
1 Rappels sur les Dictionnaires
On accède aux éléments d’une liste grâce aux indices qui sont des
entiers k P rr 0 ; n ´ 1 ss si n est la longueur de la liste. Ainsi, si
L=[5,"a",["c",3.2]], alors

‚ L[0] vaut 5
‚ L[1] vaut "a"
‚ L[2] vaut ["c",3.2]

La commande print(L[3]) provoque une erreur : out of range. On ai-
merait généraliser le concept de listes, avec des indices qui ne seraient
plus forcément des entiers entre 0 et n ´ 1. Et c’est précisément ce que
font les dictionnaires. La notion d’indices une liste va être remplacée par
celle de clé dans un dictionnaire. La notion d’élément d’indice k va être
remplacée par celle de valeur associée à la clé dans un dictionnaire. Par
exemple, imaginons qu’on veuille compter le nombre de pommes de poires
et de fraises. On pourrait stocker dans une liste : L=[5,2,25] et retenir
que L[0] compte le nombre de pommes, L[1] le nombre de poires et L[2]
le nombre de fraises. Mais ce n’est pas commode, imaginez que la liste est
un million d’éléments, vous n’avez pas très envie d’apprendre par cœur
que L[987123] compte le nombre d’arbouses. Un dictionnaire (ou tableau
associatif) est une collection de paires de la forme (clé,valeur). Ainsi,
on veut un dictionnaire avec trois clés : "pommes", "poires" et "fraises", la
valeur associée à "pommes" valant 5, de même, la valeur associée à "poires"
vaut 2.

1.1 Créer un dictionnaire

Il existe trois façons de créer un dictionnaire.

1. Créer un dictionnaire vide : D = {}.
2. Créer un dictionnaire par extension D =

{"pommes":5,"poires":2,"fraises":25}.
3. Créer un dictionnaire par paramétrage D = {L[i]:M[i] for i in

range(len(L))]}, avec, par exemple, M = [5,2,25] et
L = ["pommes","poires","fraises"].

Il n’y a pas d’ordre dans un diction-
naire, {"pommes":5,"poires":2,"fraises":25} ==
{"poires":2,"pommes":5,"fraises":25} vaut True. Les accolades
font penser à la notion d’ensembles en mathématiques où il n’y a pas

d’ordre dans non plus. La commande len(D) donne le nombre de couples
(clé,valeur) dans le dictionnaire, et donc le nombre de clés.

1.2 Vérifier si un élément est une clé dans un dictionnaire

La commande k in D est un booléen qui vaut True si k est une clé de
D et False sinon. Ainsi, pour notre exemple, "pommes" in D vaut True
tandis que 5 in D et "kakis" in D valent False.

1.3 Obtenir la valeur associée à une clé

La commande D["pommes"] permet d’obtenir la valeur associée à
"pommes".

1.4 Modifier les valeurs d’un dictionnaire

La commande D["pommes"] = 10 modifie la valeur de D associée à la clé
"pommes"

1.5 Rajouter une clé et une valeur à un dictionnaire

Vous venez de recevoir 10 kakis, alors indiquez-le avec la commande
D["kakis"]=10. Noter que rajouter une clé avec une valeur se fait de
la même façon que modifier la valeur associée à une clé.

1.6 Accéder à la collection des clés et boucle

La commanda D.keys() renvoie la collection des clés. Ce n’est pas une
liste, mais on peut la convertir en liste grâce à list(D.keys()).

for cle in D.keys():#for cle in D: fait la même chose en plus court
print(cle)
print(D[cle])

1.7 Effet de bord

Tout comme les listes, les dictionnaires sont soumis aux effets de bord.
Une modification d’un dictionnaire (ajout d’une clé avec une valeur, mo-
dification de la valeur d’une clé) modifie le dictionnaire de façon globale
même sans return.

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, TP13 1

loic.devilliers@proton.me


1.8 Quels types de variables pour les clés et les valeurs ?

‚ Les valeurs peuvent être de n’importe quel type : int, float, bool,
str, list, dict, tuple etc.

‚ Pour les clés, il n’est pas possible qu’une liste ou qu’un dictionnaire
soit une clé 1.

1.9 Copie d’un dictionnaire

Si L est une liste, alors la commande M = L ne crée pas une liste distincte
de L toute modification de L ou de M affectera l’autre liste. Il faut connaître
les valeurs de L et M après les commandes suivantes :

L = [1,2,3]
M = L
M[2] = 5

La commande M=L.copy() pare ce problème :

L = [1,2,3]
M = L.copy()
M[2] = 5

À noter que cette parade ne fonctionne pas si les éléments de L sont eux-
même des listes, testez :

L = [[1,2,4],2,3]
M = L.copy()
M[0][2] = 5

Pour éviter ce désagrément, on peut effectuer une copie profonde grâce à
une commande (hors programme). Pour les dictionnaires, c’est le même
problème, le code suivant ne donne pas le résultat escompté :

D = {"a":1,"b":2,"c":3}
Dp = D
D["b"] = 5

En revanche, la commande copy fonctionne de la même manière que pour
les listes :

1. De manière général, un conteneur contenant une liste ou un dictionnaire ne peut
pas être une clé d’un dictionnaire

D = {"a":1,"b":2,"c":3}
Dp = D.copy()
Dp["b"]=5

Mais comme pour les listes, cela ne marche pas si les valeurs sont eux-
mêmes des listes ou des dictionnaires.

2 Exercice classique utilisant les dictionnaires

Exercice 1. 1. Écrire une fonction DictionnaireOccurrences(L)
qui, à une liste L, renvoie le dictionnaire des occurrences, c’est-à-dire
que les clés du dictionnaire sont les éléments de L et la valeur associée
à une clé vaut le nombre d’occurrences de cet élément dans la liste
L. Par exemple, si L=["a,"ba","a","c","a","c"], cette fonction
renvoie le dictionnaire {"a":3, "ba":1,"c":2}. Pour cela :

‚ Partir d’un dictionnaire vide
‚ Boucler sur chaque élément de la liste :

— Soit cet élément est déjà une clé du dictionnaire et dans ce cas,
rajouter 1 à la valeur correspondante (en effet, on avait déjà
rencontré x fois cet élément avant et comme on le rencontre
une fois de plus, on l’a donc rencontrée x ` 1 fois au total)

— Soit cet élément n’est pas dans le dictionnaire et dans ce cas,
rajouter le comme clé du dictionnaire avec une valeur de 1 (car
c’est la première fois qu’on le rencontre donc on la rencontré
une fois)

Cette fonction va maintenant être utilisée dans les questions suivantes :
2. En déduire une fonction DeuxàDeuxDistincts(L) qui renvoie True

si les éléments de la liste sont deux à deux distincts et False sinon.
Ainsi, la fonction renvoit False pour si L=[1,3,1] car L[0]=L[2].

3. Écrire une fonction LePlusSouvent(L) qui renvoie la liste des élé-
ments qui apparaissent le plus souvent dans la liste. Ainsi, la fonc-
tion renvoie ["a","c"] si L=["a","b","c","c","a","de"] et ["a]
si L=["a","b","c","c","a","de","c"].

4. Écrire une fonction Permutation(L,M) qui renvoie True si les élé-
ments de L et M sont les mêmes avec le même nombre d’occurrences,
autrement dit on passe de M à L par une permutation des éléments de
la liste et False sinon.

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, TP13 2

loic.devilliers@proton.me


5. Écrire une fonction MêmesÉlements(L,M) qui renvoie True si L et M
ont les mêmes éléments mais pas forcément avec le même nombre
d’occurrences.

3 Parcours en profondeur dans un graphe

3.1 Rappels sur les graphes

On rappelle qu’un graphe est formé d’un ensemble de sommets tel que si
on prend une paire de sommets distincts, ces sommets sont reliés ou non
par un arête (dans le cas où on peut aller dans les deux sens) ou un arc
(le cas où on peut aller seulement dans un seul sens). Si on peut aller du
point A au point B par une arête ou un arc, on dit que B est un voisin
de A. Sur le dessin de graphe, ci-dessous, 1 a quatre voisins : 0, 3, 4 et 5
mais, 6 n’est pas un voisin de 1.

3.2 Concept de pile

Imaginez une pile d’assiettes à laver. Quand une assiette sale arrive, on
la met en haut de la pile, on dit qu’on l’«empile». Lorsqu’on prend une
assiette dans la pile, c’est la dernière mise sur la pile qui est choisie, on
dit qu’on la «dépile». C’est le principe, complètement dégueulasse, du
«dernier arrivé, premier servi». En BCPST2, on modélise une pile par une
liste munie des opérations suivantes : la création d’une pile vide, l’ajout
d’un élément sur la pile, le retrait de l’élément situé au sommet de la pile.

3.3 Parcours en profondeur

Si on veut parcourir un graphe partant d’un sommet, on effectue ce que
l’on appelle un parcours en profondeur. On constitue deux listes, une
pile que l’on va remplier et dépiler tout au long de l’algorithme et une liste
Visités contenant les sommets visités que l’on va remplir. On utilise une
pile afin d’aller au bout de chaque branche l’algorithme s’arrête quand
la pile est vide 2. Plus précisément :

1. On place le sommet de départ dans la pile.
2. Tant que la pile n’est pas vide :

2. En BCPST1, vous aviez vu le parcours en largeur qui utilise une file, où c’était
l’élément arrivé en premier qui était traité en premier.

‚ On dépile un élément de la pile (c’est-à-dire qu’on prend le dernier
élément de la pile et on le retire). Nommons S cet élément. On
rajoute S à la liste Visités sauf s’il est déjà dedans.

‚ On rajoute à la pile les voisins de S sauf s’ils ont déjà été visités.
Prenons le graphe suivant :

0

1 2

3 4 5 6

7 8

Ainsi, partant du sommet 0, l’algorithme se déroule en plusieurs étapes :
1. P = [0], V = []

2. P = [1,2], V = [0]

3. P = [1,6], V = [0,2]

4. P = [1], V = [0,2,6]

5. P = [3,4,5], V = [0,2,6,1]

6. P = [3,4], V = [0,2,6,1,5]

7. P = [3,8], V = [0,2,6,1,5,4]

8. P = [3,3], V = [0,2,6,1,5,4,8]

9. P = [3,7], V = [0,2,6,1,5,4,8,3]

10. P = [3], V = [0,2,6,1,5,8,3,7]

11. P = [], V = [0,2,6,1,5,8,3,7]

La pile est vide donc on s’arrête.

3.4 Parcours et labyrinthe

Exercice 2. On modélise un labyrinthe comme une matrice (une liste
de listes) ayant n lignes et p colonnes les cases blanches sont codées par

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, TP13 3

loic.devilliers@proton.me


des 1 et les cases noires par des 0. On va coder un parcours pour sortir
du labyrinthe partant de l’entrée. On modélise ce labyrinthe comme un
graphe dont les sommets sont les cases blanches. On considère que deux
sommets sont relis par une arête s’ils sont adjacents : Chaque case blanche
est représentée par un couple pi, jq où i est l’indice de la ligne et j son
indice de colonne. On considère que les voisins d’un sommet pi, jq sont
les cases blanches adjacentes à pi, jq soit les couples valides pi, j ´ 1q, pi `

1, jq, pi, j `1q, pi´1, jq dont le coefficient de la matrice vaut 1. Par valide,
on entend qu’il faut vérifier que pi, j ´ 1q soit bien un coefficient de la
matrice (avant de vérifier que c’est une case blanche), c’est-à-dire qu’il
faut vérifier que 0 ď i ď p ´ 1 et 0 ď j ´ 1 ď p ´ 1.

1. Téléchargez les fichiers TP13M1.txt et TP13M2.txt qui sont sur CDP
et mettez les dans le même dossier que votre script Python actuel.

2. Les commandes suivantes ouvrent le labyrinthe :

import matplotlib.pyplot as plt#bibliothèque pour les images
import pickle#bibliothèque pour importer des fichier

with open("TP13M1.txt", "rb") as fichier:
M = pickle.load(fichier)#M: grille chargée à partir du fichier

print(M[0][0]) # Valeur du pixel première ligne première colonne
print(M[0][1]) # Valeur du pixel première ligne, 2ième colonne
print(M[1][1]) # Valeur du pixel 2ième ligne 2-ième colonne
plt.figure()
plt.imshow(M,cmap="gray")#Affiche la matrice en niveau de gris
plt.show()
n,p = len(M),len(M[0])#n: le nb de lignes, p: le nb de colonnes
source = (0,1)#entrée du labyrinthe
but = (n-1,p-2)#sortie du labyrinthe

Ainsi, la source p0, 1q a un sommet : le sommet p1, 1q, lui-même a trois
voisins : celui au-dessus de lui, celui en dessous et celui à sa droite.
La case de gauche étant noire ce n’est pas un sommet du graphe et
donc pas un voisin de p1, 1q.

3. Écrire une fonction ListeAdj(M,sommet) qui à un sommet de la
forme pi, jq renvoie la liste pi ´ 1, jq, pi ` 1, jq, pi, j ´ 1q et pi, j ` 1q.

4. En déduire une fonction ListeAdjValide(M,sommet) qui renvoie les

éléments de la liste créée par la fonction précédente formée d’indices
de lignes et de colonnes valides. Par valide, on entend un couple px, yq

avec 0 ď x ď n ´ 1 et 0 ď y ď p ´ 1.
5. En déduire une fonction ListeVoisins(M,sommet) qui renvoie la liste

des voisins du sommet c’est-à-dire la liste des cases blanches qui
sont voisins de sommet).

6. Coder le parcours partant du sommet source en codant une fonction
ParcoursProfondeur(M,source)

7. Modifier la fonction précédente, pour indiquer à chaque fois que l’on
visite un sommet par quel sommet on est passé pour le visité. Cela
consiste donc à créer un dictionnaire P (dictionnaire des prédéces-
seurs) tel que P[v]=sommet si le sommet v a été ajouté à la pile en
tant que voisin de sommet.

8. Tracer le chemin de l’entrée (sommet source) à la sortie (sommet
but), pour cela partir du sommet but et remonter via le dictionnaire
des prédécesseurs, chacun de ces sommets sera modifié dans la ma-
trice, le coefficient ne vaudra plus 1 (case blanche) mais 0.5 (case
grise).

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, TP13 4

loic.devilliers@proton.me

	Rappels sur les Dictionnaires
	Créer un dictionnaire
	Vérifier si un élément est une clé dans un dictionnaire
	Obtenir la valeur associée à une clé
	Modifier les valeurs d’un dictionnaire
	Rajouter une clé et une valeur à un dictionnaire
	Accéder à la collection des clés et boucle
	Effet de bord
	Quels types de variables pour les clés et les valeurs?
	Copie d’un dictionnaire

	Exercice classique utilisant les dictionnaires
	Parcours en profondeur dans un graphe
	Rappels sur les graphes
	Concept de pile
	Parcours en profondeur
	Parcours et labyrinthe


