
Intégrales généralisées
Chapitre 9

Objectif :
Vous connaissez la notion d’intégrale d’une fonction f continue sur un segment r a ; b s, mais pas sur un intervalle quelconque,

dans ce chapitre, on va donner un sens à des objets comme
ż `8

1

1
t2 dt ou

ż 1

0
lnptq dt.

Pré-requis :
‚ Fonctions usuelles
‚ Notion de limites, fonctions continues et fonctions prolongeables par continuité
‚ Intégrales et primitives (primitives usuelles, IPP, changement de variable)
‚ Intégration sur un segment
‚ Obtention d’équivalents
‚ Théorème fondamental de l’analyse

Ce polycopié contient plusieurs animations, il est donc conseillé d’utiliser un lecteur de pdf capable de lire les
animations (comme Adobe Reader, Foxit PDF Reader, Okular ou autres).

Attention : utiliser un lecteur de pdf adapté
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Dans ce chapitre, I est un intervalle de R d’extrémités a P R Y t´8u et b P R Y t`8u avec a ă b. Ainsi, suivant les cas,
I “ s a ; b r, I “ s a ; b s, I “ r a ; b r ou I “ r a ; b s.

1 Définition de l’intégrale généralisée (ou impropre) sur un intervalle

‚ Si a P R et f P C 0pr a ; b r ,Rq, on dit que l’intégrale
ż b

a

f converge si x ÞÝÑ
ż x

a

f admet une limite finie

en b´. Dans ce cas, on pose :
ż b

a

fptq dt “
ż

r a ; b r

fptq dt “ lim
xÑb´

ż x

a

fptq dt.

‚ Si b P R et f P C 0ps a ; b s ,Rq, on dit que l’intégrale
ż b

a

f converge si x ÞÑ
ż b

x

fptq dt admet une limite finie

en a`. Dans ce cas, on pose :
ż b

a

fptq dt

ż

s a ; b s

fptq dt “ lim
xÑa`

ż b

x

fptq dt

‚ Si f P C 0ps a ; b r ,Rq et c P s a ; b r, on dit que l’intégrale
ż b

a

f converge si les intégrales
ż c

a

f et
ż b

c

f

convergent. Dans ce cas, on pose
ż b

a

fptq dt

ż

s a ; b r

fptq dt “
ż c

a

fptq dt `
ż b

c

fptq dt.

Définition de l’intégrale généralisée (ou impropre) sur un intervalle qui n’est pas un segment

Convergence d’une intégrale sur
r a ; b r avec b P R.

Convergence d’une intégrale sur r a ; `8 r.

Divergence d’une intégrale sur r a ; `8 r.

Remarque 1. Dans le cas de s a ; b r, ce choix de c P s a ; b r n’a pas d’incidence ni sur la nature de l’intégrale de
ż b

a

f ni
sur sa valeur.

Justification de la remarque 1 : Soit c P s a ; b r. Supposons que
ż c

a

f et
ż b

c

f convergent. Soit c1
P s a ; b r, l’objectif est de montrer

que
ż c1

a

f et
ż b

c1

convergent et que
ż c1

a

fptq dt `

ż b

c1

fptq dt “

ż c

a

fptq dt `

ż b

c

fptq dt.

‚ Soit x P
‰

a ; c1
‰
, alors

ż c1

x

fptq dt “

ż c

x

fptq dt `

ż c1

c

fptq dt. Or, comme
ż c

a

f converge, x ÞÑ

ż c

x

fptq dt admet une limite en

a` qui vaut
ż c

a

fptq dt. Ceci démontre que
ż c1

x

fptq dt ÝÝÝÝÑ
xÑa`

ż c

a

fptq dt `

ż c1

c

fptq dt. Donc
ż c1

a

f converge et
ż c1

a

fptq dt “

ż c

a

fptq dt `

ż c1

c

fptq dt.

‚ Soit x P
‰

c1 ; b
‰
, alors

ż x

c1

fptq dt “

ż x

c

fptq dt `

ż c

c1

fptq dt. Or, comme
ż b

c

f converge, x ÞÑ

ż x

c

fptq dt admet une limite

en b´ qui vaut
ż b

c

fptq dt. Ceci démontre que
ż x

c1

fptq dt ÝÝÝÝÑ
xÑb´

ż b

c

fptq dt `

ż c

c1

fptq dt. Donc
ż b

c1

f converge et
ż b

c1

fptq dt “
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ż b

c

fptq dt `

ż c

c1

fptq dt.

Par somme, on peut en conclure que
ż c1

a

fptq dt `

ż b

c1

fptq dt “

ż c

a

fptq dt `

ż b

c

fptq dt.

‚
c

‚
c1

Exemples 1. Étudier la convergence des intégrales suivantes et calculer leur valeur le cas échéant :ż `8

1

1
t2 dt1.

ż `8

´8

1
1 ` t2 dt2.

ż `8

0
1 dt3.

ż 1

0

1?
t

dt4.
ż 1

0

1
p1 ´ tq2 dt5.

ż 1

0

1
t

3
2

dt6.
ż `8

0
cosptq dt7.

ż 1

0
lnptq dt8.

ż `8

´8

t5 dt9.

Remarque 2. Si pa, bq P R2 et f P C 0pr a ; b s ,Rq, alors
ż

r a ; b r

f ,
ż

s a ; b s

f et
ż

s a ; b r

f convergent et valent toutes
ż b

a

f .

Si f continue sur I “ s x0 ; xn`1 r ztx1, . . . , xnu tels que x0 ă x1 ă x2 ă . . . ă xn ă xn`1, on dit que
ż

I

f converge

si, pour tout i P rr 0 ; n ss,
ż

s xi ; xi`1 r

f converge. On définit alors l’intégrale de f sur I par
ż

I

f “
nř

i“0

ż xi`1

xi

f .

Définition de l’intégrale généralisée d’une fonction ayant un nombre fini de discontinuités

Remarque 3. La nature et l’éventuelle valeur de
ż

I

f ne dépendent pas de la valeur de f aux points de discontinuité.

‚
x1

‚
x2

‚
‚

Exemple 2. Étudier la convergence (et calcul le cas échéant) de
ż `8

´8

f où f : t ÞÑ 1s ´2 ; 2 rptqe t ` 1s 2 ; `8 rptq 1
t2 .

Soient pa, bq P R2 et f est définie et continue sur r a ; b s ztcu. Si fpxq ÝÑ
xÑc

ℓ P R, alors
ż b

a

f converge.

Proposition no 1 : fonction prolongeable par continuité (intégrale faussement impropre)
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Exemple 3. Montrer que
ż 1

´1

sinptq
t

dt converge.

Remarque 4. Par convention,
ż a

a

f “ 0 et si
ż b

a

f converge, on pose
ż a

b

f “ ´
ż b

a

f .

2 Propriétés de l’intégrale généralisée et méthodes de calculs

L’intervalle I a pour extrémités a et b. Soient λ P R, pf, gq P C 0pI,Rq2 d’intégrales convergentes sur I :
Linéarité :

ż

I

λf ` g converge et
ż

I

pλfptq ` gptqq dt “ λ

ż

I

fptq dt `
ż

I

gptq dt.1.

Chasles : si c P I, alors
ż c

a

f ,
ż b

c

f convergent et
ż b

a

fptq dt “
ż c

a

fptq dt `
ż b

c

fptq dt.2.

Positivité : si f ě 0 alors
ż

I

fptq dt ě 0.3. Croissance : si f ď g, alors
ż

I

fptq dt ď
ż

I

gptq dt.4.

Stricte positivité : si f est continue et positive sur I et non nulle alors
ż

I

fptq ą 0.5.

Proposition no 2 : propriétés de l’intégrale sur un intervalle

Démonstration de la proposition no 2 :
1.
2.
3.
4.

Supposons que f est continue sur I “ s a ; b r, positive sur I et non nul sur I. Cela veut dire qu’il existe x0 ą 0 tel que

fpx0q ą 0. Comme f est continue en x0, fpxq ÝÝÝÝÑ
xÑx0

fpx0q. Considérons ε “
fpx0q

2 ą 0. Ainsi, il existe δ ą 0 tel que pour tout

x P I X r x0 ´ δ ; x0 ` δ s, fpx0q ´ ε ď fpxq ď fpx0q ` ε. Quitte à prendre δ assez petit, on suppose que r x0 ´ δ ; x0 ` δ s Ă I,
de sorte que pour tout x P r x0 ´ δ ; x0 ` δ s, fpx0q{2 ď fpxq. Posons g l’application définie sur I par : gpxq “ 0, si x ă x0 ´ δ
ou x ą x0 ` δ, gpxq “ px ´ x0 ` δqfpx0q{p2δq si x P r x0 ´ δ ; x0 s et gpxq “ px0 ` δ ´ xqfpx0q{p2δq si x P s x0 ; x0 ` δ s.

fpx0q‚

‚
x0 ´ δ

‚
x0 ` δ

‚
x0

‚fpx0q{2

Alors, g est continue sur I, positive et g ď f ,
ż x0´δ

a

g et
ş

x0 ` δbg convergent (fonction nulle) et
ż x0`δ

x0´δ

g converge (fonction

continue sur un segment), ainsi,
ż b

a

g converge. Par croissance de l’intégrale,
ż

I

g ď

ż

I

f , or
ż

I

g “ δfpx0q ą 0. Par conséquent,
ż

I

f ą 0. ■

5.

Avant de calculer
ż `8

0
fptq dt, on montre que l’intégrale converge (idem pour les limites, les séries etc.).

Attention, précaution à prendre avant d’écrire une intégrale

Soit a P R. L’intégrale
ż `8

0
e ´at dt converge si et seulement si a ą 0. Et dans ce cas,

ż `8

0
e ´at dt “ 1

a
.

Intégrale classique : l’exponentielle
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ż `8

1

dt

tα
converge ssi α ą 1 et alors

ż `8

1

dt

tα
“ 1

α ´ 1 ,
ż 1

0

dt

tα
converge ssi α ă 1 et alors

ż 1

0

dt

tα
“ 1

1 ´ α

Intégrale classique : intégrale de Riemann

Soit pf, gq P C 1ps a ; b r ,Rq2. Si fg admet des limites finies en b´ et en a`, alors les intégrales
ż b

a

fg1 et
ż b

a

f 1g ont

même nature. Si elles convergent
ż b

a

fptqg1ptq dt “ lim
b´

fg ´ lim
a`

fg ´
ż b

a

f 1ptqgptq dt.

Théorème no 1 : intégration par parties pour les intégrales généralisées

Démonstration du théorème no 1 : Soit pf, gq P C 1
ps a ; b r ,Rq

2. Supposons que fg admet des limites finies en b´ et en a` et

que l’intégrale
ż b

a

f 1g converge. Montrons que
ż b

a

fg1 converge. Soit c P s a ; b r.

‚ Montrons que
ż b

c

f converge. Soit x P r c ; b r, alors par intégration par parties sur le segment r c ; x s,
ż x

c

fptqg1
ptq dt “ rfptqgptqs

x
c ´

ż x

c

f 1
ptqgptq dt “ fpxqgpxq ´ fpcqgpcq ´

ż x

c

f 1
ptqgptq dt

Comme
ż b

a

f 1g converge,
ż b

c

f 1g converge, donc
ż x

c

f 1
ptqgptq dt ÝÝÝÝÑ

xÑb´

ż b

c

f 1
ptqgptq dt. De plus, fg admet une limite finie en b´

ainsi : ż b

c

fptqg1
ptq dt ÝÝÝÝÑ

xÑb´
lim

xÑb´
fpxqgpxq ´ fpcqgpcq ´

ż b

c

f 1
ptqgptq dt

Ainsi,
ż b

c

fg1 converge et
ż b

c

fptqg1
ptq dt “ lim

xÑb´
fpxqgpxq ´ fpcqgpcq ´

ż b

c

f 1
ptqgptq dt.

‚ Montrons que
ż c

a

f converge. Soit x P s a ; c s, alors par intégration par parties sur le segment r x ; c s,
ż c

x

fptqg1
ptq dt “ rfptqgptqs

c
x ´

ż c

x

f 1
ptqgptq dt “ fpcqgpcq ´ fpxqgpxq ´

ż c

x

f 1
ptqgptq dt

Comme
ż b

a

f 1g converge,
ż c

a

f 1g converge, donc
ż c

x

f 1
ptqgptq dt ÝÝÝÝÑ

xÑa`

ż c

a

f 1
ptqgptq dt. De plus, fg admet une limite finie en a`

ainsi : ż c

x

fptqg1
ptq dt ÝÝÝÝÑ

xÑa`
fpcqgpcq ´ lim

xÑb`
fpxqgpxq ´

ż c

a

f 1
ptqgptq dt

Ainsi,
ż c

a

fg1 converge et
ż c

a

fptqg1
ptq dt “ fpcqgpcq ´ lim

xÑa`
fpxqgpxq ´

ż c

a

f 1
ptqgptq dt.

Comme on a montré que
ż c

a

fg1 et
ż b

c

fg1 convergent, on peut en déduire que
ż b

a

fg1 converge.

ż b

a

fptqg1
ptq dt “

ż c

a

fptqg1
ptq dt `

ż b

c

fptqg1
ptq dt

“

ˆ
fpcqgpcq ´ lim

xÑa`
fpxqgpxq ´

ż c

a

f 1
ptqgptq dt

˙
`

ˆ
lim

xÑb´
fpxqgpxq ´ fpcqgpcq ´

ż b

c

f 1
ptqgptq dt

˙

“ lim
xÑb´

fpxqgpxq ´ lim
xÑa`

fpxqgpxq ´

ż b

a

f 1
ptqgptq dt

On a donc montré que si
ż b

a

f 1g converge, alors
ż b

a

fg1 converge. En permutant les rôles de f et g, si
ż b

a

fg1 converge, alors
ż b

a

f 1g

converge. ■

Exemple 4. Prouver la convergence de
ż `8

0
te ´t dt et calculer la valeur de cette intégrale.

Soit φ P C 1ps a ; b r ,Rq strictement monotone. Posons α “ lim
a

φ, β “ lim
b

φ. Si f est continue sur s α ; β r (ou s β ; α r).

Alors, les intégrales
ż b

a

pf ˝ φqφ1 et
ż β

α

f ont même nature. Si elles convergent,
ż b

a

fpφptqqφ1ptq dt “
ż β

α

fpxq dx

Théorème no 2 : changement de variable pour les intégrales généralisées
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Exemple 5. Montrer que
ż `8

0
te ´t2 dt est une intégrale convergente et calculer sa valeur.

Vérifier que le changement de variable est C 1, changer φptq par x, dt par dx et les bornes.
Attention à ne pas oublier quelque chose

Soit f continue sur un intervalle s ´a ; a r avec a ą 0.

‚ Si f est paire, alors
ż a

´a

f converge ssi
ż a

0
f converge et dans ce cas

ż a

´a

f “ 2
ż a

0
f .

‚ Si f est impaire, alors
ż a

´a

f converge ssi
ż a

0
f converge et dans ce cas

ż a

´a

f “ 0.

Proposition no 3 : intégrales des fonctions paires et impaires sur un intervalle symétrique

3 Intégrales généralisées de fonctions positives

Soient f et g continues sur I, positives et 0 ď f ď g. Si
ż

I

g converge, alors
ż

I

f converge et
ż

I

fptq dt ď
ż

I

gptq dt.

Proposition no 4 : comparaison de fonctions positives

L’intégrale
ż `8

´8

e ´ x2
2 dx converge et

ż `8

´8

e ´ x2
2 dx “ ?

2π.

Exemple : intégrale de Gauss (valeur admise)

Si f et g sont continues sur r a ; b r, positives et f „
b

g, alors
ż b

a

g et
ż b

a

f ont même nature (idem sur s a ; b s si f „
a

g).

Proposition no 5 : fonctions positives équivalentes

Exemple 6. Étudier la convergence de
ż `8

2

1
t2 ´ t

dt.

4 Intégrales absolument convergentes

Soit f P C 0pI,Rq. On dit que
ż

I

f converge absolument si
ż

I

|f | converge.

Définition d’une intégrale absolument convergente

Remarque 5. Si f P C 0pI,R`q est positive, alors
ż

I

f converge absolument ssi
ż

I

f converge.

Soit f P C 0pI,Rq si
ż

I

f converge absolument, alors
ż

I

f converge et
ˇ̌
ˇ̌
ż

I

fptq dt

ˇ̌
ˇ̌ ď

ż

I

|fptq| dt

Théorème no 3 : l’absolue convergence entraîne la convergence
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La réciproque est fausse :
ż

I

f peut converger et
ż

I

|f | diverger.

Attention à la réciproque

Exemple 7. Étudier la convergence absolue de
ż `8

1

sinptq
t2 dt.
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5 Carte mentale : justifier la convergence d’une intégrale généralisée
Les cases en vert permettent parfois un calcul de l’intégrale SI celle-ci converge.

f P C 0pI,Rqż

I

f CVG ?

I “ r a ; b r

changement
variable

f prolon-
geable

par
continuité

en b si
b P R

Linéarité
ou Chasles

IPP

ż

I
f CVG

absolue-
ment ?

|f | ě 0

f ě 0

ď

„

calcul
primitive
+ limite

en b

I “ s a ; b r

choisir
c P I,

étude sur
s a ; c s

et r c ; b r

étude sur
r 0 ; b r si

a “ ´b et
f (im)paire

changement
variable

IPP

I “ s a ; b s
Idem

I “ r a ; b r

I “ r a ; b s
La vie

est belle

f continue sur
s x0 ; xn`1 r privé
de tx1, . . . , xnuż xn

x0

f CVG ?

@i,
ż xi`1

xi

f

CVG ?
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