(% Chapitre 9

Intégrales généralisées

Objectif :
Vous connaissez la notion d’intégrale d’une fonction f continue sur un segment [ a ; b ], mais pas sur un intervalle quelconque,

+00 1
dans ce chapitre, on va donner un sens & des objets comme f I dt ou J In(t) dt.
1 0

Pré-requis :
e Fonctions usuelles
e Notion de limites, fonctions continues et fonctions prolongeables par continuité
e Intégrales et primitives (primitives usuelles, IPP, changement de variable)
e Intégration sur un segment
e Obtention d’équivalents
e Théoreme fondamental de I'analyse
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Dans ce chapitre, I est un intervalle de R d’extrémités a € R U {-00} et b € R U {+00} avec a < b. Ainsi, suivant les cas,
I=]a;b[,I=]a;b],I=[a;b[oul=][a;b].

1 Définition de l’intégrale généralisée (ou impropre) sur un intervalle

I

Déﬁnition de l’intégrale généralisée (ou impropre) sur un intervalle qui n’est pas un segment
b T

eSiaeRet fe¥a;b[,R), on dit que I'intégrale f f converge si x —> J f admet une limite finie
a a

b
en b~. Dans ce cas, on pose : f f@)dt = f f@)dt = lim f f @)
a [a;b]

r—b~

b b
e SibeRet fe?t°]a;b],R), on dit que I’intégrale j f converge si z — J f(t) dt admet une limite finie
“ b N b
en a*. Dans ce cas, on pose : f f(@) dtJ f(t)dt = hm f( ) dt
Ja;b]

a:—»a

e Si fe % (a;b[,R) et c € Ja;b[, on dit que P’intégrale Jf converge si les intégrales f /et Jf

convergent. Dans ce cas, on pose J ft dtf t)dt = J. ft)de + J f(¢) dt.
la;b[

J F(t) dt = 3.891

=+

1, h
S

Convergence d’une intégrale sur [a;+o0 .

J F(t) dt = 4.100

f F(t) dt = 0.679

(KIPCI) (Fee(+) ‘ -
Convergence d’une intégrale sur E]

[a;b[ avec beR. Divergence d'une intégrale sur [a;+o0[.

Remarque 1. Dans le cas de Ja;b[, ce choix de ¢ € | a;b[ n’a pas d’incidence ni sur la nature de l'intégrale de f f ni

sur sa valeur.

c b
Justification de la remarque 1 : Soit ¢ € | a;b[. Supposons que J fet J f convergent. Soit ¢’ € | a;b[, 'objectif est de montrer

! b 54 b c b
que J f et j convergent et que J f@&)dt + j f@&)dt = J ft)de +f ft)de
e Soit z € |a;c ], alors f f@)det = J f@t) de +J f(t) dt. Or, comme J f converge, x +— J f(t) dt admet une limite en

* qui vaut J f(t) dt. Ceci démontre queJ f@) dt —— f ) dt —I—J F @) de. Doncj f converge et J F@)

Jf dt+ff -

T T c b T
e Soit z € |';b], alors f fit)dt = f ft) dt + J f(t) dt. Or, comme f f converge, x — f f(t) dt admet une limite

b x c b b
en b~ qui vaut J f(t) dt. Ceci démontre que J f@t)dt —— f( ) dt +f f(t) dt. Donc J f converge et J f@)dt =

x—b— c o
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ff(t) dt + J:f(t) dt.

’

c b c b
Par somme, on peut en conclure que j f@)ydt+ | f(¢)dt= J. fF@)yde+ | f(t)de.

’

a (&

Exemples 1. Etudier la convergence des intégrales suivantes et calculer leur valeur le cas échéant :

+00 1 +00 1 +00 1 1 1 1
1. — dt 2. —dt 3. 1dt 4. — dt 5. ——dt
J, | e ) J, 37 J, o
1 1 +00 1 +00
6. f 5 dt 7. j cos(t) dt 8. J In(t) dt 9. f t5 dt
ot2 0 0 —®o

b

Remarque 2. Si (a,b) e R? et f e ¢°([a;b],R), alors f f, J f et J f convergent et valent toutes J f.
[a;b] la;b] Ja;b[ a

=

Déﬁnition de l’intégrale généralisée d’une fonction ayant un nombre fini de discontinuités

Si f continue sur I = |zg;xne1 [\{z1,..., 2} tels que g < 21 < 23 < ... < zp < Tpy1, on dit que ff converge

I
n Tit1
si, pour tout i € [O;n ], J f converge. On définit alors 'intégrale de f sur I par ff = > f-
] I i—0

Li;Tit1 Zq

Remarque 3. La nature et ’éventuelle valeur de J f ne dépendent pas de la valeur de f aux points de discontinuité.
I
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1

+00
Exemple 2. Etudier la convergence (et calcul le cas échéant) de f fou frt—Ty_s,o0(t)e’ + 12,10 [(t)t—Q.
—o0

iJ Proposition n° 1 : fonction prolongeable par continuité (intégrale faussement impropre)

b
Soient (a,b) € R? et f est définie et continue sur [a;b]\{c}. Si f(z) — £ € R, alors J f converge.
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1
Exemple 3. Montrer que f
-1

sin(t)
t

dt converge.

a b a b
Remarque 4. Par convention, f f=0etsi J f converge, on pose J f= ff f-
a a b a

2

Propriétés de ’intégrale généralisée et méthodes de calculs

fij Proposition n° 2 : propriétés de I’intégrale sur un intervalle A
L’intervalle I a pour extrémités a et b. Soient A € R, (f, g) € €°(I,R)? d’intégrales convergentes sur I :
1. Linéarité : J)\f + g converge et J (Af(t) +g(t) dt = )\J f(t) dt + J (t) dt.
I . , I
2. Chasles : si ce I, alors J f, J f convergent et J fit)dt = f f@t)dt +J f@t)
a (&
3. Positivité : si f = 0 alors Jf(t) dt = 0. 4. Croissance : si f < g, alors J (t)dt < J t) dt
I I I
5. Stricte positivité : si f est continue et positive sur I et non nulle alors | f(t) > 0.
\_ ! J
Démonstration de la proposition n°2 :
1.
2.
3.
4.
5. Supposons que f est continue sur I = Ja;b|[, positive sur I et non nul sur I. Cela veut dire qu’il existe o > 0 tel que

f(zo)
2

f(zo) > 0. Comme f est continue en o, f(x) —— f(xo). Considérons ¢ = > 0. Ainsi, il existe § > 0 tel que pour tout
—T0

zeln[mzo—0d;20+6], f(wo) —e < fz) < (a:o) + £. Quitte & prendre § assez petit, on suppose que [xo — d;z0 +] < [
de sorte que pour tout z € [xo — §;20 + I ], f(20)/2 < f(x). Posons g 'application définie sur I par : g(z) =0, si z < g — 0
ouz>xo+9,gx)=(x—x0+9)f(x0)/(20) size[zo—0d;2z0] et g(x) = (xo + 0 — ) f(x0)/(20) si x € |xo; 20+ ].

¢
To—0 L0 xg+0

zo—08 xo+6
Alors, g est continue sur I, positive et g < f, J g et §zo + dbg convergent (fonction nulle) et J g converge (fonction
a zo—0

b
continue sur un segment), ainsi, J g converge. Par croissance de l'intégrale, Jg < jf, or Jg = 0f(zo) > 0. Par conséquent,
a I I I

f>0 [ ]

Attention, précaution a prendre avant d’écrire une intégrale

Avant de calculer j f(t) dt, on montre que 'intégrale converge (idem pour les limites, les séries etc.).

[

Intégrale classique : ’exponentielle

+00 +00

e~ dt converge si et seulement si a > 0. Et dans ce cas, f e dt =~

Soit a € R. L’intégrale J
0 a

0
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T dt 1 . bt 1
— converge ssi a > 1 et alors — = — converge ssi a < 1 et alors | — =
1t a—1 o ¢ o t® 1-a

& Integrale classique : intégrale de Riemann

ij Théoréme n° 1 : intégration par parties pour les intégrales généralisées

Soit (f,g) € €*(Ja;b[,R)?. Si fg admet des limites finies en b~ et en a™, alors les intégrales f fg' et f f'g ont

meéme nature. Si elles convergent J fg'(t) dt = hm fg— hm fg— J (¢

Démonstration du théoréme n°1 : Soit (f,g) € €' (Ja;b[,R)>. Supposons que fg admet des limites finies en b~ et en a™ et
b

b
que lintégrale J f'g converge. Montrons que J fg' converge. Soit ce Ja;b]|.

e Montrons que J f converge. Soit x € [¢;b[, alors par intégration par parties sur le segment [c¢;x ],

j £(t) /(D] — f F (gt dt = F@)g(x) — F(g(c) j F()g(t) dt

b T b
Comme J f'g converge, J f'g converge, donc J f'()gt)dt —— | f'(t)g(t) dt. De plus, fg admet une limite finie en b~
a c c rz—b— c
ainsi : \
R — hrig F(@)g(@) — f(g() - j 7' (0g(t) dt

b b b
Ainsi, ~[fg' converge etjft )g'(t) dt = lim f(@)g(x) — fe)g(e —f g

e Montrons que f f converge. Soit x € | a;c], alors par intégration par parties sur le segment [z ;c],

[r @9 — [ 7090 dt = 1(@gle) — f@g() — [ Ot ar
b c ’ ’
Comme Lf’g converge, Lf’g converge, donc Lf’(t) — j f'(t)g(t) dt. De plus, fg admet une limite finie en a™
ainsi :
jf &:;jfﬂ(d—hmf ff
Ainsi, chg' converge et fcf t)g'(t) dt = f(c)g(c) — hm f(z J @

Comme on a montré que f fq' et J fg' convergent, on peut en déduire que f fg' converge.

ff D= [ ro a+ff

b
S (CICER N j I ) + ( i S(@)a(e) ~ 1(©9(0) — [ 7 0a(0) )
= lim [(2)g(@) ~ lim_f(x ff
rz—b— z—at
b b b
On a donc montré que si J f'g converge, alors f fg' converge. En permutant les roles de f et g, si J fg' converge, alors J f'g
converge. ¢ ‘ ‘ ¢
+00
Exemple 4. Prouver la convergence de J te ~t dt et calculer la valeur de cette intégrale.
0

T_‘J Théoréme n° 2 : changement de variable pour les intégrales généralisées
Soit p € €1 (] a;b[,R) strictement monotone. Posons o = lim ¢, 3 = hmga Si f est continue sur | o ; B[ (ou] B; ).
a

b

B
Alors, les intégrales J (fop)y et J f ont méme nature. Si elles convergent, f Flo)e'(t) dt = J flx

a
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+00

Exemple 5. Montrer que J te =t dt est une intégrale convergente et calculer sa valeur.
0

&Attention a ne pas oublier quelque chose

< Vérifier que le changement de variable est €', changer ¢(t) par x, dt par dz et les bornes.

('_'J Proposition n° 3 : intégrales des fonctions paires et impaires sur un intervalle symétrique )
Soit f continue sur un intervalle | —a;a[ avec a > 0.
e Si f est paire, alors f converge ssi J f converge et dans ce cas f= QJ f-
—a 0 —a 0
e Si f est impaire, alors f converge ssi J f converge et dans ce cas f=0.
\_ — 0 —a Yy,
3 Intégrales généralisées de fonctions positives
iJ Proposition n°4 : comparaison de fonctions positives
| Soient f et g continues sur I, positives et 0 < f < g. Si fg converge, alorsf f converge et Jf(t) dt < Jg(t) dt.
I I I I
@Exemple : intégrale de Gauss (valeur admise)
+00 o2 +00 22
| L’intégrale J e~z dx converge et f ez dz = +/2m.
—0 —0

iJ Proposition n°5 : fonctions positives équivalentes
b b
| Si f et g sont continues sur [a;b[, positives et f ~9, alors J g et J f ont méme nature (idem sur Ja;b]si f ~g).
a
a

a

+00
, 1
Exemple 6. Etudier la convergence de J yr— dt.
) _

4 Intégrales absolument convergentes

)
Déﬁnition d’une intégrale absolument convergente

Soit f € €°(1,R). On dit que J f converge absolument si J | f] converge.
T T

Remarque 5. Si f € €°(I,R,) est positive, alors J f converge absolument ssi J f converge.
I I
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P sin(t)

dt.

Exemple 7. Etudier la convergence absolue de J 2
1
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5 Carte mentale : justifier la convergence d’une intégrale généralisée

Les cases en vert permettent parfois un calcul de I'intégrale ST celle-ci converge.

@
&
/
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