Convergence de séries et calculs de sommes

Exercice 1 (* Cou, Cal ©). Nature des séries de terme général :

- a) $\sin(1/n) \ln(1 + 1/n)$
- b) $\sqrt{n^2 + n + 1} \sqrt{n^2 + n 1}$

d) $\sin(2\pi\sqrt{n^2+1})$

e) $\frac{\ln(n)^{2025}}{n}$

f) $\frac{n}{\ln(n)^{2025}}$

h) $\arctan(n + 2025) - \arctan(n)$

i) $\frac{\cos(n^4)}{n^3}$

i) $\sqrt[n]{n+1} - \sqrt[n]{n}$

 $k) \left(1 + \frac{1}{n}\right)^n - e$

l) $\frac{\tan(1/n^2)}{-\ln(1-1/n)}$

Exercice 2 (* Cou, Cal). Prouver la convergence et calculer la somme des séries suivantes avec $\theta \in \mathbb{R}$ et $x \in]-1;1[$:

- 1. $\sum \frac{1-e}{e^n}$ 2. $\sum \left(\frac{2}{n(n+1)} \frac{5}{3^n}\right)$ 3. $\sum x^n \sin(n\theta)$ 4. $\sum \frac{9}{10^{n+1}}$ 5. $\sum \frac{3^n}{n!}$ 6. $\sum \frac{(-1)^n}{(n+2)!}$

7. $\sum \frac{n^2}{n!}$

Exercice 3 (** Rec, Cou, Cal). Soit $x \in \mathbb{R}^*$ et $n \in \mathbb{N}$. On pose $v_n = \frac{x^n}{n!}$.

- 1. Si $x \neq 0$, déterminer la limite de $\left(\frac{v_{n+1}}{v_n}\right)_n$. En déduire qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout entier $n \ge n_0$, $|v_{n+1}| \le \frac{|v_n|}{2}$
- 2. Montrer que pour $n \ge n_0$, $|v_n| \le \frac{|v_{n_0}|}{2^{n-n_0}}$, en déduire la limite de $(v_n)_n$.
- 3. Montrer que $e^x = \sum_{k=0}^n \frac{x^k}{k!} + \int_0^x \frac{(x-t)^n}{n!} \exp(t) dt$.
- 4. En conclure que la série $\sum \frac{x^n}{n!}$ converge et que sa somme vaut e^x .

Exercice 4 (** Rai, Rec). Soit $(u_n)_{n\in\mathbb{N}}$, on suppose que $u_n = \mathcal{O}(\frac{1}{n^2})$, **Exercice 10** (** Rai, Rec ©). Soit $(v_n)_n$ une suite de réels strictement montrer qu'à partir d'un certain rang $|u_n|n^2 \le 1$, en déduire que $\sum_{n=1}^{\infty} u_n$ positifs et r > 0.

converge. En déduire la convergence de $\sum \frac{1}{n^2 \ln^{2025}(n)}$, $\sum n^{2025} e^{-\sqrt{n}}$

Exercice 5 (** Rai ©). Soit $(u_n)_n$ une suite réelle.

- 1. Si $(u_n)_n$ est positive et que $\sum u_n$ converge. Montrer que $\sum u_n^2$
- 2. Montrer que la réciproque est fausse.
- 3. Si $\sum u_n$ converge absolument, montrer que $\sum u_n^2$ converge.

Exercice 6 (** Rai, Rec). Soient $(\alpha, \beta) \in \mathbb{R}_+^{*2}$, nature de $\sum \frac{\alpha^n}{\beta^n + n}$.

Séries à termes positifs

Exercice 7 ($\oint \star \star$ Rai ©). Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k^2}$ et $u_n =$ $H_n - \ln(n)$.

- 1. À l'aide d'un développement limité, déterminer un équivalent de $u_{n+1} - u_n$.
- 2. En déduire que $\sum (u_{n+1} u_n)$ converge.
- 3. En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que $H_n = \ln(n) + \gamma + \mathcal{O}(1)$.

Exercice 8 (* Rai ©). Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs convergentes. Montrer que $\sum \sqrt{u_n v_n}$ converge.

Exercice 9 ($\oint \star \star \operatorname{Rai}$). Soit $\alpha \in \mathbb{R}$

- 1. Si $\alpha \in \mathbb{R}_{-}$, déterminer la nature de $\sum \frac{1}{n^{\alpha}}$
- 2. Si $\alpha > 0$, comparer $\frac{1}{n^{\alpha}}$ à $\int_{-1}^{n+1} \frac{1}{t^{\alpha}} dt$ et à $\int_{-1}^{n} \frac{1}{t^{\alpha}} dt$.
- 3. En déduire que si $\alpha > 1$, $\sum \frac{1}{n^{\alpha}}$ converge.
- 4. Si $\alpha \in]0;1]$, montrer que $\sum \frac{1}{n^{\alpha}}$ diverge et déterminer un équivalent $\det \sum_{k=1}^{n} \frac{1}{n^{\alpha}}.$

1. Si pour tout $n \ge n_0$, $v_{n+1} \le rv_n$ (resp. \ge), montrer que pour tout $n \ge n_0, v_n \le r^{n-n_0} v_{n_0}.$ (resp. \ge)

Soit $(u_n)_n$ une suite de réels non nuls tel que $\left|\frac{u_{n+1}}{u_n}\right| \xrightarrow[n \to \infty]{} \ell$.

- 2. Si $\ell < 1$, montrer que $\sum u_n$ converge.
- 3. Si $\ell > 1$, montrer que $\sum u_n$ diverge.
- 4. Montrer que si $\ell = 1$, on ne peut rien conclure.

Exercice 11 (** Rai, Rec). Soit $\sum u_n$ une série à termes positifs. On pose, pour $n \in \mathbb{N}$, $v_n = \frac{u_n}{1 + u_n}$. Montrer que $\sum u_n$ et $\sum v_n$ ont même nature.

Exercice 12 ($f \star \star \operatorname{Rec}$, Rai \odot). Soit $\sum u_n$ une série convergente, où $(u_n)_n$ est une suite positive décroissante. Montrer que $nu_n \xrightarrow[n \to \infty]{} 0$.

Exercice 13 (** Rai \mathbb{O}). Soit $(u_n)_n$ une suite strictement positive, on suppose que $\sqrt[n]{u_n} \xrightarrow[n \to \infty]{} \ell$.

- 1. Si $\ell < 1$, montrer que $\sum u_n$ est convergente.
- 2. Si $\ell > 1$, montrer que $\sum u_n$ est divergente.

Exercice 14 (** Rai ©). Soient $\sum u_n$, $\sum v_n$ et $\sum w_n$ trois séries réelles.

- 1. On suppose que pour tout $n \in \mathbb{N}$, $u_n \leq v_n \leq w_n$ et que $\sum u_n$ et $\sum w_n$ convergent, montrer que $\sum v_n$ converge.
- 2. Redémontrer qu'une série réelle absolument convergente converge.

Exercice 15 (* Cal ©). En admettant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Après avoir justifier que ces séries convergent, calculer :

1.
$$\sum_{n=1}^{+\infty} \frac{1}{(2n)^2}$$

1.
$$\sum_{n=1}^{+\infty} \frac{1}{(2n)^2}$$
 2. $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ 3. $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$

3.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

Divers

Exercice 16 (** Rai). Soit $(u_n)_n$ une suite à termes positifs décroissante et tendant vers 0. On pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

1. Montrer que les suites $(S_{2n})_n$ et $(S_{2n+1})_n$ convergent vers la même limite.

- 2. En déduire que $\sum (-1)^n u_n$ converge.
- 3. Montrer que $\sum (-1)^n \frac{1}{n^{\alpha}}$ converge si $\alpha > 0$.

Exercice 17 (** Rai, Cal). 1. Soit $k \in \mathbb{N}$, calculer $\int_{0}^{1} t^{k} dt$.

2. En utilisant la question précédente, démontrer $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}$ converge et déterminer sa somme.

Exercice 18 (** Rai). Soit $\sum u_n$ et $\sum v_n$ deux séries avec $\sum v_n$ une série à termes strictement positifs. Supposons que $\sum v_n$ diverge, on pose S_n = $\sum_{k=0}^{n} u_k$ et $S'_n = \sum_{k=0}^{n} v_k$.

- 1. Si $u_n = \mathcal{O}(v_n)$, montrer que $S_n = \mathcal{O}(S'_n)$
- 2. Si $u_n \sim v_n$, montrer que $S_n \sim S'_n$

Exercice 19 (* * ** Rec). Soit $^1 \sigma: \mathbb{N} \to \mathbb{N}$ une bijection.

- 1. Soit $\sum u_n$ une série réelle à termes positifs convergente. Montrer que $\sum u_{\sigma(n)}$ converge et que $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.
- 2. Soit $\sum u_n$ une série absolument convergente, montrer que $\sum u_{\sigma(n)}$ converge absolument et que $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.
- 3. Soit $\sum u_n$ une série réelle convergente mais non absolument convergente comme $\sum \frac{(-1)^n}{n+1}$.
 - (a) Montrer que $^2 \sum u_n^+$ et $\sum u_n^-$ sont toutes les deux divergentes.
 - (b) Soit $x \in \mathbb{R}$, construire $\sigma \colon \mathbb{N} \to \mathbb{N}$ une bijection telle que $x = \sum_{n=0}^{+\infty} u_{\sigma(n)}.$
 - (c) Construire $\sigma \colon \mathbb{N} \to \mathbb{N}$ une bijection telle que $\sum_{k=0}^{n} u_{\sigma(k)} \xrightarrow[n \to \infty]{} +\infty$. On peut aussi construire σ telle que $\sum_{k=0}^{n} u_{\sigma(k)} \xrightarrow[n \to \infty]{} -\infty$.

^{1.} Sont autorisés à chercher cet exercice seulement ceux qui ont déjà fait au moins 9 exercices de ce TD.

^{2.} Si $x \in \mathbb{R}$, $x^+ = \max(x, 0)$ et $x^- = -\min(0, x)$ sont les parties positives et négatives de x, $x = x^{+} - x^{-}$ et $|x| = x^{+} + x^{-}$.

4. Conclure que les séries c'est vachement bizarre quand même.