
Correction de l’exercice 1.

Correction de l’exercice 2. 1. Par définition 0 P SppAq si et seulement si il existe X P Mn,1pKq tel
que AX “ 0X “ 0n,1 si et seulement si il existe X P Mn,1pKqzt0n,1u tel que X P KerA si et seulement
si KerpAq ‰ t0n,1u si et seulement si A n’est pas inversible. Où on a utilisé, par contraposée, le critère
d’inversibilité d’une matrice carrée : A est inversible ssi KerpAq “ t0n,1u

2. Comme A inversible, on a que λ ‰ 0 (en utilisant la question précédente). Comme λ P SppAq, on peut
dire qu’il existe X P Mn,1pKq non nul tel que AX “ λX, comme A est inversible, on a X “ A´1λX
et comme λ est non nul, on a λ´1X “ A´1X, autrement dit, comme X est non nul, X est vecteur
propre de A´1 pour la valeur propre λ´1. Donc λ´1 P SppA´1q. On a également montré que EλpAq Ă

Eλ´1pA´1q. En appliquant ce résultat à A´1 et λ´1, on a Eλ´1pA´1q Ă Epλ´1q´1ppA´1q´1q “ EλpAq.
Bref Eλ´1pA´1q “ EλpAq.

Correction de l’exercice 3. 1. Montrons que N n’est pas inversible : si N était inversible, alors comme
le produit de matrices inversibles est inversible N2 est inversible, puis par récurrence, on montre que
pour tout k P N, Nk est inversible. En particulier, Np “ 0n est inversible ce qui est absurde. Ainsi, N
n’est pas inversible.

2. Soit N une matrice nilpotente, il existe p P N tel que Np “ 0. Soit λ P SppNq et soit X un vecteur
propre de N , on a NX “ λX avec X ‰ 0. Posons, pour k P N, Ppkq : «NkX “ λkX». Pour
k “ 0, N0X “ X “ λ0X donc Pp0q est vraie. Soit k P N. Supposons Ppkq vraie, alors Nk`1X “

NpNkXq “ NpλkXq “ λkNX “ λkλX “ λk`1X. Donc Ppk ` 1q est vraie. Par récurrence, pour tout
k P N, NkX “ λkX, en particulier 0 “ NpX “ λpX. Soit λpX “ 0, comme X n’est pas un vecteur
nul, on en déduit que λp “ 0 et donc que λ “ 0. Autrement dit SppNq Ă t0u. Comme N n’est pas
inversible, en utilisant le résultat de l’exercice 2, 0 est une valeur propre de N donc t0u Ă SppNq.

3. Soit N une matrice nilpotente et diagonalisable. Alors il existe P P GLnpKq telle que P ´1NP “ D
avec D une matrice diagonale dont la diagonale contient les valeurs propres de N , d’après la question
précédente, SppNq “ t0u. Ainsi D est une matrice diagonale dont la diagonale est nulle, par suite
D “ P ´1NP “ 0n, donc N “ P0nP ´1 “ 0n.
Réciproquement, la matrice nulle est nilpotente et diagonalisable.

Correction de l’exercice 4. Soient λ P SppΨq et f un vecteur propre associé, on a donc Ψpfq “ λf . En
évaluant cette expression en 0, on a que 0 “ Ψpfqp0q “ λfp0q. Soit λ “ 0 ou fp0q “ 0. Dérivons l’expression
Ψpfq “ λf , on a donc f “ λf 1. Si λ “ 0, on obtient que f “ 0 ce qui est absurde car f est supposé un
vecteur propre donc non nul. Donc λ ‰ 0, en particulier fp0q “ 0, et f 1 “ λ´1f . En résolvant cette équation
différentielle d’ordre 1, on a qu’il existe A P R tel que pour tout x P R, fpxq “ Ae λ´1x. Mais comme
fp0q “ 0 “ A, on obtient que f “ 0 ce qui est impossible car f est un vecteur propre. Conclusion il n’existe
pas de valeur propre de Ψ, car il n’y a pas de vecteur propre de Ψ, SppΨq “ H.

Correction de l’exercice 5. Considérons le vecteur non nul X P MnpKq qui ne contient que des 1. Si
on fait MX on obtient un vecteur dont les coordonnées sont la somme des éléments de chaque ligne de M ,
on se dit qu’on ne doit pas être trop loin, il y a juste une interversion colonnes/lignes. Qu’à cela ne tienne,
faisons MJX, on obtient alors MJX “ X. On a donc montré que 1 P SppMJq. Or, on se rappelle que M
et MJ ont même spectre, donc 1 P SppMq.

Correction de l’exercice 6. 1. Supposons que B ne soit pas inversible. Alors son noyau n’est pas réduit
à t0u. Ainsi il existe X P Mn,1pKq non nul. X “ px1, x2, . . . , xnq

J. Notons E “ t|xi|, i P rr 1 ; n ssu, E
est un ensemble fini. Soit i0 P rr 1 ; n ss tel que |xi0 | “ maxpEq. Comme BX “ 0, on a, en particulier,

n
ÿ

k“1
bi0,kxk “ 0

Isolons le terme k “ i0 et passons au module, on a

|bi0,i0 | ˆ |xi0 | “ |bi0,i0xi0 | ď

n
ÿ

k“1
k‰i0

|bi0,k| ˆ |xk| ď

n
ÿ

k“1
k‰i0

|bi0,k| ˆ |xi0 |

En simplifiant par xi0 qui est non nul (car on a supposé X ‰ 0), on obtient une contradiction avec le
fait que |bi,i| ą

ř

j‰i |bi,j |. Ainsi B est inversible.
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2. Soit λ P SppAq, alors la matrice B “ A ´ λIn “ pbi,jqi,j n’est pas inversible, en utilisant la question
précédente par contraposée, on en déduit qu’il existe i P rr 1 ; n ss tel que |bi,i| ď

n
ř

j“1
j‰i

|bi,j |. En utilisant la

définition de la matrice B, on obtient |ai,i ´ λ| ď
n
ř

j“1
j‰i

|ai,j |, autrement dit λ P Dpai,i,
n
ř

j“1
j‰i

|ai,j |q 1. D’où

λ P
ď

iPrr 1 ; n ss

D

¨

˚

˚

˝

ai,i,
n

ÿ

j“1
j‰i

|ai,j |

˛

‹

‹

‚

Et ce pour tout λ P SppAq, soit

SppAq Ă
ď

iPrr 1 ; n ss

D

¨

˚

˚

˝

ai,i,
n

ÿ

j“1
j‰i

|ai,j |

˛

‹

‹

‚

Correction de l’exercice 7.
Correction de l’exercice 8.
Correction de l’exercice 9. Soit A P MnpKq une matrice diagonalisable qui n’a qu’une seule valeur propre
λ, alors il existe P une matrice inversible telle que P ´1AP “ D avec D une matrice diagonale, dont les
éléments sont des valeurs propres. Comme A n’a qu’une seule valeur propre λ, on en déduit que D “ λIn,
puis que P 1AP “ λIn et donc que A “ PλInP ´1, or P et λIn commutent, donc A “ λInPP ´1 “ λIn.
Conclusion, A est nécessairement une homothétie. Réciproquement les homothéties sont diagonalisables et
n’ont qu’une seule valeur propre.

Correction de l’exercice 10. 1. En utilisant qu’une matrice et sa transposée ont même rang, on ob-
tient : pour tout λ P K, λ P SppAq ssi rgpA ´ λInq ă n ssi rgppA ´ λInqJq ă n ssi rgpAJ ´ λIn

Jq ă n
ssi rgpAJ ´ λInq ă n ssi λ P SppAJq. On peut en conclure que SppAq “ SppAJq.

2. Si A est diagonalisable, alors il existe P P GLnpKq telle que D “ P 1AP soit diagonale. Alors D “

DJ “ P JAJpP ´1qJ, posons Q “ P J une matrice inversible d’inverse Q´1 “ pP ´1qJ. On a alors
D “ QAJQ´1, AJ est donc diagonalisable.

Correction de l’exercice 11.
Correction de l’exercice 12.
Correction de l’exercice 13. 1. Soient pM, Nq P MnpCq2 et λ P C, par linéarité de la trace, on a

ΦpM ` λNq “ pM ` λNq ` trpM ` λNqIn “ M ` λN ` ptrpMq ` λtrpNqqIn “ ΦpMq ` λΦpNq

Donc Φ est linéaire, de plus, Φ est à valeur dans MnpCq, donc Φ P L pMnpCqq.
2. Soit M P KerpΦq, alors M ` trpMqIn “ 0n, donc en passant à la trace, trpMq ` trptrpMqInq “ 0.

Donc trpMq ` trpMqtrpInq, soit trpMqr1 ` ns “ 0. Comme 1 ` n ‰ 0, trpMq “ 0, ainsi M ` 0 “ 0n,
donc KerpΦq Ă t0nu, comme Φ est linéaire, l’inclusion réciproque est toujours vraie, donc KerpΦq “

t0nu. Dès lors Φ est un endomorphisme injective en dimension finie donc est surjectif 2. Finalement,
ImpΦq “ MnpCq.

3. Pour tout M P MnpCq, en utilisant la linéarité de la trace.

ΦpΦpMqq “ ΦpMq ` trpΦpMqqIn

“ M ` trpMqIn ` tr rM ` trpMqIns In

“ M ` trpMqIn ` rtrpMq ` trpMqtrpInqs In

“ M ` pn ` 2qtrpMqIn

“ M ` pn ` 2q rΦpMq ´ M s

“ pn ` 2qΦpMq ´ pn ` 1qIdMnpCqpMq

1. On appelle ces disques, les disques de Gerschgorin (mathématicien biélorusse).
2. C’est une des conséquences du théorème du rang.
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Donc
@M P MnpCq

`

Φ ˝ Φ ´ pn ` 2qΦ ` pn ` 1qIdMnpCq

˘

pMq “ 0n

Dès lors
`

Φ ˝ Φ ´ pn ` 2qΦ ` pn ` 1qIdMnpCq

˘

“ 0MnpCq.
4.

`

Φ ˝ Φ ´ pn ` 2qΦ ` pn ` 1qIdMnpCq

˘

“ 0MnpCq

En factorisant par Φ après avoir fait passé le terme Id de l’autre côté, on a :

Φ ˝
`

Φ ´ pn ` 2qIdMnpCq

˘

“ ´pn ` 1qIdMnpCq

On obtient
Φ ˝

ˆ

´1
n ` 1

`

Φ ´ pn ` 2qIdMnpCq

˘

˙

“ IdMnpCq

On obtient la même égalité en composant par Φ à droite, ainsi Φ´1 “
´1

n ` 1
`

Φ ´ pn ` 2qIdMnpCq

˘

.

Correction de l’exercice 14.

Correction de l’exercice 15. 1. Soient A “

ˆ

a b
c d

˙

, B “

ˆ

a1 b1

c1 d1

˙

, λ P R, alors

fpA ` λBq “ f

ˆˆ

a ` λa1 b ` λb1

c ` λc1 d ` λd1

˙˙

“

ˆ

pd ` λd1q 2pb ` λb1q

2pc ` λc1q pa ` λa1q

˙

“

ˆ

d 2b
2c a

˙

` λ

ˆ

d1 2b1

2c1 a1

˙

“ fpAq ` λfpBq

Donc f est linéaire. De plus, pour tout A P M2pRq, fpAq P M2pRq. Donc f P L pM2pRqq.
2. Déterminons la matrice de f dans une certaine base. Considérons, par exemple, la base canonique de

M2pRq, B “ pE1,1, E1,2, E2,1, E2,2q. Alors

f pE1,1q “ f

ˆˆ

1 0
0 0

˙˙

“

ˆ

0 0
0 1

˙

“ E2,2

f pE1,2q “ f

ˆˆ

0 1
0 0

˙˙

“

ˆ

0 2
0 0

˙

“ 2E1,2

f pE2,1q “ f

ˆˆ

0 0
1 0

˙˙

“

ˆ

0 0
2 0

˙

“ 2E2,1

f pE2,2q “ f

ˆˆ

0 0
0 1

˙˙

“

ˆ

1 0
0 0

˙

“ E1,1

Ainsi,

A “ MatBpfq “

¨

˚

˚

˝

0 0 0 1
0 2 0 0
0 0 2 0
1 0 0 0

˛

‹

‹

‚

3. Comme A est symétrique réelle, elle est diagonalisable, donc f aussi. Comme 0 R Sppfq, f est inversible.

Correction de l’exercice 16.

Correction de l’exercice 17.

Correction de l’exercice 18.

Correction de l’exercice 19.
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Correction de l’exercice 20.

Correction de l’exercice 21.

Correction de l’exercice 22. 1. 0L pEq commute avec u de plus, si v et w P Cpuq et λ P K, alors

pv ` λwq ˝ u “ v ˝ u ` λw ˝ u “ u ˝ v ` u ˝ pλwq “ u ˝ pv ` λwq

Donc Cpuq est un SEV de L pEq.
2. En utilisant l’inégalité p2 ě p vraie pour tout p P N et la question précédente, on obtient :

dimpCpuqq ě
ÿ

λPSppuq

dimpEλpuqq “ n

Où on a utilisé le fait que u était diagonalisable.

Correction de l’exercice 23.

Correction de l’exercice 24.

Correction de l’exercice 25.

Correction de l’exercice 26.

Correction de l’exercice 27.

Correction de l’exercice 28.

Correction de l’exercice 29.

Correction de l’exercice 30.

Correction de l’exercice 31.

Correction de l’exercice 32.

Correction de l’exercice 33.

Correction de l’exercice 34.

Correction de l’exercice 35.

Correction de l’exercice 36.

loic.devilliers@proton.me 2BCPST2 lycée Saint-Louis, 25-26, TD8 4

loic.devilliers@proton.me

