt “
ż

r a ; b r

fptq dt “ lim
xÑb´

ż x

a

fptq dt.

Définition de l’intégrale généralisée (ou impropre) sur un intervalle semi-ouvert à droite

Convergence d’une intégrale sur
r a ; b r avec b P R.

Convergence d’une intégrale sur r a ; `8 r.

Divergence d’une intégrale sur r a ; `8 r.
Exemples 1. Étudier la convergence des intégrales suivantes et calcul le cas échéant :ż `8

1

1
t2 dt1.

ż `8

0
1 dt2.

ż 1

0

1
p1 ´ tq2 dt3.

ż `8

0
cosptq dt.4.

Si b P R et f P C 0ps a ; b s ,Rq, on dit que l’intégrale
ż b

a

f converge si x ÞÑ
ż b

x

fptq dt admet une limite finie en a`.

Dans ce cas, on pose :
ż b

a

fptq dt “ lim
xÑa`

ż b

x

fptq dt

Définition de l’intégrale généralisée (ou impropre) sur un intervalle semi-ouvert à gauche

Exemples 2. Étudier la convergence des intégrales suivantes et calcul des intégrales le cas échéant :ż 1

0

1?
t

dt1.
ż 1

0

1
t

3
2

dt2.
ż 1

0
lnptq dt3.

Si f P C 0ps a ; b r ,Rq et c P s a ; b r, on dit que l’intégrale
ż b

a

f converge si les intégrales
ż c

a

f et
ż b

c

f convergent.

Dans ce cas, on pose
ż b

a

fptq dt “
ż c

a

fptq dt `
ż b

c

fptq dt.

Définition de l’intégrale généralisée (ou impropre) sur un intervalle ouvert
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Remarque 1. On démontre que le choix de c n’a pas d’incidence ni sur la nature de l’intégrale de
ż b

a

f ni sur sa valeur.

‚
c

‚
c1

Exemples 3. Étudier la convergence des intégrales suivantes et calculs des intégrales le cas échéant :ż `8

´8

1
1 ` t2 dt1.

ż `8

´8

t5 dt2.

Remarque 2. Si pa, bq P R2 et f P C 0pr a ; b s ,Rq, alors
ż

r a ; b r

f ,
ż

s a ; b s

f et
ż

s a ; b r

f convergent et valent toutes
ż b

a

f .

Si f continue sur I “ s x0 ; xn`1 r ztx1, . . . , xnu tels que x0 ă x1 ă x2 ă . . . ă xn ă xn`1, on dit que
ż

I

f converge

si, pour tout i P rr 0 ; n ss,
ż

s xi ; xi`1 r

f converge. On définit alors l’intégrale de f sur I par
ż

I

f “
nř

i“0

ż xi`1

xi

f .

Définition de l’intégrale généralisée d’une fonction ayant un nombre fini de discontinuités

Remarque 3. La nature et l’éventuelle valeur de
ż

I

f ne dépendent pas de la valeur de f aux points de discontinuité.

‚
x1

‚
x2

‚
‚

Exemple 4. Étudier la convergence (et calcul le cas échéant) de
ż `8

´8

f où f : t ÞÑ 1s ´2 ; 2 rptqe t ` 1s 2 ; `8 rptq 1
t2 .

Soient pa, bq P R2 et f est définie et continue sur r a ; b s ztcu, si fpxq ÝÑ
xÑc

ℓ P R, alors
ż b

a

f converge.

Proposition no 1 : fonction prolongeable par continuité (intégrale faussement impropre)

Exemple 5. Montrer que
ż 1

´1

sinptq
t

dt converge.

Remarque 4. Par convention,
ż a

a

f “ 0 et si
ż b

a

f converge, on pose
ż a

b

f “ ´
ż b

a

f .
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2 Propriétés de l’intégrale généralisée et méthodes de calculs

L’intervalle I a pour extrémités a et b. Soient λ P R, pf, gq P C 0pI,Rq2 d’intégrales convergentes sur I :
Linéarité :

ż

I

λf ` g converge et
ż

I

pλfptq ` gptqq dt “ λ

ż

I

fptq dt `
ż

I

gptq dt.1.

Chasles : si c P I, alors
ż c

a

f ,
ż b

c

f convergent et
ż b

a

fptq dt “
ż c

a

fptq dt `
ż b

c

fptq dt.2.

Positivité : si f ě 0 alors
ż

I

fptq dt ě 0.3. Croissance : si f ď g, alors
ż

I

fptq dt ď
ż

I

gptq dt.4.

Stricte positivité : si f est continue et positive sur I et non nulle alors
ż

I

fptq ą 0.5.

Proposition no 2 : propriétés de l’intégrale sur un intervalle

Avant de calculer
ż `8

0
fptq dt, on montre que l’intégrale converge (idem pour les limites, les séries etc.).

Attention, précaution à prendre avant d’écrire une intégrale

Soit a P R. L’intégrale
ż `8

0
e ´at dt converge si et seulement si a ą 0. Et dans ce cas,

ż `8

0
e ´at dt “ 1

a
.

Intégrale classique : l’exponentielle

ż `8

1

dt

tα
converge ssi α ą 1 et alors

ż `8

1

dt

tα
“ 1

α ´ 1 ,
ż 1

0

dt

tα
converge ssi α ă 1 et alors

ż 1

0

dt

tα
“ 1

1 ´ α

Intégrale classique : intégrale de Riemann

Soit pf, gq P C 1ps a ; b r ,Rq2. Si fg admet des limites finies en b´ et en a`, alors les intégrales
ż b

a

fg1 et
ż b

a

g1f ont

même nature et si elles convergent
ż b

a

fptqg1ptq dt “ lim
b´

fg ´ lim
a`

fg ´
ż b

a

f 1ptqgptq dt.

Théorème no 1 : intégration par parties pour les intégrales généralisées

Exemple 6. Prouver la convergence de
ż `8

0
te ´t dt et calculer la valeur de cette intégrale.

Soit φ P C 1ps a ; b r ,Rq strictement monotone. Posons α “ lim
a

φ, β “ lim
b

φ. Si f est continue sur s α ; β r (ou s β ; α r).

Alors, les intégrales
ż b

a

pf˝φqφ1 et
ż β

α

f ont même nature. De plus, si elles convergent,
ż b

a

fpφptqqφ1ptqdt “
ż β

α

fpxqdx

Théorème no 2 : changement de variable pour les intégrales généralisées

Exemple 7. Montrer que
ż `8

0
te ´t2 dt est une intégrale convergente et calculer sa valeur.

Vérifier que le changement de variable est C 1, changer φptq par x, dt par dx et les bornes.
Attention à ne pas oublier quelque chose
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Soit f continue sur un intervalle s ´a ; a r avec a ą 0.

‚ Si f est paire, alors
ż a

´a

f converge ssi
ż a

0
f converge et dans ce cas

ż a

´a

f “ 2
ż a

0
f .

‚ Si f est impaire, alors
ż a

´a

f converge ssi
ż a

0
f converge et dans ce cas

ż a

´a

f “ 0.

Proposition no 3 : intégrales des fonctions paires et impaires sur un intervalle symétrique

3 Intégrales généralisées de fonctions positives

Soient f et g continues sur I, positives et 0 ď f ď g. Si
ż

I

g converge, alors
ż

I

f converge et
ż

I

fptq dt ď
ż

I

gptq dt.

Proposition no 4 : comparaison de fonctions positives

L’intégrale
ż `8

´8

e ´ x2
2 dx converge et

ż `8

´8

e ´ x2
2 dx “ ?

2π.

Exemple : intégrale de référence (valeur admise)

Si f et g sont continues sur r a ; b r, positives et f „
b

g, alors
ż b

a

g et
ż b

a

f ont même nature (idem sur s a ; b s si f „
a

g).

Proposition no 5 : fonctions positives équivalente

Exemple 8. Étudier la convergence de
ż `8

2

1
t2 ´ t

dt.

4 Intégrales absolument convergentes

Soit f P C 0pI,Rq. On dit que
ż

I

f converge absolument si
ż

I

|f | converge.

Définition de l’intégrale absolument convergente/fonctions intégrables

Remarque 5. Si f P C 0pI,R`q est positive, alors
ż

I

f converge absolument ssi
ż

I

f converge.

Soit f P C 0pI,Rq si
ż

I

f converge absolument, alors
ż

I

f converge et
ˇ̌
ˇ̌
ż

I

fptq dt

ˇ̌
ˇ̌ ď

ż

I

|fptq| dt

Théorème no 3 : l’absolue convergence entraîne la convergence

La réciproque est fausse :
ż

I

f peut converger et
ż

I

|f | diverger.

Attention à la réciproque

Exemple 9. Étudier l’intégrabilité de f : t ÞÑ sinp1{t2q sur r 1 ; `8 r.
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5 Carte mentale : justifier la convergence d’une intégrale généralisée
Les cases en vert permettent parfois un calcul de l’intégrale SI celle-ci converge.

f P C 0pI,Rqż

I

f CVG ?

I “ r a ; b r

changement
variable

f prolon-
geable

par
continuité

en b si
b P R

Linéarité
ou Chasles

IPP

f inté-
grable ?

|f | ě 0

f ě 0

ď

„

calcul
primitive
+ limite

en b

I “ s a ; b r

choisir
c P I,

étude sur
s a ; c s

et r c ; b r

étude sur
r 0 ; b r si

a “ ´b et
f (im)paire

changement
variable

IPP

I “ s a ; b s
Idem

I “ r a ; b r

I “ r a ; b s
La vie

est belle

f continue sur
s x0 ; xn`1 r privé
de tx1, . . . , xnuż xn

x0

f CVG ?

@i,
ż xi`1

xi

f

CVG ?
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